Journal of Fractional Calculus and Applications
Vol. 16(1) Jan. 2025, No. 16.

ISSN: 2090-5858.

ISSN 2090-584X (print)
http://jfca.journals.ekb.eg/

CARATHEODORY THEOREM FOR A NONLOCAL BOUNDARY
VALUE PROBLEMS OF A FUNCTIONAL
INTEGRO-FRACTIONAL DIFFERENTIAL EQUATIONS

AHMED M. A. EL-SAYED, WAGDY G. EL-SAYED, SHENOUDA I. A. IBRAHIM
AND
SHIMAA A. M. HAGAG

ABSTRACT. In this paper, we study the existence of solutions for a nonlo-
cal two-point boundary value problem associated with an ordinary integro-
fractional differential equation. Hyers-Ulam stability will be proved. Fur-
thermore, the continuous dependence of the unique solution based on given
parameters will be addressed. Several special cases and examples will be men-
tioned.

1. INTRODUCTION

Nonlocal boundary value problems for functional integro-fractional differential
equations are an interesting and complex area of study in mathematical analy-
sis. These problems combine fractional calculus with integro-differential equations.
Adding nonlocal boundary conditions introduces further complexity, as these con-
ditions typically involve values of the solution at points that are not limited to just
the endpoints of the domain. naturally this equationsarise in many fields, such as
physics, biology, and finance, where the rate of change depends not only on the
present state of the system but also on the accumulated history of the system.
[17, 2, 11, 5, 9].

Here, we are concerned with the following functional integro-fractional differen-
tial equation, which combines ordinary and fractional-order derivatives,
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d t
d_z = a(t) + )\/ F(t, s, D(s))ds, te(0,1),a € (0,1),A>0, (1.1)
0
subject to the two-point nonlocal boundary condition,
y(r) =~y(m), 7nel0,1],v#1, (1.2)

Differential equations with fractional order have emerged as important tools for
modeling diverse phenomena in science and engineering disciplines. Notably, there
has been notable progress in the exploration of fractional differential equations and
inclusions in recent times, as evidenced by scholarly works such as the publications
by Kilbas et al. [15], Podlubny [19] and the comprehensive survey conducted by
Agarwal et al. [3].

The paper is organized as follows: Section 2 contains the solvability of at least
one solution y € C[0,T] applying the Carathéodory Theorem and the continuous
dependence of the unique solution y € C[0,T] on the parameter A and on the
function a [24]. Moreover, the Hyers — Ulam stability [14] of (1.1)-(1.2). Some
general discussion and examples are provided in Section 3.

2. MAIN RESULTS

2.1. Existence of Solutions. Let C[0, 1] be the space of continuous functions on
[0, 1], with the standard norm [16]

£l = sup [f()].
teo,1]

f:00,1]x[0,1] x R — R is an L'-Carathéodory function [8, 4], that is, the following
properties are satisfied:
i) f is continuous in y € R for each fixed (¢, s) in [0,1] x [0, 1].
ii) f is continuous in ¢,Vs € [0,1],z € R.
iii) f is measurable in s,Vt € [0,1],z € R.
iv) [f(t,s,2(s))| <k, s).
Take into account the following assumptions:
v) sup I'7@ fos |k(s,0)]d0 < K, K > 0.
te(0,1]
vi) k(t, s) is continuous in (¢, s) € [0, 1] x [0, 1].
vii) a(t) is continuous on [0, 1].
Now, we have the following lemma.

Lemma 2.1. If the solution of (1.1)-(1.2) is exist, then it can be represented by

y(t) = p— [=I%uli=r + AT uli=n] + I"u(t), (2.1)
where u(t) is given by
u(t) = I'"%a(t) + X' /t f(t,s,u(s))ds, telo,1]. (2.2)
0

proof. Operating by I'~® on both sides of (1.1), we obtain

Dy(t) = I'""“a(t) + )\Il_o‘/o f(t, s, D%y(s))ds. (2.3)
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Letting Dy(t) = u(t), we obtain (2.2).
Additionally, we have [18]

y(t) = y(0) + I*u(t). (2.4)

To determine y(0) in (2.4), we evaluate y(t) at t = 7 and t = n, respectively

y(r) = y(0) + I%ul,_, (2.5)
and
y(n) =y(0) + Iul,_, . (2.6)
From (2.5) and (2.6) in (1.2), a straightforward calculation yields
1
y(0) = E [—I%Ult=r + YT U|t=y] -

Replacing y(0) in (2.4), we obtain (2.1).
Conversely, we operate by I® on both sides of (2.2), we obtain

Pu(t) = /0 " a(s)ds + A /0 t /0 " (5,0, u(6))d0 ds.

Then, we substitute in (2.4), we get

t t s
y(t) = y(0) +/ a(s)ds + /\/ / f(s,0,u(0))do ds.
0 o Jo
Finally, differentiating with respect to ¢, from which we obtain (1.1).

Now, we have the following existences Theorem.

Theorem 2.1. Let the assumptions (i) — (vii) be satisfied, then the problem (1.1)-
(1.2) has at least one solution y € C|0,1].

proof. Firstly, we define the sequence {u,(t)} C C]0, 1] satisfying the iterative
formula

= Jl-o, —)\ t —5) ¢ ’ 5,0, u S «
Upy1(t) =T (t)—f—F(l_a)/O(t ) [/0 f(s,0, n(@))d&]d, te(O,l)(72 7)6 (0,1),A > 0.

Now, for all n =0,1,2,..., we have

I'(l-a)

<M + ﬁ/ot(t—s)o‘ [/O k(s,@)d@} ds

t
< M+ X supI'™@ {/ |k:(t,s)|ds]
¢ 0

<M+ XNK=M*" Vtel01],

)] < 10| + s [ () [ 1576500, ) 100] s

This means that {u,(t)} uniformly bounded on C]0, 1].
Now, let ¢1,t3 € [0,1],¢1 < to and [t1—t2| < d, & > 0. Thus, foranyn =0,1,2,...,
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we have

U () — tnsr (b)) = I'%a(ty) + r(%a) /Otz(@s)a {/Osf(s,é),un(&))d&} ds

I ﬁ/j(tl g [/Osf(s,e,un(ﬁ))de] ds

_ Il_“(a(tg)—a(t1)> +ﬁ /O Nl — 5 { /0 ) f(s,&,un(e))de} ds
+ ﬁ /:z(tg—s)_“ {/Osf(sﬁ,un(e))de} ds
_ﬁ /Otl(ze1 g [/0 f(s,@,un(e))de] ds

_ [ (a(t2)—a(t1)> + ﬁ /j(tQ—s)—a /0 ) f(s,G,un(H))dG: ds
4 m;_a) /Otl ((tg e (- s)a> . [/O f(s,@,un(ﬂ))dé] ds

_ Ilo‘(a(tQ)—a(tl)) + F(%) /:2(752—3)& _ / ) f(s,G,un(Q))dQ- ds
sy (G ) L res o] as

= Ilo‘(a(tg)a(tl))Jr I‘(l)\—a / (ta —8)~ V f(s,0,u,(0 d&}

i () [ e o o] a

ﬁ (62 =571 | [ 170,000

a(tz) — alty)
’ F(lA—a) /otl (t?tzj)s) (tftl—s U |/ (5,0, un (0 ))lde}

This means that the sequence {u, (¢)} is equicontinuous on [0, 1]. According to the
Arzela-Ascoli Theorem [12], the sequence {u,(t)} is relatively compact in C[0, 1].
Thus, there exists a subsequence {u,, (t)} that converges uniformly to a function
u € C[0,1]. Now,

then

|tng1(t2) = Unga(t1)] < T +

Un, (t) = Ilfaa(t) + NI {/0 f(t, s, un, (s))ds} ,
since {un, (t)} C {un(t)}.

Taking the limit as k — oo for both sides, we obtain

T uy, (1) = lim (Ilo‘ a(t) + A {/t F(t, s, un, (5))d5D 24

= I'"%q Jr)\Ilahm[/ftsunk ]

k—o0
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Taking into consideration that the conditions of the Lebesgue Dominated Conver-
gence Theorem [12] (which state: pointwise convergence and existence of an inte-
grable dominating function) are satisfied with the assumptions (i)-(iv), we deduce
that

lim /Otf(t,s,unk(s))ds = /Ot lim f(¢, s, un, (s))ds

k—o0 k—o0

_ /Ot F(t, 5, u(s))ds.

We substitute in (2.8), we arrive at

¢
lm u,, (1) = 1'% a(t) + X I / f(t,s,u(s))ds
k— 00 0
= u(t).
As a result, there exists at least one solution u € C[0, 1] of (2.2) which is

u(t) = lm wup, (£).

N —>00

Consequently, there exists at least one solution y € C[0, 1] of (1.1)-(1.2).

2.2. Uniqueness of Solution. The following key assumptions must be satisfied

(i) f: [0,1]> x R — R is Lipschitz continuous [20, 23] in its third argument,
i.e., 3¢y > 0 such that

|f(t787u1<5)) - f(t,S,UQ(S))‘ < cr |U1(S) - U2(8)| :
(ii) Acp < 1.

Theorem 2.2. Let the assumptions of Theorem (2.1) and (z)f(u) be satisfied, then
the solution of the problem (1.1)-(1.2) is unique continuous on [0, 1].

proof. Let ui,us be two solutions of the implicit formula (2.2), then

mmwfw@nzxfkfﬁf@am@»—fmam@»m

t
< )\Ilfo‘/ cf - lui(s) —ua(s)|ds
0

¢
< Xey - |lun —qu-Il_a/ ds
0

< Aep - |lug — g - IV

t2—0¢
< Acy - fluy — ugf - TG_a)
< Aey - flur =z,
then
[ur = uall < Acy - flur — uz].
Hence

(1= Aep) - flus — ua < 0.
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then u; = wg, Vt€ [0,1]. Building on this, if y; and ys are two corresponding
solutions of (2.4) related with u; and wus, respectively, and are obtained by

y1(t) = y(0) + Iua(t),
Y2(t) = y(0) + I%usa(t).
This allows us to conclude that
ly1(t) — y2(t)] < 1%[ur — g
< I%ur — uz|
<0, Vtelo1].
It is clear that we must have

|y1(t) - yQ(t)‘ =0, Vte [Ov 1]

This gives
Y1 (t) = yg(t), Vit € [0, 1]
Then the solution of the problem (1.1)-(1.2) is unique.

2.3. Hyers-Ulam Stability.

Definition 2.1. [7, 22] Let the solution y € C[0,1] of (1.1)-(1.2) be exists. The
problem (1.1)-(1.2) is Hyers-Ulam stable if, for any € > 0, there exists 6(¢) > 0
such that for any §—approzimate solution ys(t) of (1.1)-(1.2) satisfying

dys i
’i —a(t) - )\/ F(t,s, Dyy(s))ds| < &,

dt 0
it follows that

ly —ysll <e

Theorem 2.3. Let the assumptions of Theorem (2.2) be satisfied, then the problem
(1.1)-(1.2) is Hyers-Ulam stable.

proof. Suppose y;(t) is an d— approximate solution of (1.1)-(1.2) satisfying
dys

dt - Cl(t) - AA f(t,S,DayS(s))ds

We can write this inequality as

< 6.

/f s, D%ygs(s))ds < 4.

t
—I'7%5 < DYy, (t) — I'“a(t) — /\11*“/ f(t,s, Dy(s))ds < I'~*6.

0
Let §; = I'72§ and D%y,(t) = us(t). Then, the above inequality becomes

61 < us(t) — I a(t) — ﬁ /Ot(t _ g [/O f(s,e,us(e))de] ds < &,

This leads to

us(t)Ilo‘a(t)F(%_a)/ (t—s)" U f(s do} ds

< 01.
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Now, for all ¢ € [0,1]

lu(t) — us ()] = Ilaa(t)+ﬁ/ (t—s) U (5,0, u(0 ]ds—us(t)‘

= ﬂﬂmuy+56%33/ (t—s)~ {/1f30u ]d
+ﬁ/ot(t—s Ustus())de}dS
i [ [ 0] as o)

§Il_aa(t)+ﬁ/ (t—s)” [/fs@us }ds—us(t)’
+ /\Ila/ot £ (£, s,u(s)) = f(t, 5, us(s))|ds

t
<614 ey - Ju(t) — us(t)] -Il_a/ ds
0

t2—a
1) ey - t) —ug(t)] - —=—————=
<814 dey - fult) ~ 0 (0] g
<01+ Aey - |u(t) —us(t)] -
Taking the supremum for any ¢ € [0, 1],
llu — us|| < 01+ ey - |lu — us]|.

We rewrite it and use the condition (ii) to obtain

01 .
llu — us] < m =€
Hence, from (2.4), we have

ly(®) = ys(B)] = |y(0) + I"u(t) = y(0) — I"us(t)]
< T u(t) — us(t)]

6*

< -
“T(a+1)
Since this estimation valid for any ¢ € [0, 1], it follows that

= €.

ly —ysll <.

2.4. Continuous Dependence. This section investigates the continuous depen-
dence of the unique solution to (1.1)—(1.2) on the function a € C[0, 1] and parameter
A>0.

Definition 2.2. [6, 21] The solutiony € C[0,1] to (1.1)-(1.2) depends continuously
on the function u € C[0, 1] if, for every € > 0, there exists §(e) > 0 satisfying

[lu—u*|| < ¢
implies
ly =yl <e.
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Where, u*(t) and y*(t) are two unique solutions of

u*(t) = I'"%a(t) + /\Ilfa/o f(t,s,u*(s))ds,

y*(t) = y(0) + I“u*(¢), (2.9)
respectively.

Theorem 2.4. If the assumptions of Theorem (2.2) hold, then the solution y €
C[0,1] of (1.1)-(1.2) depends continuously on u € C[0, 1].

proof. Let y, y* be two solutions defined by (2.1) and (2.9), respectively. As-
sume ||u — u*|| < 4. Then, for all ¢ € [0, 1], we obtain

ly(t) =y (8)] = [y(0) + I*u(t) — y(0) — I*u*(t)
< I*lu(t) - u*(1)]

ta
< — ¥l —
S
0
— — ¢
“D(a+1)
Hence
ly—y"ll <e

Definition 2.3. [6, 21] The solution uw € C[0,1] of (2.2) depends continuously on
the function a € C[0,1] and the parameter A > 0 if, for any € > 0, we can choose
d(e) > 0 such that

max {|\ — A*[,|a(t) —a*(t)|} <4, Vte]0,1].
It follows that
[lu —u"| <,

where u*(t) is the unique solution of

w*(t) = I'a(t) + )\Il_a/ot f(t,s,u™(s))ds. (2.10)

Theorem 2.5. Assume the assumptions of Theorem (2.2) are satisfied, then the
solution u € C[0,1] of (2.2) depends continuously on the function a(t) and the
parameter X > 0.

proof. Let u, u* be two solutions of (2.2),(2.10), respectively. Suppose

max {|A — N|, |a(t) — a*(t)|} < 6.
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For all ¢ € [0, 1], we obtain

lu(t) —u*(t)] = |I' " “a(t) + /\Ilfo‘/O f(t,s,u(s))ds — I'"a*(t) — )\*Ilfa/o f(t,s,u*(s))ds

< I'"*la(t) — a* (1) + ’All_a / | f(t,s,u(s) = A1 / | f(t.5,u*(s))ds)ds
0 0

< ﬁ + ‘)\Il_o‘/ot f(t,s,u(s))ds — )\*Il_a/ot f(t,s,u(s))ds

+)\*Il_a/t f(t, s,u(s))ds — )\*Il_o‘/t f(t,s,u*(s))ds
0 0

]

t
< =——+ A=) su Il_o‘/ t,s,u(s))|ds
o A= X s )

4 -Jl—a/o £t 5, u(s)) — F(t, 5, u"(s))|ds

¢
<ﬁ+5~f(+)\*~]10‘/0 cr - lu(s) —u(s)| ds

< (g +5) o+ X w0 — w01

< BS54 Nep - ult) — u'(t)] %
< B0+ Ncey-Ju(t) —ut(t),

where B = ﬁ + K. Rearranging terms, we have

(1 —=Xep)|u(t) —u™(t) < B-6.
Under the condition A*cy < 1, it implies that

lu(t) — u*(t)] < % =e.
This inequality holds for any ¢ over [0, 1], we conclude that

lu —u*|| <e.

Corollary 2.0. Using Theorem (2.4) and Theorem (2.5), we deduce that the solu-

tion y € C[0,1] depends continuously on the function a € C[0,1] and the parameter
A>0.

3. SPECIAL CASES AND EXAMPLES

Case 1:: T=0and n=1.
The problem given by (1.1) is now linked with the boundary condition:

y(0) =vy(1), ~v#1L
This represents a standard two-point boundary value problem.
Case 2:: 7 = 1 and n = 0. Our problem is now given by (1.1) and the
condition
y(1) =y(0), ~+#1.
This is another form of a two-point boundary value problem.
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Case 3: 7 =n = 0.: This case, the problem represents by (1.1), subject to
the condition:

y(0) = 0.
This is the usual initial value problem.

Case 4: 7 =n = 1.: Here, the problem defined by (1.1) and the boundary
condition:

y(1) = 0.
This is referred a backward initial value problem.
Case 5: n=1— 7.: This case, the problem link the equation (1.1) with the
condition:
y(r) =yl —7), ~v#1
This is an anti-periodic boundary value problem, which has applications in
the study of oscillatory systems [1, 13].

Examplel. Suppose the following functional integro-fractional differential equa-
tion:

Y ot + /t sin (D%y(s))d (3.1)
—= = — | ssin s))ds .
ds 4 /, 4 ’
with the two-point boundary condition:
y(0.2) = 0.4y(0.8). (3.2)

Then, we justify f(¢,s,z(s)) = ssin (z(s)) is an L' —Carathéodory function.

Since f is continuous in x(s) for each (t,s) € [0,1]%. It is continuous in ¢t and
measurable in s for each z(s) € R and bounded by s, because |f(t, s, (x(s)))] =
|s-sin (z(s))] < s = k(t,s). With,

t
1
sup I\~ a/ k(t,s)|ds = sup I'~ O‘/ sds = —— = K > 0.
t€[0,1] Ik 9) t€[0,1] 0 ['4-a)

Moreover, k(t,s) = s is continuous in (¢, s) € [0, 1]?, and a(t) = cos (t) € C[0,1].
Next, we obtain that the function f(t, s, z(s)) = ssin (x(s)) is Lipschitz continuous
in x € R. For any x1, x5 € R, we have:

lf(t,s,z1(s)) — f(t,s,22(s))| = |ssin(x1) — ssin (z2)| = ssin (z1) — sin (z2)| < s|z1(s) — z2(s)].
Taking the constant ¢y = sup s =1, we conclude
(t,5)€[0,1]2
1 1
Acg=—--1=-< 1L
Ty 4

Thus, the assumptions of the Theorem (2.2) are met. Then, the solution to the
problem (3.1)—(3.2) is unique.

Example2. Consider the next functional integro-fractional differential equation:

% ety %/0 [cos (s) sin (D%y(s)) + h(s)]ds, (3.3)

subject to the two-point boundary condition:

4(0.3) = 0.6(0.7), (3.4)
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where the function h(s) is given as:

f1, se0,04),
h(S){o, s € [0.4,1].

Now, we justify f(t,s,x(s)) = cos (s)sin (z(s)) + h(s) is an L*—Carathéodory func-
tion.

Since f is continuous in z(s) for each (t,s) € [0,1]2. It is continuous in ¢ for
each s € [0,1] and =z € R and measurable discontinuous at 0.4 only in s for each
t € [0,1] and z(s) € R and bounded by 1 + |h(s)|, because |f(¢,s,(z(s)))| =
|cos (s) - sin (z(s))| 4+ |h(s)| <14+ 1 =2=k(t,s). With,

¢ ¢
2
sup 11*“/ |k(t,s)|ds = sup 117(1/ 2s< —=K>0, 0<a<l.
tefo,1] 0 tefo,1] 0 '3 —a)

Moreover, k(t,s) = 2 is continuous in (¢, s) € [0,1]%, and a(t) = e~t € C[0,1].
Next, we obtain that the function f(t, s, z(s)) = cos (s)-sin (z(s))+h(s) is Lipschitz
continuous in x € R. For any x1,zs € R, we have:
|f(t,s,21(s)) — f(t,s,22(s))] = |cos(s)sin (z1) — cos(s) sin (z2)| = |cos(s)] |sin (z1) — sin (z2)|
< fa1(s) = z2(s)] -

Taking the constant ¢y = sup 1 =1, we conclude
(t,s)€[0,1]2
1 1
Acp==-1=-<1.
7% 6

Thus, the assumptions of the Theorem (2.2) are valid. Then, the solution to the
problem (3.3)—(3.4) is unique.

4. CONCLUSION

The cornerstone of this research is the employing of Caratheodory’s theorem to
establish the existence of a solution for non-local two-point boundary value prob-
lems related to functional integro-fractional differential equations. By converting
the problem into a clearer integral form of the required solution. We use suitable
conditions provided that the solution exists to a class of continuous solutions on
[0,1].

Moreover, we introduced the sufficient conditions to deduce this solution is
unique by embedding the Lipschitz continuity condition on the nonlinear term
in the equation. As a result, to exhibit the reliability of our unique solution, the
Hyers-Ulam stability and the continuous dependence on certain parameters are
addressed.

In the final phase, we demonstrated the applicability of our results through
various special cases and examples to illustrate the flexibility of our framework in
mentioning distinct different types of boundary value problems. To conclude, this
work widens the domain of equations that can be solved, studied for the scholars
the solvability of functional equations.

In future work, we could generalize and extend these results to other ideas in the
same direction and also find some practical problems and verify our results with
numerical methods [10].
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