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A NEW GENERAL CONFORMABLE FRACTIONAL

DERIVATIVE AND SOME APPLICATIONS

MOHAMED DILMI, MOHAMED BENALLIA

Abstract. This paper introduces a new local fractional derivative, called the

M-conformable derivative. It is dened by the following formula:

Dρ
q(·),Mϑ(t) = lim

→0

ϑ
(
t+ q (t)1−ρ M (ϑ (t))

)
− ϑ(t)


,

where M (·) and q (·) are two functions that satisfy some conditions and 0 <

ρ < 1.

First, we investigate fundamental properties of the M-conformable de-

rivative and derive analogues of Rolle’s Theorem, the Mean Value Theorem

and L’Hôpital’s Rule within this framework. Furthermore, we dene the M̃-

conformable integral via the fundamental theorem of calculus and establish an

integration by parts formula. Finally, we present examples of M-conformable

fractional dierential equations to illustrate the applicability of the proposed

derivative.

1. Introduction

Fractional calculus, which is considered a generalization of traditional calculus,
has seen remarkable advancements in recent decades. It has become one of the
fastest-growing research areas, thanks to the compelling results derived from ap-
plying fractional operators to model real-world problems ([14], [18]). A key feature
of this eld is the variety of fractional operators available, enabling researchers to
select the most suitable one for the problem under study. Among the most well-
known fractional derivatives are Riemann–Liouville, Caputo, Hadamard, Caputo-
Hadamard, Riesz and Grünwald-Letnikov ([20], [21]).

Recently, several articles have emerged addressing new types of fractional op-
erators known as local fractional derivatives. The authors in [17] dene a new
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well-behaved simple fractional derivative called the conformable fractional deriv-
ative depending just on the basic limit denition of the derivative

Tρϑ (t) = lim
→0

ϑ

t+ t1−ρ


− ϑ (t)


,

where ϑ a real function and ρ ∈ ]0, 1[. Unfortunately, his denition does not
accommodate zero or negative values. Katugampola introduced a new derivative
in [16], dened by

Dρϑ (t) = lim
→0

ϑ

tet

−ρ

− ϑ (t)




Atangana and Goufo [3], introduced the beta operator which has been applied to
problems involving the asymptotic method. The beta operator is dened by the
following formula

A
0 D

β
t (ϑ (t)) = lim

→0

ϑ


t+ 


t+ 1

Γ(β)

1−β

− ϑ (t)


, β ∈ ]0, 1[ 

In 2016, Almeida et al. [2] generalized the beta operator and the conformable
fractional derivative by introducing a new type of fractional derivative with a kernel,
dened as follows

ϑ(ρ) (t) = lim
→0

ϑ

t+ q (t)

1−ρ

− ϑ (t)


,

where the kernel q : [a, b] → R is a continuous nonnegative map. Camrud [6],
dened the conformable ratio derivative for a positive function ϑ(t) with ϑ′ (t) ≥ 0
as follows

kρ(ϑ (t)) = lim
→0

ϑ (t)
1−ρ


ϑ(t+ )− ϑ (t)



ρ

,

for all t > 0 and ρ ∈ [0, 1]. Guebbai and Ghiat in [9], gave another new denition
of the fractional derivative by

ϑ(ρ) (t) = lim
→0

(
ϑ

t+  (ϑ (t))

(1−ρ)/ρ − ϑ (t)



)ρ

,

where ϑ(t) is an increasing and positive function for all t > 0 and ρ ∈ ]0, 1]. In 2020,
Nápoles Valdés et al. [19], introduced a denition of a non-conformable fractional
derivative, denoted by Nρ

Fϑ (·), which is dened as follows

Nρ
Fϑ (t) = lim

→0

ϑ (t+ F (t, ρ))− ϑ (t)


,

where F (·, ·) is an absolutely continuous function depending on t > 0 and ρ ∈
]0, 1]. In paper [15], the authors introduce a new denition of the local conformable
fractional derivative, as follows

Dρϑ (t) = lim
→0

ϑ

t+ e(ρ−1)t


− ϑ (t)


,

for all t > 0 and ρ ∈ ]0, 1[ 
In addition to the previous denitions, recent research has proposed various gen-

eralizations of conformable derivatives, enriching their theoretical foundations and
expanding their range of applications. For instance, Fleitas et al. [8] introduced
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a generalized conformable derivative of order α > 0, where α is not restricted to
integer values. This denition addresses certain limitations of classical local deriva-
tives, whether conformable or not, and allows for the computation of fractional
derivatives of functions dened on any open subset of the real line. Vivas-Cortés
et al. [22] proposed a multi-index approach to generalized derivatives, further ex-
panding the framework for applications in fractional calculus. In [7], the authors
introduced the omega derivative, which presents a new concept that generalizes the
classical derivative. Additionally, in the paper [10], Guzmán et al. proposed an-
other generalized derivative that extends the class of continuous and dierentiable
functions an important objective in the development of new dierential operators.

Beyond the denition of fractional derivatives, fractional integral inequalities
particularly within the framework of conformable fractional calculus have gained
signicant attention due to their applicability in rening classical inequalities and
developing new analytical techniques. Recent studies have introduced novel ap-
proaches and renements in this area. For example, Hezenci et al. [13] provided
remarks on inequalities with parameters via conformable fractional integrals, oer-
ing new perspectives on integral inequalities. In paper [11], Haider et al. studied
Hermite-Hadamard inequalities for subadditive functions using conformable frac-
tional integrals. Several versions of these inequalities were established, contributing
to the improvement and extension of previous results for convex and subadditive
functions. In [1], the authors extended Euler-Maclaurin type inequalities by intro-
ducing rened versions via conformable fractional integrals. The authors in [5] pro-
posed a new approach to examine certain Newton-type inequalities for dierentiable
convex functions using conformable fractional operators. Additionally, Hezenci and
Budak [12] introduced new Bullen-type inequalities for twice-dierentiable func-
tions, leveraging the properties of conformable fractional integrals to derive more
generalized and precise formulations.

The purpose of this paper is to introduce a new generalization of the conformable
fractional derivative (M-conformable fractional derivative), extending the well-
known denition of the derivative of a function at a given point t. Additionally,
the paper aims to generalize some results previously obtained in the papers [2], [6],
[9], [16], [15] and [17].

The paper is organized as follows. In Section 2, we present a new general def-
inition of local conformable fractional derivative (M-conformable fractional deriv-
ative). In Section 3, we introduce the generalized conformable fractional integral

(M̃-conformable fractional integral) with formula for integration by parts. In Sec-
tion 4, we prove some important theorems about M-conformable fractional deriv-
ative, including Rolle’s Theorem, Mean Value Theorem and the L’Hôspital’s rule.
In Section 5, we give some applications to M-conformable fractional dierential
equations.

2. M-Conformable Fractional Derivative

In this section, we present the main denition of the paper and establish a
relationship between this new concept and ordinary dierentiation. Using this
formula, most of the fundamental properties of the fractional derivative can be
derived directly.
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Denition 2.1. Let q : [a, b] −→ R, and M : R −→ [c, d] be two continuous maps
such that nonnegative q(t) 6= 0; whenever t > a and M 6= 0. Given a function
ϑ : [a, b] −→ R and ρ ∈ ]0, 1[, the M-conformable derivative of ϑ of order ρ is
dened by

Dρ
q(·),Mϑ(t) = lim

→0

ϑ

t+ q (t)

1−ρ M (ϑ (t))

− ϑ (t)


,

for t ∈ ]a, b[ and ρ ∈ ]0, 1[. If ϑ is ρ-dierentiable at t = a and lim
t→a+

Dρ
q(·),Mϑ(t)

exists, then
Dρ

q(·),Mϑ(a) = lim
t→a+

Dρ
q(·),Mϑ(t)

Remark 1. When M (·) := 1 and q(·) := 1, we get the classical derivation
Dρ

1,1ϑ(t) = ϑ′(t).
When M (·) := 1, the operator Dρ

q(·),1ϑ(t) coincides with the denition of the

derivative of a function as presented in [2].
When M (·) := 1 and q(t) := t, the operator Dρ

t,1ϑ(t) coincides with the denition

of the derivative of a function as presented in [17].

Theorem 2.1. If a function ϑ is dierentiable at a point t ∈ ]a, b[, then it is also
ρ-dierentiable at that point for any ρ ∈ ]0, 1[. Furthermore, in this case we have
the following

Dρ
q(·),Mϑ(t) = q (t)

1−ρ
ϑ′(t)M (ϑ (t)) . (1)

Proof. By denition, we have

Dρ
q(·),Mϑ(t) = lim

→0

ϑ

t+ q (t)

1−ρ M (ϑ (t))

− ϑ(t)




So, we conclude that

Dρ
q(·),Mϑ(t) = q (t)

1−ρ M (ϑ(t)) lim
→0

ϑ

t+ q (t)

1−ρ M (ϑ (t))

− ϑ(t)

q (t)
1−ρ M (ϑ (t))

= q (t)
1−ρ M (ϑ (t))ϑ′ (t) 


Lemma 2.1. If ϑ is ρ-dierentiable at t ∈ ]a, b[ for some ρ, then ϑ is locally
bounded in that region.

Proof. Suppose ϑ is ρ-dierentiable at t. Then, there exist a number δ > 0 such
that ∣∣∣ϑ(t+ q (t)

1−ρ M (ϑ (t)))− ϑ(t)− Dρ
q(·),Mϑ(t)

∣∣∣ ≤  , for  < δ,

this implies that∣∣∣ϑ

t+ q (t)

1−ρ M (ϑ (t))
∣∣∣ ≤ +

∣∣∣ϑ(t) + Dρ
q(·),Mϑ(t)

∣∣∣ , for  < δ,

this means that∣∣∣ϑ

t+ q (t)

1−ρ M (ϑ (t))
∣∣∣ ≤ + ϑ(t)+ 

∣∣∣Dρ
q(·),Mϑ(t)

∣∣∣ , for  < δ,

then, we get∣∣∣ϑ

t+ q (t)

1−ρ M (ϑ (t))
∣∣∣ ≤ ϑ(t)+ 


1 +

∣∣∣Dρ
q(·),Mϑ(t)

∣∣∣

, for  < δ.
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So, there exists positive numbers m and δ, such that∣∣∣ϑ

t+ q (t)

1−ρ M (ϑ (t))
∣∣∣ ≤ m, whenever  < δ.

We take δ small enough so that t+ q (t)
1−ρ M (ϑ (t)) ∈ ]a, b[. This yields that ϑ is

locally bounded at t. 
Theorem 2.2. If a function ϑ : [a, b] → R is ρ-dierentiable at t > a, for ρ ∈ ]0, 1[,
then ϑ is continuous at t.

Proof. We know that

ϑ

t+ q (t)

1−ρ M (ϑ (t))

− ϑ(t) = Dρ

q(·),Mϑ(t) · ,
then, we have

lim
→0

[
ϑ

t+ q (t)

1−ρ M (ϑ (t))

− ϑ(t)

]
= Dρ

q(·),Mϑ(t) · 0,

this implies that

lim
→0

[
ϑ

t+ q (t)

1−ρ M (ϑ (t))

− ϑ(t)

]
= 0

Now, setting h := q (t)
1−ρ M (ϑ (t)) and using Lemma 2.1, we nd

lim
h→0

[ϑ (t+ h)− ϑ (t)] = 0

This concludes the proof. 
Corollary 2.1. A function ϑ that is ρ-dierentiable on ]a, b[ is also dierentiable
on that interval.

Proof. Using the classical derivative denition, we obtain

ϑ′ (t) = lim
→0

[
ϑ

t+ q (t)

1−ρ M (ϑ(t)

− ϑ(t)

]

q (t)
1−ρ M (ϑ (t))

= lim
→0

[
ϑ

t+ q (t)

1−ρ M (ϑ(t)

− ϑ(t)

]

q (t)
1−ρ M (ϑ (t))

=
q (t)

ρ−1

M (ϑ (t))
Dρ

q(·),Mϑ(t).

So, we get the result done. 
Theorem 2.3. Let ϑ be dened in [a, b]. For any ρ ∈ ]0, 1[, the function ϑ is
ρ-dierentiable if and only if it is dierentiable.

Proof. It is concluded from Theorem 2.1 and Corollary above. 
Next, we consider the possibility of ρ ∈ ]n, n+ 1[ for some n ∈ N. We have the

following denition.

Denition 2.2. Let ϑ be n-times dierentiable at t ∈ ]a, b[. For any ρ ∈ ]n, n+ 1[
we naturally extend the concept of the M-conformable derivative and dene it using
the following limit

Dρ
q(·),Mϑ(t) := lim

→0

ϑ(n)

t+ q (t)

n+1−ρ M

ϑ(n) (t)


− ϑ(n)(t)



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Remark 2. If ϑ(n+1) exists, we have

Dρ
q(·),Mϑ(t) = q (t)

n+1−ρ
ϑ(n+1)(t)M


ϑ(n) (t)


,

for any ρ ∈ ]n, n+ 1[ 

We now present some properties of the M-conformable derivative.

Theorem 2.4. Let ρ ∈ ]0, 1[ and ϑ, ð be two functions that are ρ-dierentiable at
a point t > 0. Then

1. Dρ
q(·),M[µϑ+ νð] =


µ

Dρ
q(·),Mϑ

M(ϑ) + ν
Dρ

q(·),Mð
M(ð)


M (µϑ+ νð), for all µ, ν ∈ R.

2. Dρ
q(·),M(C) = 0.

3. Dρ
q(·),M (ϑð) =


ð
Dρ

q(·),Mϑ

M(ϑ) + ϑ
Dρ

q(·),Mð
M(ð)


M (ϑð).

4. Dρ
q(·),M


ϑ
ð

=


ðDρ

q(·),Mϑ

ð2M(ϑ) − ϑDρ
q(·),Mð

ð2M(ð)


M


ϑ
ð

, for all ð is a non-zero func-

tion.
5. Dρ

q(·),M(ϑ ◦ ð) = q (·)1−ρ ð′ (ϑ′ ◦ ð)M (ϑ ◦ ð) 

Proof. 1. From denition, we have

Dρ
q(·),M (µϑ+ νð) = q(·)1−ρ (µϑ′ + νð′)M (µϑ+ νð)

=

(
µ
Dρ

q(·),Mϑ

M (ϑ)
+ ν

Dρ
q(·),Mð
M (ð)

)
(M (µϑ+ νð)) 

2. Is evident from equality (1).
3. Product rule

Dρ
q(·),M (ϑð) = q(·)1−ρ (ϑ′ð+ ϑð′)M (ϑð)

=

(
ð
Dρ

q(·),Mϑ

M (ϑ)
+ ϑ

Dρ
q(·),Mð
M (ð)

)
M (ϑð) 

4. Quotient rule

Dρ
q(·),M


ϑ

ð


= q(·)1−ρ


ϑ′ð− ϑ ð′

ð2


M


ϑ

ð



=

(
ð Dρ

q(·),M(ϑ)

ð2M (ϑ)
−

ϑ Dρ
q(·),M(ð)

ð2M (ð)

)
M


ϑ

ð




5. Chain rule

Dρ
q(·),M(ϑ ◦ ð) = q (·)1−ρ

(ϑ ◦ ð)′ M (ϑ ◦ ð) 


The M-conformable fractional derivative of certain functions.

Proposition 1. 1. Dρ
q(·),M (tn) = ntn−1q (t)

1−ρ M (tn), for all n ∈ R.
2. Dρ

q(·),M (et) = q (t)
1−ρ

etM (et).

3. Dρ
q(·),M (cos (t)) = −q (t)

1−ρ
sin (t)M (cos (t)).

4. Dρ
q(·),M (sin (t)) = q (t)

1−ρ
cos (t)M (sin (t)).

5. Dρ
q(·),M (log (t)) = q (t)

1−ρ
t−1M (log (t)).
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3. M̃-Conformable Fractional Integral

In fractional calculus the fractional integral which serves as the inverse of the
fractional derivative is just as crucial as the fractional derivative itself. Now, we
introduce the fractional integral as the inverse operator for the M-conformable
derivative. Throughout this section we assume all functions to be continuous.

In the following, let M̃ denote the primitive function of M and M̃−1 the inverse
function of M̃.

Denition 3.3 (M̃-Conformable Fractional Integral). Let t ∈ [a, b] and ϑ be a

function dened on ]a, t]. We assume that the function M̃ is bijective. Then, the

M̃-conformable fractional integral of ϑ is dened by

t
aIρ

q(·),M̃ϑ(t) = M̃−1

(∫ t

a

ϑ (x)

q (x)
1−ρ dx

)
, (2)

if the Riemann improper integral exists and
 t

a
ϑ(x)

q(x)1−ρ dx

∈ Dom


M̃−1




Remark 3. If q (x) := (t− x) we get t
aIρ

q(·),M̃ϑ(t) = M̃−1

Γ (ρ) RLIρaϑ (t)


, with

RLIρaϑ (t) is Riemann-Liouville fractional integral.

It is interesting to observe that the M-conformable fractional derivative and
the M-conformable fractional integral are inverse of each other as given in the next
result.

Theorem 3.5 (Inverse property). Let ρ ∈ ]0, 1[ and ϑ be a continuous function
such that t

aIρ
q(·),Mϑ(t) exists. Then

Dρ
q(·),M


t
aIρ

q(·),M̃ϑ(t)

= ϑ(t), for t ≥ a,

and

t
aIρ

q(·),M̃(Dρ
q(·),Mϑ(t)) = M̃−1


M̃ (ϑ (t))− M̃ (ϑ (a))


, for t ≥ a (3)

Proof. Let P (t) is a dierentiable function over [a, b]. Since ϑ is given to be con-
tinuous so t

aIρ

q(·),M̃ϑ (t) is ρ-dierentiable.

If we put P (t) := t
aIρ

q(·),M̃ϑ (t) , then we have

Dρ
q(·),M


t
aIρ

q(·),M̃ϑ(t)


= Dρ
q(·),MP (t)

= q (t)
1−ρ

P ′ (t)M (P ) 

We know that a particular solution of the dierential equation

q (t)
1−ρ

P ′ (t)M (P ) = ϑ (t) ,

is given as

P (t) = M̃−1

(∫ t

a

ϑ (x)

q (x)
1−ρ dx

)


For the second part, we set

P (t) := Dρ
q(·),Mϑ (t) = q (t)

1−ρ
ϑ′ (t)M (ϑ) .
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By integrating both sides, we notice that

t
aIρ

q(·),M̃P (t) = t
aIρ

q(·),M̃

[
q (t)

1−ρ
ϑ′ (t)M (ϑ)

]

= M̃−1

∫ t

a

ϑ′ (t)M (ϑ) dx


.

On the other hand, we have
∫ t

a

ϑ′ (t)M (ϑ) dx = M̃ (ϑ (t))− M̃ (ϑ (a)) .

Then, form this we get (3). 

Theorem 3.6. The M̃ conformable integral t
aIρ

q(·),M̃ (·) exhibits the following prop-

erties

a) t
aIρ

q(·),M̃ (µϑ+ νð) = M̃−1

µ
 t

a
ϑ(x)

q(x)1−ρ dx+ ν
 t

a
ð(x)

q(x)1−ρ dx

, for all µ, ν ∈ R

b) Integration by parts
∫ b

a

ðϑ′M (ϑð) dx = M̃ (ϑð (b))− M̃ (ϑð (a))−
∫ b

a

ϑð′M (ϑð) dx,

and
∫ b

a

ðDρ
q(·),Mϑ

q (x)
1−ρ M (ϑ)

M (ϑð) dx = M̃ (ϑð (b))−M̃ (ϑð (a))−
∫ b

a

ϑDρ
q(·),Mð

q (x)
1−ρ M (ð)

M (ϑð) dx

Proof. The rst formula easily follows the denition (2). To prove the formula of
integration by parts, we consider the following identity

Dρ
q(·),M (ϑð) = q (·)1−ρ

(ðϑ′ + ϑð′)M (ϑð) ,

by integrating both sides, we nd

b
aIρ

q(·),M

[
Dρ

q(·),Mϑð
]
= b

aIρ

q(·),M̃

[
q (x)

1−ρ
(ðϑ′ + ϑð′)M (ϑð)

]


Using the formula (3), we obtain

M̃−1

M̃ (ϑð (b))− M̃ (ϑð (a))


= M̃−1

(∫ b

a

(ðϑ′ + ϑð′)M (ϑð) dx

)
,

then

M̃ (ϑð (b))− M̃ (ϑð (a)) =
∫ b

a

ðϑ′M (ϑð) dx+

∫ b

a

ϑð′M (ϑð) dx,

this implies that
∫ b

a

ðϑ′M (ϑð) dx = M̃ (ϑð (b))− M̃ (ϑð (a))−
∫ b

a

ϑð′M (ϑð) dx. (4)

Now, by the formula (4), we nd
∫ b

a

ðDρ
q(·),Mϑ

q (x)
1−ρ M (ϑ)

M (ϑð) dx = M̃ (ϑð (b))−M̃ (ϑð (a))−
∫ b

a

ϑDρ
q(·),Mð

q (x)
1−ρ M (ð)

M (ϑð) dx



Now we present the integration of some functions.
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Proposition 2. Let q(t) := t, we have

1. t
0Iρ

t,M̃λ = M̃−1

λ tρ

ρ




2. t
0Iρ

t,M̃e−t = M̃−1 (γ(ρ, t)) , where γ(·, ·) is incomplete gamma function.

3. t
0Iρ

t,M̃(tn) = M̃−1


tρ+n

ρ+n




4. t
0Iρ

t,M̃ log (t) = M̃−1


tρ log(t)
ρ − tρ

ρ2




4. Some Important Theorems on M-Conformable Derivative

In this section, we prove Rolle’s theorem, the Mean Value theorem and the
L’Hôpital’s rule for the M-conformable fractional derivative.

Theorem 4.7 (Rolle’s theorem for M-Conformable Fractional Dierentiable Func-
tions). Let ϑ : [a, b] → R be a function with the properties that

1. ϑ is continuous on [a, b].
2. ϑ is ρ-dierentiable on ]a, b[ for some ρ ∈ ]0, 1[ 
3. ϑ(a) = ϑ(b).
Then, there exists c ∈ ]a, b[, such that Dρ

q(·),Mϑ(c) = 0.

Proof. According to Theorem 2.3, we have ϑ is dierentiable. On the other hand,
since ϑ is continuous on [a, b] and ϑ(a) = ϑ(b), there exists c ∈ ]a, b[ at which the
function has a local extrema. This means that

ϑ′(c) = 0,

then
q (c)

1−ρ
ϑ′(c)M (ϑ(c)) = 0

Hence
Dρ

q(·),Mϑ(c) = 0


Theorem 4.8 (Mean Value Theorem for M-Conformable Fractional Dierentiable
Functions). Let ϑ : [a, b] → R be a function with the properties that

• ϑ is continuous on [a, b].
• ϑ is ρ-dierentiable on ]a, b[ for some ρ ∈ ]0, 1[.

Then, there exists c ∈ ]a, b[ such that Dρ
q(·),Mϑ(c) = ϑ(b)−ϑ(a)

b−a q (c)
1−ρ M (ϑ(c)).

Proof. Consider the function

ð(t) = ϑ(t)− ϑ(a)− ϑ(b)− ϑ(a)

b− a
t

Then, the function ð satises the conditions of the fractional Rolle’s theorem.
Hence, there exists c ∈ ]a, b[ such that

Dρ
q(·),Mð(c) = 0

Using the fact that

Dρ
q(·),Mð(t) =


Dρ

q(·),Mϑ(t)

M (ϑ(t))
− ϑ(b)− ϑ(a)

b− a

Dρ
q(·),Mt

M (t)


M (ð(t)) ,

and M (ð(c)) 6= 0, we get

Dρ
q(·),Mϑ(c) =

ϑ(b)− ϑ(a)

b− a
q (c)

1−ρ M (ϑ(c)) .



10 M. DILMI, M. BENALLIA JFCA-2025/16(2)



Theorem 4.9. Let G : [a, b] → R, be a given function that satises
1. G is continuous on [a, b]
2. G is ρ-dierentiable on ]a, b[.

3. sup
[a,b]

∣∣∣Dρ
q(·),MG

∣∣∣ = G0 and min
[a,b]

q (·)1−ρ M (G)  = q0, with q0 > G0

Then, G is a contractive.

Proof. Let t, s ∈ [a, b]. By Theorem 4.8, there exists c ∈ ]a, b[ such that

Dρ
q(·),MG(c) =

G(t)−G(s)

t− s
q (c)

1−ρ M (G (c)) 

Therefore, we have

G(t)−G(s) ≤
∣∣∣∣∣

Dρ
q(·),MG(c)

q (c)
1−ρ M (G (c))

∣∣∣∣∣ t− s

≤ G0

q0
t− s 

Then, G is a contractive. 

Proposition 3. Let ϑ and ð : [a, b] → R be two given functions such that
• ϑ and ð are continuous on [a, b].
• ϑ and ð are ρ-dierentiable on ]a, b[ for some ρ ∈ ]0, 1[.
Then, there exists c ∈ ]a, b[ such that


Dρ

q(·),Mð (c)
M (ð (c))


(ϑ (a)− ϑ (b)) =


Dρ

q(·),Mϑ (c)

M (ϑ (c))


(ð (a)− ð (b)) 

Proof. Consider the function Λ dened by

Λ (t) = ϑ(t) (ð(b)− ð(a))− ð(t) (ϑ(b)− ϑ(a)) ,

then, the function Λ satises the conditions of Theorem 4.7. Hence, there exists
c ∈ ]a, b[ such that

Dρ
q(·),MΛ (c) = 0,

where

Dρ
q(·),MΛ (c) = q1−ρ (t)Λ′ (c)M (Λ (c)) 

Then, there exists c ∈ ]a, b[ such that
(
(ð(b)− ð(a))

Dρ
q(·),Mϑ (c)

M (ϑ (c))
− (ϑ(b)− ϑ(a))

Dρ
q(·),Mð (c)
M (ð (c))

)
M (Λ (c)) = 0

We have M (Λ (c)) 6= 0, then we get the result. 

The following result provide a generalization of L’Hôpital’s rule.

Theorem 4.10. Let ϑ, ð : [a, b] −→ R be two given functions such that
1. ϑ and ð are continuous on [a, b].
2. ϑ and ð are ρ-dierentiable on ]a, b[, for some ρ ∈ ]0, 1[.

3. Dρ
q(·),Mð is never zero on ]a, b[, and that limt→a+

Dρ
q(·),Mϑ(t)

Dρ
q(·),Mð(t) 

M(ð(t))
M(ϑ(t)) = l.
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Then

lim
t→a+

ϑ (t)− ϑ (a)

ð (t)− ð (a)
= lim

t→a+

Dρ
q(·),Mϑ (t)

Dρ
q(·),Mð (t)


M (ð (t))
M (ϑ (t))

= l

Proof. By th hypotheses (1) and (2), we can apply Proposition 3. So, for all t ∈ [a, b]
there exists ct ∈ ]a, t[ such that


Dρ

q(·),Mð (ct)
M (ð (ct))


(ϑ (t)− ϑ (a)) =


Dρ

q(·),Mϑ (ct)

M (ϑ (ct))


(ð (t)− ð (a)) 

It is clear that if t → a, so ct → a, then, we have

ϑ (t)− ϑ (a)

ð (t)− ð (a)
=

Dρ
q(·),Mϑ (t)

Dρ
q(·),Mð (t)


M (ð (t))
M (ϑ (t))



Finally by (3), we nd

lim
t→a+

ϑ (t)− ϑ (a)

ð (t)− ð (a)
= lim

t→a+

Dρ
q(·),Mϑ (t)

Dρ
q(·),Mð (t)


M (ð (t))
M (ϑ (t))

= l



5. Applications to M-conformable differential equations

Now, we solve some fractional dierential equations using the M-conformable
derivative operator Dρ

q(·),M (·). In the rst examples, we discuss methods for solv-

ing both homogeneous and non-homogeneous fractional dierential equations. In
the last, we address the Cauchy problem for M-conformable fractional dierential
equations.

5.1. Examples for M-conformable dierential equations.

Example 1. Consider the M-conformable dierential equation

Dρ
q(·),My(t) + r(t)y(t) = 0,

where r(·) is continuous. Using the expression given in (1), the equation gets trans-
formed

q (t)
1−ρ

y′(t)M (y(t)) + r(t)y(t) = 0,

this implies that

M̃ (y(t))

′
=

r(t)

q (t)
1−ρ 

By integration, we get

y(t) = M̃−1

(
c+

∫
r(t)

q (t)
1−ρ dt

)
,

where c is arbitrary constant such that

c+

 r(t)

q(t)1−ρ dt

∈ Dom


M̃−1



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Example 2. We now consider a non-homogeneous M-conformable dierential
equation

Dρ
t,My(t) = t, t > 0,

where M (·) = e−(·)2 .
We have

Dρ
t,My(t) = t1−ρy′(t)e−(y(t))2 ,

then, by integration, we nd

e−y(t)2 =
2tρ+1

1 + ρ
+ 2c,

where c > 0 is arbitrary constant.
So, the solution is

y(t) = ±
√

ln


2tρ+1

1 + ρ
+ 2c

−1

,

with t ≤ [(ρ+ 1) (12− c)]
1/(1+ρ)

and 0 < c < 12

Example 3. We consider following M-conformable problem




D
1/2
t,sin(·)


D

1/2
t,cos(·)y(t)


= −t1/2π sin (πt) , t > 0,

D
1/2
1,cos(·)y(1) = π

(5)

We have

D
1/2
t,cos(·)y(t) = t1/2y′(t) cos y(t)

So the rst equation of (5) becomes as follows

t1/2

t1/2y′(t) cos y(t)

′
sin


t1/2y′(t) cos y(t)


= −t1/2π sin (πt) ,

this implies that [
cos


t1/2y′(t) cos y(t)

]′
= −π sin (πt) 

Now, by integration, we nd

cos

t1/2y′(t) cos y(t)


= cos (πt) + c,

using the fact that D
1/2
1,cos(·)y(1) = π, we get c = 0. Then, we have

y′(t) cos y(t) = πt1/2,

then

sin y(t) =
2π

3
t3/2 + c,

from this, we get

y(t) = arcsin


2π

3
t3/2 + c


,

where 0 < t ≤


3
2π (1− c)

2/3
and 0 ≤ c < 1 is arbitrary constant.
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5.2. Cauchy problem for M-conformable dierential equations.

Example 4. We consider the following Cauchy problem




Dρ
q(·),My(t) = F (t, y(t)) , t ∈ ]0, T ] ,

y(0) = y0.

(6)

To study this problem, we denote by H := C([0, T ];R) the Banach space of all
real-valued continuous functions dened on [0, T ]. The norm in this space will be
denoted by ‖y‖∞ = sup

[0,T ]

y(·). We also use the following notations

Br := y ∈ H: ‖y‖∞ ≤ r ,

and

K0 = min
[0,T ]

q (·)1−ρ


Proposition 4. Let M̃ be the primitive function of M and M̃−1 the inverse of
M̃. If (∫ t

0

F (x, y(x))

q (x)
1−ρ dx+ M̃ (y0)

)
∈ Dom


M̃−1


,

then, the system (6) is equivalent to the following M̃-conformable integral equation

y (t) = M̃−1

(∫ t

0

F (x, y(x))

q (x)
1−ρ dx+ M̃ (y0)

)
 (7)

Proof. By integrating both sides of (6), we nd

t
0Iρ

q(·),M

[
Dρ

q(·),My(t)
]
= t

0Iρ
q(·),M F (t, y(t)) 

Using the formula (3), we have

M̃−1

M̃ (y (t))− M̃ (y (0))


= M̃−1

(∫ t

0

F (x, y(x))

q (x)
1−ρ dx

)
,

this implies that

M̃ (y (t)) =

∫ t

0

F (x, y(x))

q (x)
1−ρ dx+ M̃ (y (0)) ,

then

y (t) = M̃−1

(∫ t

0

F (x, y(x))

q (x)
1−ρ dx+ M̃ (y (0))

)


Now, using the condition y(0) = y0, we get

y(t) = M̃−1

(∫ t

0

F (x, y(x))

q (x)
1−ρ dx+ M̃ (y0)

)

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Conversely, assuming (7) and applying the M-conformable derivative operator
Dρ

q(·),M (·) to both sides of the equation, we nd

Dρ
q(·),My (t) = Dρ

q(·),M


M̃−1

(∫ t

0

F (x, y(x))

q (x)
1−ρ dx+ M̃ (y0)

)

= q (t)
1−ρ


M̃−1

(∫ t

0

F (x, y(x))

q (x)
1−ρ dx+ M̃ (y0)

)′

M
(
M̃−1

(∫ t

0

F (x, y(x))

q (x)
1−ρ dx+ M̃ (y0)

))

= q (t)
1−ρ


M̃

(
M̃−1

(∫ t

0

F (x, y(x))

q (x)
1−ρ dx+ M̃ (y0)

))′

= q (t)
1−ρ

(∫ t

0

F (x, y(x))

q (x)
1−ρ dx+ M̃ (y0)

)′

= F (t, y(t)) 



Theorem 5.11. Under the following assumptions
1. F : [0, T ]× R −→ R is continuous.
2. There exists a constant µ > 0 such that

F(t, u (t))− F(t, y (t)) ≤ µ u (t)− y (t) ,
for all t ∈ [0, T ] and u, y : [0, T ] −→ R.

3. There exists a constant cM̃ > 0 such that
∣∣∣M̃−1 (u)− M̃−1 (ð)

∣∣∣ ≤ cM̃ u− ð 
4. M̃−1 (0) = 0

5. µTcM̃ < K0 and
(AT+M̃(y0))cM̃

K0+µTcM̃
< r, where A := sup

[0,T ]

F(·, 0) 

The Cauchy problem (6) has a unique solution.

Proof. Firstly, we dene the mapping J : H −→ H by

J (y(t)) = M̃−1

(∫ t

0

F (x, y(x))

q (x)
1−ρ dx+ M̃ (y0)

)
,

then, we show that J (Br) ⊂ Br. Let y ∈ Br, we have

J (y(t)) = M̃−1

(∫ t

0

F (x, y(x))

q (x)
1−ρ dx+ M̃ (y0)

)


Using hypothesis (3) and (4), we nd

J (y(t)) ≤ cM̃

∣∣∣M̃ (y0)
∣∣∣+ cM̃

∫ t

0

F (x, y(x))
q (x)

1−ρ dx

≤ cM̃

∣∣∣M̃ (y0)
∣∣∣+ cM̃

∫ t

0

q (x)
ρ−1

(F (x, y(x))− F (x, 0)+ F (x, 0)) dx

≤ cM̃

∣∣∣M̃ (y0)
∣∣∣+ cM̃ (µr + A)T

K0

≤ r.
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Now, for all u, y ∈ Br, we get

J (u(t))− J (y(t))

≤
∣∣∣∣∣M̃

−1

(∫ t

0

F (x, u(x))

q (x)
1−ρ dx+ M̃ (y0)

)
− M̃−1

(∫ t

0

F (x, u(x))

q (x)
1−ρ dx+ M̃ (y0)

)∣∣∣∣∣

≤ cM̃

∫ t

0

1

q (x)
1−ρ F (x, u(x))− F (x, y(x)) dx

≤ µTcM̃
K0

‖u− y‖∞ ,

this implies that

‖J (u(·))− J (y(·))‖∞ ≤ µTcM̃
K0

‖u− y‖∞ 

Since
µTcM̃
K0

< 1, the mapping J is a contraction. Then, J has a unique xed point
which is the solution of the Cauchy problem. 

Remark 4. For example, we can take M (·) := cos (·), in this case we nd M̃ (·) :=
sin (·) and M̃−1 (·) := arcsin (·).

6. Conclusion

This paper introduces a new fractional derivative, the M-conformable deriva-
tive, along with its inverse operator. This derivative represents a generalization of
the conformable derivative proposed by Khalil et al [17]. The examples provided
illustrate that this operator opens up promising avenues for modeling various phe-
nomena that cannot be adequately addressed using the classical derivative. By
adjusting the kernel function M, the M-conformable derivative oers an eective
and exible tool for studying a wide range of local phenomena that cannot be
treated by traditional dierential models.

Several open questions naturally arise from this study:
(a) What is the geometric interpretation and physical relevance of the M-

conformable derivative?
(b) Can the function M be regarded as an operator, and what are the implica-

tions of this perspective for the analytical properties of the denition?
In addition to these questions, potential avenues for further research include ex-

ploring the application of the M-conformable derivative in dening generalized in-
tegral transforms. For example, one could develop a generalized Laplace transform
within this framework. Additionally, the M-conformable derivative may provide
a foundation for extending classical fractional derivatives, such as the Caputo and
Riemann-Liouville types, particularly in contexts like epidemiological modeling (see
for example ([4])).
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