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SUFFICIENT CONDITION FOR GEOMETRIC PROPERTIES

Q-STARLIKENESS AND Q-CONVEXITY OF LAGUERRE

POLYNOMIAL FUNCTION

DEEPA AMIT KARWA, SEEMA KABRA

Abstract. The geometric properties of q-starlikeness and q-convexity play a

pivotal role in complex analysis, with signicant implications in the theory of

special functions and orthogonal polynomials. This paper explores sucient

conditions under which Laguerre polynomial functions exhibit q-starlikeness

and q-convexity. It refers to some coecient inequalities, by using this Legur-

erre polynomial satisfying these geometric properties. Normalized Legurere

Polynomial over the unit disc behaves as a univalent function. Inequalities

applying by Legurerre Polynomial, result in a form of Gauss hypergeometric

function obtained. The geometric properties of q-starlikeness and q-convexity

pertain to the nature of certain functions within the unit disk in the complex

plane. For a function to be q-starlike or q-convex, it needs to satisfy specic

conditions related to its argument and derivatives. The ndings contribute to

the broader understanding of geometric properties in special functions, oering

a framework for further exploration and application.

1. Introduction

The study of q-calculus is fascinating the researchers and scholars. Fractional cal-
culus operators and special function associated with geometric function theory has
a vast role in physics, mathematics and in the eld of engineering. q-calculus rstly
dened by Jackson [10, 11]. Further some more work was done by Ismail et al.
[9] for q-starlike function. Later a foundation work done by Shrivastava et al.
[17, 19, 20]. He has published a series of paper related to Janowski function associ-
ated with q-calculus. q-calculus, q-starlike function and Fekete- Szego inequality is
also discussed in [1, 3, 8]. Recently, Rehman et al. [16] searched some subclasses of
q-starlike functions including some coecient inequalities and sucient condition.
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Gour et al. [14] has discovered some coecient inequalities for q –starlikeness and
convexity for Bessel function. Other recent research about q-calculus can be found
in [2, 13].
Let Open unit disk is dened by D =  z : z < 1 and A is the class of function
f(z), analytic in D where f(z) is in the form

f (z) = z +

∞

n=2

anz
n (1)

Now, Let S denote the class of all functions in A and univalent in D. Also Let S∗

and C∗ be the subclass of S consisting of all functions which map D onto a star
shaped with respect to origin and convex domains, respectively [6, 14], where any
z ∈ S∗ meet the subsequent condition by subordination

R

zf

′
(z)

f(z)


> 0 for all z ∈ D and

zf
′
(z)

f(z)
<

1 + z

1−z
, z ∈ D (2)

For z ∈ C∗ fulll the condition [14]

R

(zf

′
(z))

f(z)


= R


1 +

(zf
′′
(z))

f ′(z)


> 0 for all z ∈ D (3)

Denition 1.1 If H be an analytic function through H (0) = 1 ts the class
J [P,Q] with −1 ≤ Q < P ≤ 1 if and only if

H (z) <
1 + Pz

1 + Qz
, z ∈ D

This class of analytic functions was introduced by Janowski [12],by this ∃ a function
h ∈ J [P,Q] i

H (z) <
(P + 1) h (z)− (P−1)

(Q + 1) h (z)− (Q−1)
, z ∈ D

So, a function z ∈ A be in the class S∗[P,Q]with −1 ≤ Q < P ≤ 1 if and only if

zf
′
(z)

f(z)
<

1 + Pz

1 + Qz
, z ∈ D (4)

and a function z ∈ A be in the class C∗[P,Q]with −1 ≤ Q < P ≤ 1 if and only if

1 +
(zf

′′
(z))

f ′(z)
<

1 + Pz

1 + Qz
, z ∈ D

Denition 1.2 [19] The q-derivative of a function f will be

Dqf (z) =


f(z)−f(qz)

(1−q) , if z ∈ C 0
f

′
(0) , if z ∈ 0

and assuming that f
′
(0) exists, if 0<q<1.

Now q-derivative dened [18] as

Dqf (z) = 1 +

∞

n=2

[n]qanz
n−1 for z ∈ U, z ∈ A
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Where for q ∈ (0, 1) the number [n]q dened by

[n]q =





1−qn

1−q , n ∈ C
n−1

r=0

qr , n ∈ N

Denition 1.3 Ismail et al. [9] studied and discovered a q-extension of the
class S∗ of starlike functions in D is S∗

q and a function z ∈ A belongs to the class
S∗
q i 

z

f (z)
Dqf (z)− 1

1− q

 <
1

1− q
, z ∈ D (5)

Now by the denition of analytic function and subordination, the inequality (5)
becomes

z

f (z)
Dqf (z) <

1 + z

1−qz
, z ∈ D (6)

and a function z ∈ A belongs to the class S∗
q [P,Q] i

z

f (z)
Dqf (z) <

(P + 1) f (z)− (P−1)

(Q + 1) f (z)− (Q−1)
, z ∈ D (7)

where f (z)= 1+z
1−qz , then by using f (z) equation (7) becomes

z

f (z)
Dqf (z) <

(P + 1) z + 2 + (P − 1) qz

(Q+ 1) z + 2 + (Q − 1) qz
(8)

(1) Clearly If P = 1 , Q = −1 then S∗
q [P,Q] = S∗

q [1,-1]&

(2) If q → 1− then S∗
q = S∗

(3) Duren also [4] described that z ∈ C∗
q [P,Q] ⇐⇒ zDqf (z) ∈ S∗

q [P,Q]

Let the dierential equation for arbitrary real α,β is
zf

′′
(z)+ (α+ 1− z) f

′
(z)+ βf (z) = 0 then polynomial solution of this equation

is generalized Laguerre polynomial,

Lα
β (z) =


β + α

α

 ∞

n=0

(−β)n
(α+ 1)n

zn

n!

So Normalized Laguerre polynomial

U (z) = z


α

β + α


Lα
β (z) =

∞

n=0

(−β)n
(α+ 1)n

zn+1

n!
or

U (z) = z


α

β + α


Lα
β (z) = z +

∞

n=2

(−β)n−1

(α+ 1)n−1

zn

n− 1!

satisfy the condition of normalizations of any function F (z) = z+

∞

n=2

anz
n , F(0)

=0 & F
′
(0) = 1 so by comparing

an =
(−β)n−1

(α+ 1)n−1(n− 1!)

In this paper now we investigate some sucient conditions of q - starlikeness and
q-convexity for Laguerre polynomial function by using sucient conditions dened
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by Shrivastava [19]. Some similar work has also done by Gour et al.[5, 16] and
sucient condition of starlike function for multivalent function by Goyal et al. [7].
Lemma 1.1[19] Suppose z ∈ S∗

q [P,Q] if it is achieving below condition

∞

n=2


2q[n− 1]q +

(Q+ 1) [n]q − (P + 1)


an < Q− P  (9)

Lemma 1.2 [19] Suppose z ∈ C∗
q [P,Q] if it is achieving below condition

∞

n=2

[n]q


2q[n− 1]q +

(Q+ 1) [n]q − (P + 1)


an < Q− P  (10)

2. Main Results

Theorem 2.1 Let L(α,β; q) be dened as follows

L(α,β; q) =


2q+(Q+1)
1−q + ( P + 1)

 
−; k ; c

4


– (Q+3)q

1−q 0F 1


− ; k ; cq

4


+ (P+Q+2)

If the inequality L(α,β; q) < Q− P 
Holds, then function U(z) = zL (z) ∈ S∗

q [P,Q]
Proof: Here

U (z) = z


α

β + α


Lα
β (z) = z +

∞

n=2

(−β)n−1

(α+ 1)n−1

zn

n− 1!

= z +

∞

n=2

anz
n , z ∈ D

From Lemma 1.1, any function z ∈ S∗
q [P,Q]

fulls (9). Then, for U (z) it is sucient to show that (9) holds, for

an =
(−β)n−1

(α+ 1)n−1(n− 1!)
or =

(−1)
n
(β)n−1

(α+ 1)n−1(n− 1!)
& [n]q =

1− qn

1− q

Now, by using triangle’s inequality we get

∞

n=2


2q[n− 1]q +

(Q+ 1) [n]q − (P + 1)


an ≤

∞

n=2

2q
1− qn−1

1− q
an+

∞

n=2

(Q+ 1)
1− qn

1− q
an+

+

∞

n=2

(P + 1) an

=

∞

n=2


2q + (Q+ 1)

1− q
+ (P + 1)


an −

∞

n=2

(Q+ 3)qn

1− q
an

=


2q + (Q+ 1)

1− q
+ (P + 1)

 ∞

n=2

(β)n−1

(α+ 1)n−1

1

n− 1!
− (Q+ 3)q

1− q

∞

n=2

(β)n−1

(α+ 1)n−1

As
(−β)n−1

 = (β)n−1

By applying Gauss hypergeometric function property above condition convert in

=


2q+(Q+1)
1−q + ( P + 1)


1F 1 (β;α+ 1 ; 1) – (Q+3)q

1−q 1F 1 (β ;α+ 1 ; q) + (P+Q+2)

=L(α,β; q)& conclude that the function U(z) = zL (z) ∈ S∗
q [P,Q]
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Corollary 2.1 Let P= z ,Q = 1 then above condition become

L∗ (α,β : q) =


2q + 1

1− q
+ z + 1


1F 1 (β;α+ 1 ; 1)− 4q

1− q
1F 1 (β;α+ 1 ; q)+ (z+3)

(11)
If the inequality L (α,β; q) = 1− z holds, then the function U(z) = zL (z) ∈ S∗

q [z]

(1) If z = 0 then from (11)

L1
∗ [α,β; q] =


2q + 1

1− q
+ 1


1F 1 (β;α+ 1 ; 1)− 4q

1− q
1F 1 (β;α+ 1 ; q) + 3

If the inequality L1
∗ [α,β; q] < 1 holds , then the function U(z) = zL (z) ∈ S∗

q [0]
Theorem 2.2. Let M(α,β; q), be dened as follows

M(α,β; q) =
1

(1− q)
2 [(q +Q+ 2 + P (1− q)) 1F 1 (β;α+ 1 ; 1)]

− 1

(1− q)
2


Pq (1− q) + 2Qq + q2 + 5q


1F 1 (β;α+ 1 ; q)


+

+
1

(1− q)
2


(Q+ 3) q21F 1


β;α+ 1 ; q2


+ (P + Q+ 2)

If the inequality M(α,β; q) < Q− P 
Holds, then function U(z) = zL (z) ∈ C∗

q [P,Q]
Proofs: Here

U (z) = z +

∞

n=2

(−β)n−1

(α+ 1)n−1

zn

n− 1!
= z +

∞

n=2

anz
n , z ∈ D

From Lemma 1.1, any function z ∈ C∗
q [P,Q] fulls (9) .Then, for U (z) it is sucient

to show that (10) holds, for

an =
(−β)n−1

(α+ 1)n−1(n− 1!)
or =

(−1)
n
(β)n−1

(α+ 1)n−1(n− 1!)
&[n]q =

1− qn

1− q

Now, by using triangle’s inequality we get
∞

n=2

[n]q


2q[n− 1]q +

(Q+ 1) [n]q − (P + 1)


an

≤
∞

n=2

2q[n]q
1− qn−1

1− q
an+

∞

n=2

(Q+ 1) [n]q
1− qn

1− q
an+

∞

n=2

(P + 1)[q]n an

=

∞

n=2

2q
1− qn

1− q

1− qn−1

1− q
an+

∞

n=2

(Q+ 1)
1− qn

1− q

1− qn

1− q
an+

∞

n=2

(P + 1)
1− qn

1− q
an

=

∞

n=2

2q + (Q+ 1) + (P + 1)(1− q)

(1− q)
2 an+

∞

n=2

2 + (Q+ 1)

(1− q)
2 q2n an

−
∞

n=2

(P + 1) (1− q) + 2 (Q+ 1) + 2q + 2

(1− q)
2 qn an

By using Gauss hypergeometric function above equation becomes

= q+Q+2+P (1−q)

(1−q)2
[1F 1 (β;α+ 1 ; 1)− 1]- Pq(1−q)+ 2Qq+ q2+ 5q

(1−q)2
[1F 1 (β;α+ 1 ; q)− 1]

+
(Q+1)q2

(1−q)2


1F 1


β;α+ 1 ; q2


− 1


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= 1
(1−q)2

[(q +Q+ 2 + P (1− q) [1F 1 (β;α+ 1 ; 1)]

− 1

(1− q)
2


Pq (1− q) + 2Qq + q2 + 5q


[1F 1 (β;α+ 1 ; q)]

+ (Q+3)q2

(1−q)2


1F 1


β;α+ 1 ; q2


+ (P+Q+2) = M(α,β; q) < Q− P 

Therefore, the theorem’s assumption implies (10), hence function U(z) = zL (z) ∈
C∗
q [P,Q]

Corollary 2.2 Let P= z , Q = 1 then above condition become
M∗(α,β; q) = 1

(1−q)2
(q + 3 + z (1− q) )1F 1 (β;α+ 1 ; 1)

− 1

(1− q)
2


zq (1− q) + 7q + q2


(1F 1 (β;α+ 1 ; q))+

+
4q2

(1− q)
2


1F 1


β;α+ 1 ; q2


+ (z + 3) (12)

If the inequalityM∗(α,β : q) < 1 − z holds, then the function U(z) = zL (z) ∈
C∗
q [1,−1]

(1) If z = 0 then from (11)

M∗
1 (α,β : q) = 1

(1−q)2
[(q+3+z) [1F 1 (β;α+ 1 ; 1)]− 1

(1−q)2


2q + q2 + 5q


[1F 1 (β;α+ 1 ; q)]+

1
(1−q)2

4q2

1F 1


β;α+ 1 ; q2


+ 3

If the inequality M1
∗(α,β; q) < 1 holds, then the function U(z) = zL (z) ∈ C∗

q [0]

3. Conclusion

In this paper, we get the sucient condition for a function associated with normal-
ized Laguerre Polynomial function to be q- starlikeness and q-convexity as [14, 15].
In conclusion, this paper provides a detailed examination of the conditions under
which Laguerre polynomials exhibit q-starlikeness and q-convexity, enriching the
theoretical landscape of geometric function theory and expanding the utility of
Laguerre polynomials in complex analysis.
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