In this paper the fractional order epidemic model of a non-fatal disease in a population which is assumed to have a constant size over the period of the epidemic is considered. Laplace-adomian decomposition method (for short L-ADM) is used to compute an analytical solution of the system of nonlinear fractional differential equations governing the problem. The results are compared with the results obtained by the classical Runge-Kutta method in the case of integer-order derivatives.
(2016). SOLUTION OF THE FRACTIONAL EPIDEMIC MODEL BY L-ADM S. Z. RIDA, A. A. M. ARAFA, Y. A. GABER. Journal of Fractional Calculus and Applications, 7(1), 189-195. doi: 10.21608/jfca.2016.308382
MLA
. "SOLUTION OF THE FRACTIONAL EPIDEMIC MODEL BY L-ADM S. Z. RIDA, A. A. M. ARAFA, Y. A. GABER", Journal of Fractional Calculus and Applications, 7, 1, 2016, 189-195. doi: 10.21608/jfca.2016.308382
HARVARD
(2016). 'SOLUTION OF THE FRACTIONAL EPIDEMIC MODEL BY L-ADM S. Z. RIDA, A. A. M. ARAFA, Y. A. GABER', Journal of Fractional Calculus and Applications, 7(1), pp. 189-195. doi: 10.21608/jfca.2016.308382
VANCOUVER
SOLUTION OF THE FRACTIONAL EPIDEMIC MODEL BY L-ADM S. Z. RIDA, A. A. M. ARAFA, Y. A. GABER. Journal of Fractional Calculus and Applications, 2016; 7(1): 189-195. doi: 10.21608/jfca.2016.308382