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ON UNIFORMLY STARLIKE AND CONVEX UNIVALENT
FUNCTIONS

ABDELRAHMN M. YEHIA, SAMAR M. MADIAN AND MOHAMMED M. THARWAT

ABSTRACT. In (1908) Jackson generalized the ordinary derivative by introduc-
ing the g—difference derivative, which became an essential tool in the study of
g-calculus. Later, (2013) Brahim and Sidomon, introduced a further general-
ization known as the symmetric g—derivative operator, which has significant
applications in various mathematical fields. This paper’s primary goal is to
investigate how the symmetric g-derivative can be used to define a novel class
of convex and uniformly starlike univalent functions inside the complex plane’s
open unit disk. Numerous intriguing geometrical and analytical features are
present in this recently described class of functions. In this study, we estab-
lish a wide range of characterizations for these functions, such as coefficient
estimates, distortion theorems, some radii of starlikeness, convexity, close -to-
convexity. Furthermore,, we determine sharp lower bounds for the ratios of the
() o) ()
v(2) (2) 7 "v(2)

. The findings reported in this study provide a substantial contribution

functions in this class and its partial sums , in the forms

v(2)

(z

to the fields of g-calculus and geometric function theory by providing fresh
viewpoints and possible uses in complex analysis.

1. Introduction

Let N be the class of functions:
o0
(2) =2+ Y az", (1)
k=2

which are analytic and univalent in U = {z: z € C and |2| < 1}.

2020 Mathematics Subject Classification. : 30C45, 30C50, 30C55.

Key words and phrases. Univalent functions, symmetric g-derivative operator, uniformly star-
like and convex functions, partial sum.
Submitted March 23, 2025. Accepted May 13, 2025.

1



ABDELRAHMN M. YEHIA, SAMAR M. MADIAN AND MOHAMMED M. THARWAT JFCA-2025/16(2)

For A\>0,e N,0<g<1landneNyg=NU{0}, we define the operator
RM\:N— N by

R)A(2) = (), (2)
A (2) = (1= 2) (2) + A2v7,(2)

oo (f, )

Rya(2) =

and (in general)
RiA(2) = Roa(2) = (1= 0 Ri3HE) + A2, (Ri5A))
- +Z{1+/\ [k ﬂ w2, (4)

where the g—deference operator V (2) is glven by

(az) —(a"'2)

Vel2) =1 (q*ql)z for =70
(0) for z =0,
that is
= 1+Z[ | axzt (5)
and . h
~ q — q ~
[’“L:W7 [0], =0, (6)

which is defined by Brahim and Sidomou [5]. (see also [8], and [15])

We observe that for ¢ — 17, we obtain the differential operator D} defined
by Al-Oboudi [1] and Frasin ([7], with m = 1). Also for ¢ — 1~ and A = 1,
we get Salagean differential operator D™ [11] and for A = 1, we get the
symmetric Salagean g-differential operator Dy [16].

Definition 1. Using ]:Zg,/\ and for 0<a<1,0<8<1,u>0,A>0
and n € Ny, let Ny (n, A, 8, a, 1) be the class of € N satisfying

{ (1= 8) 27, (RpA(2) + 829, (27, R (2) }
R — —«
(1- (RZ,\ ) + 827, (RZ,,\(Z))
(1= 8) 27, (Rpa(2)) + 829, (27, 05.0(2))
(1-5) (Rm)) + 827, (Ro(2)

Not that: ~
(i) N, (0,70, ) = 8, (ct, ) = {%{V(()( 2)) _a}
> zvq—((z)) _ , which defined by Kanas et al. [8];

(2)
(ii) lm Ny (0,A,0,0,0) = S*(«) (starlike of order o) and

q—1-
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lim N, (0,X,0,0,0) = S*(0) (starlike of order 0) (Rebertson [9]);

(El_;l; hm N, (0,X,1,0,0) = C(a) (convex of order a) and

hm_ N (0,A,1,0,0) = C(0) (convex of order 0) (Rebertson [9]);

(él_;; qlir?_ Ny (0,X,0,0, 1) =S (o, ) (p—uniformly starlike of order o) and
lim N, (0,X,0,a,1) = S (a) (uniformly starlike of order a) (Shams et al.
?Fl]l and Owa et al. [10])

(v) qlir{lﬁ Ny (0,0, 1,0, 1) = K(a, pp) (p—uniformly convex of order «) and

[
lim N, (0,A,1,¢,1) = K(«) (uniformly convex of order o) (Shams et al.
q—1—
[

10]).

[12] and Owa et al.
Also note that:

(1) Nq (na Avoaaau) = Nq (n,)\,a,,u)

(11) NQ(n7>\)17a7M):Kq(n’)\’a"u): :%

(iii) Ny (n, A, 0,0,0) = Ny (n, A\, @) = { {qu }Za}§
RZ/\

(iv)Ny (n, A, 1,0,0) = Ky (n, A, o) = ¢+ R

Let

T= {EN —Z—Zakz ak>0} (8)

and
Tq (nv)\yﬁﬂvﬂ):Nq(n,/\,ﬁaaaﬂ)mT- (9>
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2. Main results

Unless indicated, we assume that 0 < a <1,0< <1, u >0, A >0,
0<g<l,neNy, €Nand zeU.

First, we obtain the coefficient estimates, which provide necessary
and sufficient condition for a function to belong to the class Ny (n, A, 8, i, ) .

Theorem 1. A function € N, (n, A, 5, a, ) if
3 [Hﬁ (M . 1)} {(1+u) M - (a—l—,u)] [1+A <[k} - 1)} ax
k=2 a q q
<1l-oa. (10)
Proof. It suffices to show that:

(1-8) Z%q (RZ/\(Z)) + ﬂzﬁq (z%ﬂ@‘,ﬂz)) .

‘We have

l
<3
>

—~ )
|3
N———

which is bounded above by (1 — a) if
§[1+6([i€]q—1>} [(1+u) [l%]q—(a+u)] [1+>\<[1%L_1>rak

<1l-—a.
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Second, we obtain the coefficient estimates, which provide necessary
and sufficient condition for a function to belong to the class T, (n, A, 5, o, i) .

Theorem 2. A function € T, (n, A, 5, a, 1) if and only if

5 [, )] oo, o] o (B,

k=2

<1-o. (11)

Proof. From Theorem 1, we need to prove the only part. If
€T, (n, A\ B,a,pn) and z is real, then

1k§2[;+A({/%]q1>r{{f}q{1+5({l}]q1)}}%2“
1—k¥2[1+>\(mq—1ﬂ [1+5({/}L_1)]akz;€_l
1 ) )
-y [1+A([/§L—1ﬂ {1+5<[;;L_1>]akzk_l

Letting z — 17, we get (11).

Corollary 1. Let € T, (n, A, 8, «, ) . Then

S () SR o Y ()
o [Hﬁ(mq_lﬂ {(H”) [’5};_(0””)] [HA(WQI)YZ(?:;)

Remark 1. Taking n = 0 and 8 = 0 in the previous results, we get
the results given by Kanas et al. [8], Theorem 2.1, Theorem 2.2
and Corollary 2.1, respectively.

Also, we obtain distortion theorems, which provide sharp bounds for
functions and their derivatives in the class Tj, (n, A, 8, @, ) . These bounds
are crucial in understanding the growth and distortion properties of functions
in this class.
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Theorem 3. Let € T, (n, A, 8, o, ). Then

l1—«

SRR TRPY (P FFWe e FEY (T
<+ — . |z|2(14)
[1+8(12,-1)] [a+m 2], - e+m] [1+2([2],-1)]
and
1 2(1-a)

w2l < 1'(2)]

[1+8(12,-1)] [a+m 2], - e+m] [1+2([2],-1)]

(15)
2(1—a)

(R, -D)][0+m ), - @+m] [1+r(7,-1)] .

The bounds in (14) and (15) are attained for

l1—«

(148 (12, - )] [+ w2, — (@ +p) [1+A([2]q—1)}" o
(16)

(2) = || +

Proof. First of all, for € T, (n, A, 8, o, ), it follows from (11) that

o0

11—«

[1+6( ﬂ[l+¢t 3, (a+uﬂ[1+A(mq—1ﬂn’

which, in view of (8), yields

oo
2
BRI
k=2

l—«a
> |z =

[1+6(R],-D)][a+mE), - @+m] [1+r(7,-1)] -

ak<

and
o0
2
()] < J2l + 121" ) ax
k=2

11—«
< 2+

[+, - D] [0+m ), - @+m] [1+r(7,-1)] -

Next, we see from (11) that:

146 (12, - )] [a+w 3], - @+ 1er(7,-1)]" &
8 (B, )] | IR b)) <

[ (1) (R | V()

S]-*Oé,
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then
- - 2(1—a)
kzzgk e [1+6(B,-D)][0+m ], - @+w] [1+r(E,-1)]"

which, again in view of (8), yields

') 21- Izlikak
k=2

2(1—-a)
Z 1- ~ — ~ n |Z| ’
1+8 (2, - )] [a+m 2], - @+w] [1+r(7],-1)]
and -
‘/ (z)} <1+|z| Zkak
k=2
<1+ X 2o X = |2l
(R, - )] [a+m [, - @+m] [L+2([],-1)]
Finally, the bounds in (14) and (15) are attained for given by (16).
Remark 2. Taking n =0 and 8 = 0 in Theorem 3, we get the results
given by Kanas et al. [8], Theorem 2.3, Theorem 2.4.
Let j (2) be defined, for j =1,2,...,m by
o(2) =2 — Z ar ;2% (ag; >0, z€U). (17)
k=2

Now, we show that any function defined using basis functions already
present in the class Ty, (n, A, 8, a, p) also belongs to the class T, (n, A, 5, a, ).
This result is essential for proving that the class is closed under such
representations, simplifying function analysis and decomposition.

Theorem 4. Let ; (z) € T (n, A, B, a, ) for j =1,2,...,m . Then
h(z) € T, (n, A, B, a, 1), where

h(z) =) bjj(z), bj>0and Y b; =1 (18)
Jj=1 j=1
Proof. By (18), we have
h(z)= Z bjag ;| 2~
k=2 \j=1
Further, since ; (z) € Ty (n, A, 5, a, ), we get
;::2 [1 + 8 <Mq - 1)] [(1 + ) Mq - (aJru)} {1 + A ([k]q - 1)} ks

<1l-—a.
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’i{lnhﬁ(mq—lﬂ {(1-&-/1) [l%}q—(a—l—u)} {1“([%](1—1)]”
x (g;bjam) :éb] L: {1+B([k‘L—1>} {(1—1—/0 [F] —(a+u)]
x [1+)\ [k}q1)]nak7j} gibj 1-a)=1-a,

which implies that h (z) € T, (n, A, 5, a, ¢r). Thus we have the theorem.
Taking by = 7 and by = 1 — 7 in Theorem 4, we have:

Corollary 3. The class Ty (n, A, B, a, p) is closed under convex linear
combination.

Also, we obtain the extreme points of the class T, (n, A, 8, o, ) , which
are crucial in understanding the convex structure of the class.

Theorem 5. Let 1 (2) =z and

k(2) =2—
1-a k

o ()] [oen - oo fr (]

k> 2. Then € T, (n, \, 5, a, ) if and only if

(z) = Zﬂck (2),
k=1

o0
where 7, >0 (k>1)and > 7, =1.
k=1

Proof. Suppose that
(2) = 7k (2) = 2— (19)
k=1

1—«a

[1+ﬂ ([/%L—lﬂ [(1+u) {/%L—(OH—M)} {1+A<[IEL—1>}

Then it follows that:

} P+5<FL—1H[“+”Wﬂq—W+“ﬂP**(Fh—lﬂn

— X
k=2 1—a

11—«

@+5(@Llﬂ[u+u4qq<a+m]p+A<@L1ﬂ”

k
nTk? -

Tk
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inf
k

inf
k

:im:l—ﬁgl.

k=2
So by Theorem 2, € T, (n, A, 8, o, ) . Conversely, let € T, (n, A, 8, a, ) -
Then
11—«

[1TL5([1%L—1>} [(l+u) [I%L—(omw)] [1+A([1%L—1>r7

[w(mqlﬂ [aw) ['ELWM] [HA([%L%”

Tk = 1 o Ak,

ap <

k> 2 and
oo
m=1-— Z Tk,
k=2
we see that can be expressed in the form (19).

Remark 3. Taking n =0 and 8 = 0 in Theorem 5, we get the results
given by Kanas et al. [8], Theorem 2.5.

Corollary 4. The extreme points of Ty (n, A, 8, o, n) are  (2) (k> 1)
given by Theorem 5.

Now, we obtain the radii of starlikeness, convexity, and close-to-convexity
in the class Tj, (n, A, 8, v, 1t) , which are essential in understanding the
geometric properties of functions in this class and their behavior in
specific regions of the unit disk.

Theorem 6. Let € T, (n, A, B, @, ) . Then for 0 <o <1, is
(i) Close -to- convex of order ¢ in |z| < rq,

rn=n (”a)\wB’Of’MaU) =
1

oo s (#,)] o o0 o] [ B, )]

E(l-a)

(20)
k> 2.
(ii) Starlike of order o in |z| < 73,

T2 =T2 (na)‘vﬂvavﬂvg) =

(1— o) {14-5({/%}[1—1)} [(1+u) [/%L—(aJru)] [1+A([1%L—1)r kl.

(k—0o)(l—a)
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k> 2.
(iii) Convex of order o in |z| < r3,

r3 =T3 (’I’L,)\,B,CY,IU/,O') =

-1+ (1], )] [arwH] - @em] rea (], -1)] T

kE(k—0o)(1—a)

inf
k

k > 2. The results are sharp, for given by (13).
Proof. To prove (i) we must show that:

‘/(z)—l‘ <1—o0 for |z| <ri(n,\B,a,u0).
From (2), we have
"(z) 71\ <3 ka2
k=2
Thus
@ -1<1-0,
if

oo

> <£> ap |2/*7t < 1. (21)

k=2
By Theorem 2, (21) will be true if

(%) 27! <
[1+6 (mq—l)] [(1+u) {/Nf}q—(a+u):| {1+A<mq—1>r

(1-a) ’
that is, if
2| <
1
(1-0) {1+5<[’~“L—1>] [(1+/~L) [];:]q_(a+/l):| {1+>\([%L—1)]n k=1
k(1—a) :

(k > 2), which gives (20).
To prove (ii) and (iii) it suffices to show that

Z, <Z)—1 <l-—0 for |z| <rs,
(2)

Z(Z)fl <1—o0c for |z] <ry,
(2)

respectively, by using arguments as in proving (i).
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For € N, its partial sums are given by

v (2) =2+ Zakzk.
k=2

Silverman [14] determined sharp lower bounds for the real part of

(@) g o)

o(2) (2)
We will follow the works of [2, 3, 4, 6, 13, 14] on partial sums of analytic
functions, to obtain our results of this section. We let

gk = [Hﬁ(mq—lﬂ [(1+u) mq—(a+u)] [1+A([12L—1)r. (22)

Finally, we establish bounds on partial sums, which are significant for
approximating functions and analyzing their convergence.

for some subclasses of N.

Theorem 7. If satisfies (10), then

” -1+
R(L) 2R 20 e, (23)
v q,v+1
where
" 1—a, if k=2,3,..v
Yok 2 { W i1 it k>v+1. (24)
The result (23) is sharp for
1—
(2) =z+ o S (25)
q,v+1

Proof. Define h(z) by

U(Z) \Ijngrl

1+ h(z) _ \Ijg,v-‘,-l (Z) Z,v+1 -1+«
1—h(z) 11—«

v AL 00

L4+ 3 apzht + (lq—”“) > apdtt
— —a )5

_ k=2 k=v+1 ) (26)

v

14+ 3 agzk-1
k=2

It suffices to show that |h(2)| < 1. Now from (26) we have

k=v+1
W) = —— = =
242> apzkt + ( q’”“) > apzhl
k=2 l—a /)55

Hence we obtain
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vy o
( n+1> E ag
1- k=v+1

v P 0o :
2—22%—( ”“) S oa
k=2

l—a) =5

h(z)] <

Now |h(z)| <1 if and only if

<f3_v§> 3 a,{<2f22ak

k=v+1
or, equivalently,
v [e%s} P .
Sat 3 Yoy <
k=2 k=n-+1 a
By (10), we get
v [e%e) g [ee} \I,n
qv+1
a ———ar <
Dot D gEIe <) e
k=2 k=v+1

which is equivalent to

9,k 9.k q,v+1
S (P e 3 (P Jeezo
k=2 k=v+1

For z = re"™ ™ and r — 1~ we have

1— 1— yr —1+a
(2) =14 — a kg 1 — @ _ q7v+1n
U(Z) \Ijq v+1 \Ilq v+1 \Ijq7v+1

then (25) gives the sharpness.

)

Theorem 8. If subject to (10) and ¥y ., as in (24), then

R (o) > g e
- ‘I/Z‘,U+1 +1—«

(25) gives the sharpness.
Proof. Letting

1+h(z) Vg, +l-a
1—h(z) 1-«

v(2) \Ilg,v—ﬁ-l

(Z) \I’ZL,'U-‘,-I + 1- «

and much akin to similar arguments in Theorem 7. So, we omit it.

Theorem 9. If satisfies (10), then

3?<<(>)> » Yien —0+D0-) ()

q,v+1

and

;(z) \I,g,erl
%<'(z)>Z\I/;w_l—k(v—l—l)(l—a) (z€0), (27)
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where W3, .1 > (v+1) (1 —a) and

E(l-a), if k=2,3,..v
n > \I]nv
Vow = k(q’Tgl), if k>v+1,v+2,...,
v

(25) gives the sharpness.
Proof. We write

1+h(z) Voo, [xz) wz,m—(vﬂ)(l—a)]

1—h(z) (+1)(1—-0a)|l(z) pn

q,v+1

v

where

on o0
q,v+1 k—1
— aiz
(Friia) 2o

: Yoot = 1
242> ka zk_l—i—( i ) kayzk—

o G -m) 2,
Now |h(2)| <1 if and only if

° v
> kot (e ) S kap <1,
ps (v+1)(1 -«

k=v+1

h(z) =

From (10), we get

v q:/ v
S kay + ((—+> Z kax <
k=2 v
which is equivalent to

YU —k(l-« e v+ )9, — kU7
N e = “)MO-

k=2 1= @ k=v+1 (’U + 1) (1 - Oé)
To prove the result (27), define h(z) by
Lth(z) DA -a)+ %G00 [,(2) Yot
1—h(z) (v+1) (1 -a) (2) DA =) +9g, ]

we get the desired result through similar arguments in the first part.

3. Conclusion

In the present paper, a new class of uniformly starlike and convex functions
is defined by using a new symmetric g— derivative operator. For this class

of functions, we obtain many characterizations such as coefficient estimates,
distortion theorems, some radii of starlikeness, convexity, close -to- convexity.
Also, we determine sharp lower bounds for the ratios of the functions in this
class and its partial sums ,,.
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Open Problem

The authors suggest investigating the quasi Hadamard product for
functions 1, o, ..., k € Ty (n, A, B, a, p). Studying this product is
significant because it can:

(i) Provide deeper insights into the structural properties of functions in
the class T, (n, A, B, o, 1) ;

(ii) Extend known results on Hadamard products to more generalized
settings, potentially leading to new applications in geometric function
theory or related areas;

(iii) Unify or generalize existing theorems by considering finite combinations
of functions within this class.

Further research in this direction may also open avenues for exploring
coefficient estimates, distortion theorems, or subordination properties
involving the quasi Hadamard product.
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