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FRACTAL-FRACTIONAL DIFFERENTIAL AND INTEGRAL

OPERATORS:

DEFINITIONS, SOME PROPERTIES AND APPLICATIONS

SHAYMAA I. NASIM, AHMED M. A. EL-SAYED, EMAN M. A. HAMDALLAH

Abstract. In this paper, we prove some properties of the fractal and fractal-

fractional integral and dierential operators, then dene the linear kinds of

Abel integral equations of fractal and fractal-fractional orders. The existence

of solutions of these kinds of Abel integral equations will be studied.

Two initial-value problems of fractal integro-dierential Abel equations will be

also discussed.

1. Introduction

This paper focuses on exploring the properties of the fractal and the fractal-
fractional dierential and integral operators, which serves as a crucial tool for
studying various phenomena. Specically, we examine the theoretical foundation
of the fractal-fractional integral operator and delve into its application to the study
of Abel integral equations [3] and [13].
The objective of this study is to investigate some of the key problems associated
with the fractal and fractal-fractional Abel integral equations of the rst and second
kinds. By exploring these equations, we aim to expand the understanding of how
fractal and fractional operators interact and their potential applications in elds
such as physics, engineering, and mathematics [7], [9] and [16].
Our goal here, rstly, is to prove some properties of the fractal and fractal-fractional
dierential and integral operators. Secondly, dene the rst and second kinds frac-
tal Abel integral equations and the rst and second kind fractal-fractional Abel
integral equations, then study their existence of solutions.
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2. Definitions and properties

In recent years, the concepts of fractal calculus, fractional calculus, and their
combination fractal-fractional calculus have gained signicant attention due to their
applications in various scientic and engineering elds. These integrals provide
powerful tools for modeling complex phenomena that can’t be eectively described
using classical calculus [1], [3], [10] and [14].
Below are some key properties of these integrals that highlight their signicance
and utility in various domains.
Let β ∈ (0, 1) and α ∈ (0, 1], then we have the following denitions

Denition 2.1. The fractal derivative of the function x at t0 ∈ (0, T ) is dened
by [5]

Dβ x(t) =
dx(t)

dtβ


t=t0

= lim
t→t0

x(t)− x(t0)

tβ − tβ0
and if x is dierentiable, then we can get

Dβ x(t) =
d

dtβ
x(t) =

t1−β

β

dx(t)

dt
, t ∈ (0, T ].

From which we can deduce that

lim
β→1

Dβx(t) =
d

dt
x(t).

Denition 2.2. Let x ∈ C[0, T ] or bounded measurable on [0, T ]. The fractal
integral of the function x is dened by [6]

Iβ x(t) =

 t

0

β sβ−1 x(s) ds

and we can deduce that

DβIβx(t) =
t1−β

β

d

dt
Iβ x(t) =

t1−β

β

d

dt

 t

0

β sβ−1 x(s) ds =
t1−β

β
β tβ−1 x(t) = x(t).

Denition 2.3. The Riemann–Liouville (R-L) fractional-order integral of the func-
tion x can be dened as [4], [11] and [12]

Iα x(t) =

 t

0

(t− s)α−1

Γ(α)
x(s) ds.

Denition 2.4. The (R-L) fractal-fractional integral of the function x can be,
simply, dened by

Iαβ x(t) =

 t

0

(t− s)α−1

Γ(α)
β sβ−1 x(s) ds,

where Γ(α) =
∞
0

e−t tα−1 dt.

Now, from the properties of the fractional calculus operators, [4], [8], [11] and
[12], we can prove the following properties.

Theorem 2.1. Let f : [0, T ] → R be continuous or measurable and bounded on
[0, T ] with |f(t)| ≤ r, then



JFCA-2025/16(2) FRACTAL-FRACTIONAL DIFFERENTIAL AND INTEGRAL OPERATORS 3

(i) |Iβ f(t)| ≤ r tβ , ⇒ Iβ f(t)|t=0 = 0.

(ii) |Iα f(t)| ≤ r tα

Γ(1+α) ⇒ Iα f(t)|t=0 = 0.

(iii) |Iαβ f(t)| ≤ r tα+β−1

Γ(α+β) , ⇒ Iαβ f(t)|t=0 = 0, α+ β > 1.

Proof. From denitions 1-4, we have

(i) |Iβ f(t)| ≤
 t

0
β sβ−1 |f(s)| ds ≤ r

 t

0
β sβ−1 ds ≤ r tβ .

Then |Iβ f(t)|t=0 ≤ 0, which implies |Iβ f(t)|t=0 = 0 and Iβ f(t)|t=0 = 0.

(ii) |Iα f(t)| ≤
 t

0
(t−s)α−1

Γ(α) |f(s)| ds ≤ r
 t

0
(t−s)α−1

Γ(α) ds = r tα

Γ(α+1) .

Then |Iα f(t)|t=0 ≤ 0, which implies |Iα f(t)|t=0 = 0 and Iα f(t)|t=0 = 0.

(iii) |Iαβ f(t)| ≤
 t

0
(t−s)α−1

Γ(α) β sβ−1 |f(s)| ds ≤ r
 t

0
(t−s)α−1

Γ(α) β sβ−1 ds = r β Iα tβ−1

= r β Γ(β)
Γ(α+β) tα+β−1 = r Γ(β+1)

Γ(α+β) tα+β−1 ≤ r tα+β−1

Γ(α+β) , α+ β > 1.

Then |Iαβ f(t)|t=0 ≤ 0, which implies |Iαβ f(t)|t=0 = 0 and Iαβ f(t)|t=0 = 0.

Theorem 2.2. Let f ∈ C[0, T ] be continuous and |f(t)| ≤ r, then the operators
Fi : C[0, T ] → C[0, T ], i = 1, 2, 3 where

(1) F1(t) = Iβ f(t), β ∈ (0, 1).
(2) F2(t) = Iα f(t) ,α ∈ (0, 1].
(3) F3(t) = Iαβ f(t), α+ β > 1.

Proof. Let t2 > t1 ∈ [0, T ] such that |t2 − t1| < δ. Then we have

(1) |F1(t2)− F1(t1)| = |
 t2
t1

β sβ−1 f(s) ds| ≤ r(tβ2 − tβ1 ).

(2) |F2(t2)− F2(t1)| = |
 t2
0

(t2−s)α−1

Γ(α) f(s) ds −
 t1
0

(t1−s)α−1

Γ(α) f(s) ds|

= |
 t1
0

(t2−s)α−1−(t1−s)α−1

Γ(α) f(s)ds +
 t2
t1

(t2−s)α−1

Γ(α) f(s)ds|

≤ r
 t1
0

| (t2−s)α−1−(t1−s)α−1

Γ(α) |ds + r
 t2
t1

(t2−s)α−1

Γ(α) ds

≤ r
Γ(α+1) (tα1 − tα2 ) + 2r

Γ(α+1) (t2 − t1)
α ≤ 2r

Γ(α+1) (t2 − t1)
α.

(3) Let 0 < γ < α be given such that α− γ+ β ≥ 1, then from the properties
of the fractional-order integral, we have Iαf(t) = IγIα−γf(t) and

Iαβ f(t) = Iα (βtβ−1f(t)) = IγIα−γ (βtβ−1f(t)) = IγIα−γ
β f(t).

Now
|F3(t2)− F3(t1)| = |IγIα−γ (βtβ−1

2 f(t2))− IγIα−γ (βtβ−1
1 f(t1))|

= |
 t2
0

(t2−s)γ−1

Γ(γ) Iα−γ(βsβ−1f(s))ds −
 t1
0

(t1−s)γ−1

Γ(γ) Iα−γ(βsβ−1f(s))ds|
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= |
 t1
0

(t2−s)γ−1−(t1−s)γ−1

Γ(γ) Iα−γ(βsβ−1f(s))ds−
 t2
t1

(t2−s)γ−1

Γ(γ) Iα−γ(βsβ−1f(s))ds|.

≤
 t1
0

| (t2−s)γ−1−(t1−s)γ−1

Γ(γ) | Iα−γ(βsβ−1|f(s)|)ds+
 t2
t1

(t2−s)γ−1

Γ(γ) Iα−γ(βsβ−1|f(s)|)ds.

But
Iα−γ(βsβ−1|f(s)|) ≤ rIα−γ(βsβ−1) = r

Γ(α−γ)

 s

0
(s− θ)α−γ−1βθβ−1dθ

= r
Γ(α−γ)

βΓ(β)
Γ(α−γ+β)s

α−γ+β−1 ≤ r
Γ(α−γ)

Tα−γ+β−1

Γ(α−γ+β) = M.

Then

|F3(t2)− F3(t1)| ≤ M

 t1

0

| (t2 − s)γ−1 − (t1 − s)γ−1

Γ(γ)
|ds + M

 t2

t1

(t2 − s)γ−1

Γ(γ)
ds

≤ 2 M

Γ(γ + 1)
(t2 − t1)

γ .

Hence, the results follow.

Now, we have the following corollaries.

Corollary 2.0. lim
α→1

Iαβ f(t) = Iβf(t).

Proof. From the fractional calculus properties, [4], [8] and [12], we can get

lim
α→1

Iαβ f(t) = lim
α→1

Iα β tβ−1f(t) = I β tβ−1f(t) = Iβf(t).

Corollary 2.0. lim
β→1

Iαβ f(t) = Iαf(t).

Proof. Consider

Iαβ f(t)− Iαf(t) = Iα β tβ−1 f(t)− Iαf(t) = Iα (β tβ−1 − 1) f(t),

| Iαβ f(t)− Iαf(t) | ≤ Iα |β tβ−1 − 1| |f(t)|.
But lim

β→1
βtβ−1 = 1, then

lim
β→1

| Iαβ f(t)− Iαf(t) | ≤ Iα lim
β→1

|β tβ−1 − 1| |f(t)| = 0

and
lim
β→1

Iαβ f(t) = Iαf(t).

Lemma 2.1. Let f ∈ C[0, T ]. If α,β ∈ (0, 1), then Iα Iβf(t) = I Iαβ f(t) =

I1+α
β f(t).

Proof. We have

Iβf(t) =

 t

0

β sβ−1f(s) ds = Iβ tβ−1f(t),

then

Iα Iβf(t) = Iα Iβ tβ−1f(t) = I1+α β tβ−1f(t)

= I1+α
β f(t).

And

I Iαβ f(t) = I Iαβ tβ−1f(t) = I1+α β tβ−1f(t)

= I1+α
β f(t).
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Corollary 2.0. lim
α→0

I1+α
β f(t) = Iβ f(t).

Proof. From the fractional calculus properties, [4], [8] and [12], we can get

lim
α→0

I1+α
β f(t) = lim

α→0
Iα Iβf(t) = Iβf(t).

Lemma 2.2. Let f ∈ C[0, T ]. If α + β ∈ (0, 1), then Iβ Iγf(t) = tβ Iγf(t) −
γ

β+γ Iβ+γf(t).

Proof. We have

Iβ Iγf(t) = Iβ

 t

0

γ sγ−1 f(s) ds

=

 t

0

β sβ−1

 s

0

γ θγ−1 f(θ) dθ ds

=

 t

0

γ θγ−1 f(θ) (

 t

θ

β sβ−1 ds) dθ

=

 t

0

γ θγ−1 f(θ) (tβ − θβ) dθ

= tβ
 t

0

γ θγ−1 f(θ) dθ −
 t

0

γ θβ+γ−1 f(θ) dθ

= tβ Iγf(t)−
γ

β + γ

 t

0

(β + γ) θ(β+γ)−1 f(θ) dθ

= tβ Iγf(t)−
γ

β + γ
Iβ+γ f(t).

So, we obtain

Iβ Iγf(t) = tβ Iγf(t)−
γ

β + γ
Iβ+γf(t).

Also, we can get

Iγ Iβf(t) = tγ Iβf(t)−
β

γ + β
Iγ+βf(t).

Then, we obtain

Iγ Iβ f(t) ̸= Iβ Iγf(t).

Corollary 2.0. 1. lim
β→1

Iβ Iγf(t) = I Iγf(t) = t Iγf(t)− γ
1+γ I1+γf(t).

2. lim
γ→1

Iβ Iγf(t) = Iβ If(t) = tβ If(t)− 1
β+1 Iβ+1f(t).

Thus, we obtain

I Iγf(t) ̸= Iγ If(t).

From Lemma 2.2, when β = γ = α, we can obtain the following corollary

Corollary 2.0. Let f ∈ C[0, T ]. If 2α ∈ (0, 1), then Iα Iαf(t) = tα Iαf(t) −
1
2 I2α f(t).
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3. Abel integral equations

3.1. Abel integral equations via fractional calculus. The rst and second
kinds of the Abel’s integral equations via fractional calculus are given by [7] and
[16]

1

Γ(α)

 t

a

x(s)

(t− s)1−α
ds = f(t), t ∈ [a, b] (1)

and

x(t) +
λ

Γ(α)

 t

a

x(s)

(t− s)1−α
ds = f(t), x ∈ [a, b] (2)

where x(t) is the unknown function and α ∈ (0, 1).
From the properties of the fractional calculus, [4], [8] and [12], we have the following
lemma

Lemma 3.3. 1) If I1−αf(t) is dierentiable on [0, T ], then the solution of (1) is
given by

x(t) =
d

dt
I1−αf(t) = RDαf(t)

where the operator RDα is the R-L fractional order derivative.

2) If f ∈ C[0, T ] and |λ|Tα < Γ(1 + α) then the solution of equation (2) can
be given by

x(t) = (1 + λIα)−1f(t) =

∞

n=0

(−λ)nInαf(t).

3.2. Fractal Abel integral equations. Now, we can dene the linear rst kind
Abel fractal integral equation as

 t

0

β

s1−β
x(s) ds = f(t) t ∈ [0, T ] (3)

or

Iβ x(t) =

 t

0

βsβ−1x(s) ds = f(t), t ∈ [0, T ] (4)

and the linear second kind Abel’s fractal integral equation as

x(t) + λ

 t

0

βsβ−1x(s) ds = f(t), t ∈ [0, T ]. (5)

Lemma 3.4. 1) Let β ∈ (0, 1). If the function f is dierentiable on [0, T ], then
the solution of (4) is given by

x(t) =
d

dtβ
f(t) = Dβf(t)

2) Let f ∈ C[0, T ]. If |λ|T β < 1 then the solution of equation (5) can be given by

x(t) = (1 + λIβ)
−1f(t) =

∞

n=0

(−λ)n(Iβ)
nf(t) ∈ C[0, T ].

Proof. 1) Consider the integral equation (4), then

d

dt
f(t) =

d

dt

 t

0

βsβ−1x(s) ds = βtβ−1x(t).
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This proves that

1

β
t1−β d

dt
f(t) = x(t),

d

dtβ
f(t) = x(t) and Dβf(t) = x(t).

2) For the integral equation (5) we have

(1 + λIβ)x(t) = f(t).

But

|λIβf(t)| = |λ| |
 t

0

βsβ−1f(s)ds| ≤ |λ| ||f || T β , where ||f || = sup
t∈[0,T ]

|f(t)|

then |λ|T β < 1 implies that ||λIβ || < 1 and by the Neumann expansion [2] we
can get

x(t) = (1 + λIβ)
−1f(t) =

∞

n=0

(−λ)n (Iβ)
nf(t) ∈ C[0, T ].

Example
Let f(t) = x0 in (5), then the solution of the linear second kind Abel’s fractal
integral equation (5) is given by

x(t) =

∞

n=0

(−λ)n (Iβ)
n x0 =

∞

n=0

(−λ)n
tnβ

n!
x0 ∈ C[0, T ].

Lemma 3.5. Let f : [0, T ] → R be such that F (t) = β tβ−1f(t) ∈ L1[0, T ]. If
|λ|T β < 1, then the solution of equation (5) can be given by

x(t) =
t1−β

β

∞

n=0

(−λ)n(βtβ−1I)n F (t) ∈ L1[0, T ]

where IF (t) =
 T

0
F (s)ds and ||F ||1 =

 T

0
|F (t)|dt.

Proof. Let Y (t) = βtβ−1x(t) and multiply the integral equation (5) by
βtβ−1,
then we get

Y (t) + λ βtβ−1IY (t) = βtβ−1f(t),

which can be written as

(1 + λ βtβ−1I) Y (t) = F (t),

where

IY (t) =

 t

0

Y (s) ds =

 t

0

βsβ−1x(s) ds.

But

| λ βtβ−1I F (t)| ≤ |λ| ||F ||1 βtβ−1 and || λ βtβ−1I F ||1 ≤ |λ| T β ||F ||1,

then |λ|T β < 1 implies that || λ βtβ−1I||1 < 1 and by the Neumann expansion
[2] we can get

Y (t) = (1 + λ βtβ−1I)−1F (t) =

∞

n=0

(−λ)n(βtβ−1I)n F (t) ∈ L1[0, T ]
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and

x(t) =
t1−β

β
Y (t) ∈ L1[0, T ].

3.3. Fractal integro-dierential Abel equations. 1- Let γ, δ ∈ (0, 1) be such
that γ < δ. Consider the initial-value problem of the fractal integro-dierential
equation

Iγ Dδx(t) = f(t), t ∈ (0, T ], x(0) = xo. (6)

We can write (6) as
 t

0

γsγ−1 s1−δ

δ

d

ds
x(s)ds =

 t

0

γ

δ
sγ−δ d

ds
x(s)ds

=
γ

δ β

 t

0

βsβ−1y(s) ds = f(t)

and obtain the rst kind fractal Abel integral equation

Iβ y(t) = F (t) (7)

where

y(t) =
d

dt
x(t), F (t) =

δ β

γ
f(t) and β = 1 + γ − δ ∈ (0, 1).

Now, if the function f(t) ∈ AC[0, T ] is absolutely continuous on [0, T ], then the
solution of (7) is given by

y(t) = Dβ F (t) =
δ β

γ
Dβ f(t) ∈ L1[0, T ]

and nally the solution of (6) is given by

x(t) = xo +

 t

0

y(s) ds ∈ AC[0, T ].

2- Let β ∈ (0, 1). Consider the initial-value problem of fractal dierential equation

Dβ x(t) + λ x(t) = f(t), t ∈ (0, T ] and x(0) = x0. (8)

From (8), we can get

d

dt
x(t) + λ β tβ−1 x(t) = β tβ−1 f(t).

Integrating, we obtain the second kind Abel fractal integral equation

x(t) + λ

 t

0

β sβ−1 x(s) ds = g(t),

where

g(t) = x0 + Iβf(t).

Then if |λ| T β < 1 and f ∈ C[0, T ], then the solution of (8) is given by

x(t) = (1 + λ Iβ)
−1 g(t) ∈ AC[0, T ]

and

x(t) =

∞

n=0

(−λ)n (Iβ)
n x0 +

∞

n=0

(−λ)n (Iβ)
n+1f(t) ∈ AC[0, T ].
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4. Fractal-fractional Abel integral equations

Let α ∈ (0, 1], and β ∈ (0, 1). Here, we can dene the linear rst and second
kinds Abel fractal-fractional integral equations respectively as

Iαβ x(t) =
1

Γ(α)

 t

0

βsβ−1

(t− s)1−α
x(s) ds = f(t), t ∈ [0, T ] (9)

x(t) +
λ

Γ(α)

 t

0

βsβ−1

(t− s)1−α
x(s) ds = f(t), t ∈ [0, T ]. (10)

Denition 4.5. Let I1−αf be dierentiable on [0, T ] and β ∈ (0, 1), then the
fractal-fractional order derivative is given by

RDα
β f(t) =

d

dtβ
I1−αf(t).

For the solution of the integral equation (9) we have the following lemma.

Lemma 4.6. If the function I1−αf is dierentiable on [0, T ], then the solution
of (9) is given by

x(t) =
d

dtβ
I1−αf(t) = RDα

β f(t)

where the operator RDα
β denes the R-L fractal-fractional order derivative.

Proof. From (9) we have

Iαβ x(t) = f(t) ⇒ Iβ x(t) = I1−α Iαβ x(t) = I1−αf(t)

and

x(t) =
d

dtβ
I1−αf(t) = RDα

β f(t).

Now, we can prove the following properties of the R-L fractal-fractional order de-
rivative RDα

β .

Theorem 4.3. Let x ∈ C[0, T ] or (x be bounded and measurable), then RDα
β Iαβ x(t) = x(t).

Proof. We have

RDα
β Iαβ x(t) =

d

dtβ
I1−α Iαβ x(t) a.e, t ∈ [0, T ]

using Theorem 1, we have I1−α Iαβ = Iβ , then

RDα
β Iαβ x(t) =

d

dtβ
Iβ x(t)

=
t1−β

β

d

dt

 t

0

β sβ−1 x(s) ds a.e, t ∈ [0, T ]

=
t1−β

β
β tβ−1 x(t) = x(t),

which means that the inverse of the operator Iαβ will be RDα
β .

Theorem 4.4. Let x ∈ C[0, T ] or (x be bounded and measurable), then Iαβ
RDα

β x(t) =

x(t).
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Proof. Since x is bounded and measurable, then we have I1−α x(t)|t=0 = 0

Iαβ
RDα

β x(t) = Iα β tβ−1 RDα
β x(t)

= Iα β tβ−1 d

dtβ
I1−α x(t)

= Iα β tβ−1 t1−β

β

d

dt
I1−α x(t)

= Iα
d

dt
I1−α x(t).

But, I1−α x(t)|t=0 = 0 ⇒ Iα d
dt =

d
dt Iα, then

Iαβ
RDα

β x(t) =
d

dt
Iα I1−α x(t)

=
d

dt
I x(t) = x(t),

which means that the inverse of the operator RDα
β will be Iαβ .

4.1. Second kind Abel equation. The linear second kind fractal-fractional Abel’s
integral equation (10) can be written as

x(t) + λ Iαβ x(t) = f(t). (11)

Theorem 4.5. Let f ∈ C[0, T ], α + β > 1. If |λ|
Γ(α+β−1) Tα+β−1 < 1, then the

solution x ∈ C[0, T ] of (11) is given by

x(t) =

∞

n=0

(−λ)n (Iαβ )
n f(t) ∈ C[0, T ]. (12)

Proof. From (11) we have

(1 + λ Iαβ ) x(t) = f(t).

Now

| λ Iαβ f(t) | = | λ
 t

0

(t− s)α−1

Γ(α)
β sβ−1f(s) ds |

≤ |λ|
 t

0

(t− s)α−1

Γ(α)
β sβ−1 |f(s)| ds

≤ |λ| ||f ||
 t

0

(t− s)α−1

Γ(α)
β sβ−1 ds

≤ |λ| ||f || β Iα tβ−1

≤ |λ| ||f || β Γ(β)

Γ(α+ β − 1)
tα+β−1, α+ β > 1

≤ ||f || |λ|
Γ(α+ β − 1)

Tα+β−1.

Then by the Neumann expansion [2] we have

x(t) =

∞

n=0

(−λ)n (Iαβ )
n f(t)

= f(t)− λ Iαβ f(t) + λ2 (Iαβ )
2 f(t)− λ3 (Iαβ )

3 f(t) + ....... ∈ C[0, T ].
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5. Conclusion

In this paper, we studied some of fundamental properties of fractal and fractal-
fractional integral and dierential operators and examined some various types of
fractal-fractional Abel integral equations. The analysis of these equations provides
valuable insights into their mathematical structure and potential applications in
complex systems. Our ndings contribute to the growing eld of fractal and fractal-
fractional calculus, paving the way for further research and applications in scientic
and engineering disciplines.
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