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FRACTAL-FRACTIONAL DIFFERENTIAL AND INTEGRAL
OPERATORS:
DEFINITIONS, SOME PROPERTIES AND APPLICATIONS

SHAYMAA I. NASIM, AHMED M. A. EL-SAYED, EMAN M. A. HAMDALLAH

ABSTRACT. In this paper, we prove some properties of the fractal and fractal-
fractional integral and differential operators, then define the linear kinds of
Abel integral equations of fractal and fractal-fractional orders. The existence
of solutions of these kinds of Abel integral equations will be studied.

Two initial-value problems of fractal integro-differential Abel equations will be
also discussed.

1. INTRODUCTION

This paper focuses on exploring the properties of the fractal and the fractal-
fractional differential and integral operators, which serves as a crucial tool for
studying various phenomena. Specifically, we examine the theoretical foundation
of the fractal-fractional integral operator and delve into its application to the study
of Abel integral equations [3] and [13].

The objective of this study is to investigate some of the key problems associated
with the fractal and fractal-fractional Abel integral equations of the first and second
kinds. By exploring these equations, we aim to expand the understanding of how
fractal and fractional operators interact and their potential applications in fields
such as physics, engineering, and mathematics [7], [9] and [16].

Our goal here, firstly, is to prove some properties of the fractal and fractal-fractional
differential and integral operators. Secondly, define the first and second kinds frac-
tal Abel integral equations and the first and second kind fractal-fractional Abel
integral equations, then study their existence of solutions.
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2. DEFINITIONS AND PROPERTIES

In recent years, the concepts of fractal calculus, fractional calculus, and their
combination fractal-fractional calculus have gained significant attention due to their
applications in various scientific and engineering fields. These integrals provide
powerful tools for modeling complex phenomena that can’t be effectively described
using classical calculus [1], [3], [10] and [14].

Below are some key properties of these integrals that highlight their significance
and utility in various domains.
Let 8 € (0,1) and « € (0,1], then we have the following definitions

Definition 2.1. The fractal derivative of the function x at tg € (0,T) is defined

by [5]
_da(t) B z(t) — x(to)
Dg x(t) = —5 izt T T s 4

and if x s differentiable, then we can get

d 1= da(t
o(t) = z(t)

dtP B dt

From which we can deduce that

él_)IIllDﬂSU() = Ex(t)

Definition 2.2. Let = € C[0,T] or bounded measurable on [0,T]. The fractal
integral of the function x is defined by [6]

Ig z(t) /63B1

and we can deduce that

1-8 1-8 1-5
Dplpa(t) = tTd%fﬂ a(t) = ° d/ﬂ it tﬂ Bt7 a(t) = x(t).

Definition 2.3. The Riemann—Liouville (R-L) fractional-order integral of the func-
tion x can be defined as [4], [11] and [12]

I% z(t) = /0 % x(s) ds.

Definition 2.4. The (R-L) fractal-fractional integral of the function x can be,
simply, defined by

D a(t) = € (0, 7).

t _ s a—1
Ig =(t) = /o %ﬂ A1 x(s) ds,

where T(a) = [ e™" t*71 dt.

Now, from the properties of the fractional calculus operators, [4], [8], [11] and
[12], we can prove the following properties.

Theorem 2.1. Let f:[0,T] - R be continuous or measurable and bounded on
[0,T] with |f(t)] <, then
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i) |Is fO) < tf, = I f(t)li=o0 = 0.

() [I* O <7 ragay = 1 F(B)le=o = 0.

ta+ﬁ—1

W’ = Ig f(t)|t:0 :O, a—I—B > 1.
Proof. From definitions 1-4, we have
() s f() < [18° 1 |f(s)|ds <r [} B8P 1 ds <rtP.

(i) |15 F(8)] <r

Then [Ig f(t)|1=0 < 0, which implies |Ig f(t)|;=0 = 0 and Ig f(¢)[;=0 = O.

.. o S t s)< ! “
(i) [1* f(¥)| < fo tr(L) f(s)lds < r [ %ds = r—r(;“)'

Then |I* f(t)|t=0 < 0, which implies |[I* f(t)|t=o =0 and I* f(¢)|t=0 = 0.

(iii) I3 (1)) < fy S |f(s)lds < [y U5

_ I'B) ja+pB-1 _ C(B+1) ,a+B8-1 teth—
_TF(aJrﬁ)t =T Tatp) t <rr(a+ﬁ),a+5>1.

Bsﬁ lds = rBI*t8~1

Then [I§ f(t)]t=o0 < 0, which implies |I§ f(t)|t=0 =0 and I§ f(t)|1=0 = O.

Theorem 2.2. Let f € C[0,T] be continuous and |f(t)| < r, then the operators
F;:C[0,T] — CI[0,T], i =1,2,3 where

(1) 1) = Iﬁ ft), ﬂG(O 1.
(2) Fa(t) = I% f(t) ,a € (0,1].
B) @) = Iy f(t), a+ 5> 1.
Proof. Let t2>t1 € [0,T] such that [tz —t1] <. Then we have
) |Ft) = Bm)] = | [ 87" f( )dsl <ty 7).
@) |Balts) — Fo(tr)] = | “2 ol f(s) ds — Jy' Bpl— £(s) ds]

= | fyr et p(s)ds ff e f(s)ds|

t —s)* 1 _(t;—s t sye—1
< r 01 |(t2 ) F(a()tl )~ |d8 + r 2 (to— (o)() ds
« « 2r «@ 2r «@
< (a+1) (t t2) + I(a+1) (t2 - tl) < T(a+1) (t2 - tl) .

(3) Let 0 < v < « be given such that « —~+ 8 > 1, then from the properties
of the fractional-order integral, we have I®f(t) = I"I*~7f(t) and

I§ f(t) = I° (B9-1f(1) = I~ (BP1f(8) = IS f(1).

Now
|[Fy(t) — Fs(t)| = [I7T077 (B3 f(t2)) — ITo77 (B8] f(t0))]

—s)7 " 0 —
= s> Ry 17767 fls))ds — [yt g 10T (857 f(s))ds
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_ |f (to—s)7 " —(t;—s)7~} Iai’y(ﬁS’Bilf(S))dS_ to Mjafv(ﬁsﬁflf(s))dﬂ.

F(’Y) t1 I'(y)
t —s)Y T (41 —8)" a— t s o
< fyr |l S m T pey (581 f(s) )ds + [f)® Sl 1o(BsP Y £(s)])ds.
But
170" f(s)) < I (BsTY) = iy Jo (s = 0) 71807 Ndp
— BL(B)  a—y+B-1 ToTaHAml
= T Tlartm s S My tasTs = M
Then
t1 to — )Y 1 _ t — y—1 to to — y—1
Fy(ts) — Fy(t1)] < M/ ({t2 =) Gk KA M/ (2 =)
0 I'(v) t I'(v)

T 2

Hence, the results follow.
Now, we have the following corollaries.

Corollary 2.0. lim Igf(t) = Igf(t).
a—1
Proof. From the fractional calculus properties, [4], [8] and [12], we can get
: a _ @ ps—1 _ B—1 _
il_)mlfﬁf(t)—cltl_)mll B2 ) =18t f(t) = Isf(t).
Corollary 2.0. lim Igf(t) = I“f(t).
B—1
Proof. Consider
IGf() = I°f(t) = I B771 f(t) = If(8) = 1% (B "1 = 1) f(1),
[ I5f() —I°f(t) [ < I |8 771 = 1] |f(1)].
But lim gt°~' = 1, then
B—1

lim | 570~ If(6) | < 1° T (56771 = 1] |f(0)] = 0

and

lim T5(6) = 1°()
Lemma 2.1. Let f € C[0,T]. If o, B € (0,1), then I* Igf(t) = I I§f(t) =
IS ().

Proof. We have
Isf () /ﬂsﬁ Uf(s) ds = 18 971 £(1),

then
I*Igf(t) = I"IB°71f(t) = I' g7 f(t)
= Ié+o‘f(t).
And
LIGE() = TI°BP71f(t) = I g7 f(1)

= It f().
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Corollary 2.0. lim I;™f(t) =I5 f(t).
a—0
Proof. From the fractional calculus properties, [4], [8] and [12], we can get

lim I3 f(t) = lim 1% Tgf(t) = Isf(t).

a—0

Lemma 2.2. Let f € C[0,T]. If a+ B € (0,1), then Ig I,f(t) = t# L, f(t) —
2 T 1),

Proof. We have

t
LA = 1 [ 25 ) ds

_ /5551/ 071 () df ds
= /70”1 /ﬂsﬂlds

- /vmlﬂ)<—wme
0
t t
= P 071 £(6) do — P+t =1 £(0) do
tAv G Av £6)

= 7 Lf(t) - L/t(ﬁJrv) UL f(6) b

B+ Jo
= 7 Lf(t) - Iy f(D).

0
B+
So, we obtain

y

Ig If(t) =t I, f(t) - e

Iginy f(2).
Also, we can get
I 10 =0 1) = =5 Laaf(0)
Then, we obtain
L 15 £(t) # Is Li(2).

Corollary 2.0. 1. élgll Ig I f(t) = T L f(t) =t I, f(t) — o5 Tipn f(2)-
2. lim Iy Lf() = I 1) = ¢ /() = 5y Toan f(0).

Thus, we obtain

I Lf() # 1, Tf(2).
From Lemma 2.2, when 8 =« = a, we can obtain the following corollary

Corollary 2.0. Let f € C[0,T]. If 2« € (0,1), then I, I,f(t) = t* I, f(t) —
1

2 Iy f(1).

2
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3. ABEL INTEGRAL EQUATIONS

3.1. Abel integral equations via fractional calculus. The first and second
kinds of the Abel’s integral equations via fractional calculus are given by [7] and
[16]

1 boa(s) B
F(OZ) /a (t — 3)1—a ds = f(t), te [a,b] (1)
and
=t + F()\a) /a (t _xis))l—a ds = f(t), = € [a,b] 2)

where z(t) is the unknown function and « € (0, 1).
From the properties of the fractional calculus, [4], [8] and [12], we have the following
lemma

Lemma 3.3. 1) If I'=“f(t) is differentiable on [0,T], then the solution of (1) is
given by
d

w(t) = ZI7f(t) = D)

where the operator TD® is the R-L fractional order derivative.

2) If f € C[0,T] and |NT* < T'(1 + «) then the solution of equation (2) can
be given by

oo

w(t) = (L+A)T(E) = D (=N f(?).

n=0

3.2. Fractal Abel integral equations. Now, we can define the linear first kind
Abel fractal integral equation as

/ Loy ds = st te 7] 3)
0 S
Ig z(t) = /0 Bs?lx(s) ds = f(t), t €0,T] (4)

and the linear second kind Abel’s fractal integral equation as
t
z(t) + A / BsPlx(s) ds = f(t), t €[0,T). (5)
0

Lemma 3.4. 1) Let 8 € (0,1). If the function f is differentiable on [0,T], then
the solution of (4) is given by

o) = 57(0) = Daf()

2) Let f € C[0,T). If |\T? <1 then the solution of equation (5) can be given by

z(t) = (L+Mp) ' f(t) = D (=N"(Ls)"f(t) € C[0,T].

n=0

Proof. 1) Consider the integral equation (4), then

%f(t) = %/Ot BsPla(s) ds = BtP~1a(t).
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This proves that
1 d d
Btl_ﬁaf(t) = z(t), dt_ﬁf(t) = z(t) and Dgf(t) = x(t).

2) For the integral equation (5) we have

(14 Mp)a(t) = f(t).
But

M f)] = |Al \/O Bs*1f(s)ds| < A |IfI] T7, where ||f]] ZtGS[l(l)pT]lf(t)\

then |A|T? < 1 implies that ||Ms|| < 1 and by the Neumann expansion [2] we
can get

oo

2(t) = (L+ )7 f(t) = Y (=N (Ip)"f(t) € C[0, T.

n=0
Example
Let f(t) = zo in (5), then the solution of the linear second kind Abel’s fractal
integral equation (5) is given by

o0 oo nﬂ

wt) = S (N ()" w0 = > (—A)”tn—! 20 € C[0,T].

n=0 n=0
Lemma 3.5. Let f:[0,7] — R be such that F(t) = B t°71f(t) € L,[0,T). If
INT? < 1, then the solution of equation (5) can be given by
&

o) = —3 D (=BT P(t) € Lo, T)
n=0
where TF(t) = [ F(s)ds and ||F|[y = [y |F(t)|dt.
Proof. Let Y(t) = At lz(t) and multiply the integral equation (5) by
st

then we get
Y(t) + AptITHY () = B7TUf(1),
which can be written as
1+ ABt° D) Y () = F(b),

where

t t

IY (t) = / Y(s)ds = / BsPLa(s) ds.

0 0

But
[ A BT F@)] < AL IF|L 8771 and || A Bt77H Flly < [N TP [|FI),

then |A\|T7% <1 implies that || A ft"~1I||; <1 and by the Neumann expansion
[2] we can get

Y(t) = (1 + AP ID)7F@1) = i(fx)”(ﬁtﬂflf)" F(t) € L1[0,T]

n=0
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and
=5
z(t) = 5 Y (t) € L1]0,T).

3.3. Fractal integro-differential Abel equations. 1- Let 7,6 € (0,1) be such
that v < §. Consider the initial-value problem of the fractal integro-differential
equation

I, Dsx(t) = f(t), t €(0,T], z(0) = z,. (6)
We can write (6) as
! 1=0 g vy d
y—1 el _ R
/0 s 3 dsx(s)ds ; 58 dsm(s)ds
¢

_ / ﬁsﬁ_l —
= = y(s) ds = f(t
& | ds = s
and obtain the first kind fractal Abel integral equation
I y(t) = F(t) (7)
where
6
—xz(t), F(t) = Tf(t) and 8 = 1 + v—0 €(0,1).
Now, if the function f(t) € AC[0,T] is absolutely continuous on [0, 7], then the
solution of (7) is given by

y(t) = Dy F(t) = %ﬁ Dy f(t) € Ly[0.7]

and finally the solution of (6) is given by
t
z(t) = zo + / y(s) ds € ACI0,T).
0
2- Let S € (0,1). Consider the initial-value problem of fractal differential equation

Dg z(t) + Mz(t) = f(t), t€(0,T] and z(0) = wo. (8)

From (8), we can get

%m() + AB P z(t) = BT f(1).

Integrating, we obtain the second kind Abel fractal integral equation

xz(t) + A /t B st x(s) ds = g(t),
0
where
g(t) = mo + Igf(t).
Then if |A| 7% <1 and f € C[0,T], then the solution of (8) is given by
z(t) = (L+XIg)"tg(t) € AC[0,T]
and

=) (=N Us)" wo + Z n (1) () e ACo, T,

n=0
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4. FRACTAL-FRACTIONAL ABEL INTEGRAL EQUATIONS

Let o€ (0,1], and B € (0,1). Here, we can define the linear first and second
kinds Abel fractal-fractional integral equations respectively as

t $f—1
15al) = o [ g ) ds = S el @
t $B—1
x(t) + F()\oz)/o (tﬁ—s)l—a xz(s) ds = f(t), t €[0,T]. (10)

Definition 4.5. Let I'=%f be differentiable on [0,T] and B € (0,1), then the
fractal-fractional order derivative is given by

d

dt—ﬁfl_af(t)-

For the solution of the integral equation (9) we have the following lemma.

"Dg f(t) =

Lemma 4.6. If the function I'=%f is differentiable on [0,T], then the solution
of (9) is given by

d « [e%
o) = =5 If() = "Dg f(0)
where the operator RDg defines the R-L fractal-fractional order derivative.
Proof. From (9) we have
If x(t) = f(t) = Iga(t) = I'""*I§ =(t) = I'"*f(t)
and
d _
x(t) = ﬁfl *f(t) = "D§ f(t).
Now, we can prove the following properties of the R-L fractal-fractional order de-
rivative RDg .
Theorem 4.3. Letx € C[0,T)] or (z be bounded and measurable), then RD;; Ig x(t) = z(t).
Proof. We have

d
dth

using Theorem 1, we have I'~* I§ = Iy, then

RD% Ig x(t) - Ig x(t) a.e, t €0,T]

« (6% d

=0 d
= Bdt/BSﬁl ) ds a.e, t € [0,T]

ti=p

= 3 BT a(t) = a(t),

which means that the inverse of the operator I§ will be RDg.

Theorem 4.4. Letx € C[0,T] or (x be bounded and measurable), then 1§ RDO‘ x(t) =
x(t).
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Proof. Since x is bounded and measurable, then we have I'=% x(t)[;—g = 0
I§ ®Dg 2(t) = 1% g7~ “Dg§ x(t)
d
dt?
t'=F d
= [Pt =
b B dt
d
= I* — '™ z(t).
o (t)
But, I' 2(t)|—0 =0 = I* & = £ ] then
d
dt
d
= 7 Iz(t) = z(t),

which means that the inverse of the operator RDE{ will be Ig.

= J*p¢P! '~ x(t)

I x(t)

I "Dg x(t) = — I* '™ a(t)

4.1. Second kind Abel equation. The linear second kind fractal-fractional Abel’s
integral equation (10) can be written as

() + A T3a(t) = f(b). (11)

Theorem 4.5. Let f € C[0,T], a+ 8 > 1. If % Tot8=1 < 1, then the
solution x € C[0,T) of (11) is given by

z(t) =Y _(=N" (I§)" f(t) € C[0,T]. (12)

n=0
Proof. From (11) we have
I+ AI5) x(t) = f(1).

Now
t _ a—1
13 p0 ] = 18 [ s s as |
t (t— S)afl 51
< W[ s ) s
Lt—s)! 81
< W [ s s
< LA B I 477
F(ﬁ) a+pB-1
< |)\|||f|\5mt L arp>1
|)‘| a+p—1
< A g T
Then by the Neumann expansion [2] we have
e(t) = D (A" UH" fB)
n=0

= fO)=ANI§ FO)+ N (I5)% F(t) = X* (I§)° f(t) + wens € C[o,T).
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5. CONCLUSION

In this paper, we studied some of fundamental properties of fractal and fractal-

fractional integral and differential operators and examined some various types of
fractal-fractional Abel integral equations. The analysis of these equations provides

val

uable insights into their mathematical structure and potential applications in

complex systems. Our findings contribute to the growing field of fractal and fractal-
fractional calculus, paving the way for further research and applications in scientific
and engineering disciplines.
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