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SOLUTION OF FRACTIONAL ORDER SCHRODINGER
EQUATION BY USING ABOODH TRANSFORM HOMOTOPY
PERTURBATION METHOD

HARESH P. JANI!, TWINKLE R. SINGH?

ABSTRACT. This study presents an analytical approach for solving the fractional-
order Schrodinger equation using the Aboodh Transform Homotopy Pertur-
bation Method (ATHPM). The proposed method provides an approximate
analytical solution, benchmarked against the exact solution to demonstrate
its accuracy. Unlike conventional methods, ATHPM offers a computation-
ally efficient technique without requiring linearization or small-parameter as-
sumptions. The results validate the method’s effectiveness, showing excellent
agreement with exact solutions. The study includes a comparative analysis,
highlighting ATHPM’s advantages over existing techniques. Additionally, mul-
tiple figures illustrate the behavior of the obtained solutions, reinforcing the
accuracy of the method. Several comparison tables showcase ATHPM’s perfor-
mance against the exact solution. Furthermore, a detailed comparative study
with the Modified Generalized Mittag-Leffler Function Method (MGMLFM) is
provided, demonstrating the robustness and efficiency of the proposed method.

1. INTRODUCTION

Many improvements have been made in the field of solving nonlinear differential
equations in recent years. However, several nonlinear differential equations do not
have analytical solutions. The Aboodh Transform Homotopy Perturbation Method
(ATHPM) can be used to obtain an analytical solution for such equations. The
Aboodh transform was developed by Khalid Aboodh to solve differential equations
in the time domain [1]. J. H. He introduced the Homotopy Perturbation Method
(HPM) for the first time [11]. HPM is a semi-analytical method for solving both
linear and nonlinear differential equations.
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Quantum mechanical systems are governed by the Schrodinger equation, a funda-
mental partial differential equation that describes the evolution of wave functions.
This equation encapsulates essential quantum properties such as position, momen-
tum, and energy of particles, making it crucial in fields such as quantum optics,
condensed matter physics, and superconductivity.

The time-fractional Schrodinger equation governs wave function evolution in com-
plex quantum systems. It is given as:

o 0?
W«I: + z'87’; =0, v(520) = v(>). 1)
The Schrodinger equation in its nonlinear time-fractional form is given by:
o0 o2
77375 + 767”2 By =0, (,0) = (). 2)

Here, v(s,t) is the wave function, § and v are constants, and « is the fractional
derivative order, modeling memory and hereditary effects in quantum systems. The
significance of this formulation lies in its ability to generalize classical quantum
mechanics to fractional-order domains.

The aim of this research is to use ATHPM to find accurate solutions for linear and
nonlinear Schrédinger wave equations that arise in physics, such as plasma physics,
nonlinear optics, quantum mechanics, and superconductivity. Dehghan [9], Bairwa
[7], Eladdad [10], Aruna [6], and Wazwaz [19] investigated the Schrédinger equation
using the Numerical Method, Sumudu Iterative Method, Picard and Homotopy
Perturbation Method, Differential Transform Method, and Variational Iteration
Method, respectively.

The ATHPM simplifies both linear and nonlinear problems by continuously
transforming a complex equation into a series of solvable subproblems. Unlike
other methods, such as the Adomian Decomposition Method (ADM) or the Varia-
tional Tteration Method (VIM), ATHPM does not require complicated polynomial
expansions or iterative corrections. This makes it computationally efficient while
preserving accuracy.

2. ATHPM IMPLEMENTATION

Let us consider a fractional order partial differential equation in the Caputo
sense that is both nonlinear and nonhomogeneous.

60&

S+ Rv(a) + Nv(oat) = f(o5,1). (3)
where f(z,y) is the source term, N is the nonlinear differential term, and R is the
linear differential operator.

Apply Aboodh transform on it,
aOt
Al ) + AlRv(o2,6)] + AINV(o5, 1)) = Alf (2,1))

1 1
K(s) = 5v(5,0) = S A[Rv(5.8) + Nv (52, 1) — f(54,8)].
Implement Aboodh inverse transform and HPM for the nonlinear terms [4]
o0 1 oo [ee]
> (e t) = v(36,0) = pAT [ ARD _p"Hy(56,t) = N > p"Hy(6,1))].

S
n=0 n=0 n=0
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When we equate coefficients of like powers of p on both sides, we obtain

; 1
P’ vi(e,t) = —A_l[;A(Rui_l(%, t) — Nv;_1(3,1))];i > 0.

Ultimately, the approximate analytical solution is given by,

v(se,t) =vyg+ 11 +rvatrs+ ..

3. SOLUTION OF SCHRODINGER EQUATIONS BY ATHPM

Example 1 Consider the following Schrédinger equation,

v 0%

o o

where v/(5¢,0) = ce'®”, ¢ and d are complex constants [10].
Apply Aboodh transform on it,

:0,

0%y A 0w

[5oa] = —Aliz5),

1 1 0%
Implement Aboodh inverse transform,

1 0%
-1 .
v(s,t) =v(sx0)— A [—sa A(z—a%Q)].
By HPM [11],
vo = v(3,0) = ce'd”,
1 0y idse T
nl . _ -1 K 0\ __ 32 idsx
p iy =—A [S—QA(L 9502 )] = icde oI
1 0% e 12
2., _ -1 ; Ly1 ;2,74 ids
p* vy =—A [SQA(28%2 )] = i“cde’ o)l
1, 0% T
3 . _ —17 = - _ 3,76 idse
p° vy =—A [S‘XA(ZO%2)_Z cd’e (3@)!].

Approximate solution,

v(se,t) =vg+11 +rvatrs+ ..
3a

@ 2a
V(e t) = ce'®* + icdzeid“t— + i%cd* et f + i3cdbe'” t
(a)! (2a)! (3a)!

Classical Schrodinger equation for o = 1 has the solution,

+ ...

) . L2 L¢3
v(se,t) = ce'® ticd*e ¥t + iPed e —— + iPed®et* —— +

(2)! @)
Applying convergence analysis, we have,
_ Il 5160 < 1,
[0l
by = 12l 9056 <1,
([l
vy = Wl 990 < 1.

([l
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FIcure 1. ATHPM
solution for real part
of Example 3.1 with
the values d=c =1
anda=1.

3. Exact
solution for real part
of Example 3.1 with
the values d =c =1
and a = 1.

FIGURE

Which is the exact solution.

V(s t) = celdlxHdt),

Ficure 2. ATHPM
solution for imagi-
nary part of Exam-
ple 3.1 with the val-
ues d = ¢ = 1 and
a=1.

Exact
imag-
inary part of Ex-
ample 3.1 with the
values d = ¢ =1 and
a=1.

FiGure 4.
solution for

Hence, for a = 1 above series solution v(3,t) can be converge to,
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ATHPM

Exact

Absolute error

Real part Imaginary part
0.1 0.5 0.8227917992+0.56412706861 0.8253356149+0.56464247341  0.0025438157 0.0005154048
0.75  0.6473037184+0.74804716181  0.6599831459+0.7512804051i  0.0126794275 0.0032332433
1 0.41430756884-0.8790868464i  0.4535961214+0.8912073601i  0.0392885526  0.0121205137
0.3 0.5 0.6943159955+0.7163455820i 0.6967067093+0.71735609091 0.0023907138 0.0010105089
0.75 0.4857867110+0.86173541891  0.4975710479+0.8674232256i 0.01178433G69  0.0056878067
1 0.2314014056+4-0.9438738448i  0.2674988286-+0.9635581854i  0.0360974230 0.0196843406
0.5 0.5 0.5381600045+0.84000565731  0.5403023059+0.84147098481 0.0021423014 0.0014653275
0.75  0.3049029205+0.9410690031i  0.3153223624+4-0.9489846194i  0.0104194419  0.0079156163
1 0.03926999875+0.97103157071  0.7073720167+0.99749498661 0.03146720292  0.0264634159
TABLE 1. v(s,t) in case of @ =1 in Example 3.1.
Example 2 Consider the followig Schrodinger equation,
v N 0% 0
— +i— =0.
ote 02
Where v(5,0) = 1+ cosh(2z) [10].
Apply Aboodh transform and inverese Aboodh transform on it,
1 0%y
_ oA i
v(se,t) =v(s%,0)— A [s@ A(za}fQ)].
By HPM [11],
vy = v(2,0) = 1+ cosh(2z),
1 0%y te
1 -1 .07 .
iy = —AT [—A(i—— )] = —4icosh(2x) ——
p v (A5 5] ( )(a)!,
1 82V 2
2 —1 . 1 .2
cvg=—A [ —A(i—=)] = 16¢* cosh(2z) ——
p 2 [Sa ( 2 )] ( )(2a)'7
1 0%v 3
3 -1 : 2 -3
p° vy =—A"[—A(i = —644° cosh(2x)——.
P [oAl5.2) ( )(3a)!
Approximate solution,
v(s,t) =vyg+ v +va+us+ ...
+e 5 t2u 3 tBa
v(s,t) = 1+4cosh(2x)—47 cosh(2s¢) ——+16¢° cosh(2z —64¢° cosh(2x +...
(o0, (20) i cosh(2) ) oy 2x)
Classical Schrodinger equation for o = 1 has the solution,
t2 . t3
v(#,t) = 1+ cosh(2z) — 4i cosh(2s¢)t + 164> cosh(Zx)w — 644° cosh(Qm)@ + ...
Applying convergence analysis, we have
v
0= Il gg94 < 1.
[[voll
1%
vy = 2l _ g gg70 < 1,
[l ]
v
vy = sl _ 3651 < 1.
[[v2]]

Hence, for o = 1 above series solution v(s,t) can be converge to,

v(se,t) = 1+ 4e~*" cosh(2z).
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Which is the exact solution.

t X ATHPM Exact Absolute error
Real part Imaginary part

0.1 0.5 2.42121-0.6010461  2.42127-0.600904i  0.00006 0.00014
0.75  3.16662-0.9162881  3.16671-0.916071i 0.0009 0.00021
1 4.46507-1.165410i  4.46521-1.465070i  0.00014 0.00035
0.3 0.5 1.55872-1.43838i 1.55915-1.43821i 0.00043 0.00017
0.75  1.85176-2.19279i 1.85241-2.19254i 0.00066 0.00025
1 2.36221-3.50692i1 2.36326-3.506511 0.00105 0.00040
0.5 0.5 0.3571550-1.40280i 0.3578520-1.40312i  0.00070 0.00032
0.75 0.0199828-2.138551 0.0210522-2.13904i  0.00107 0.00049
1 -0.567336-3.42017i -0.565626-3.42095i  0.00171 0.00078

TABLE 2. v(3,t) in case of & = 1 in Example 3.2.

Example 3 Consider the followig nonlinear Schrédinger equation with v =

13 /3 =-2

0y 0% 9
‘ Za? @ — 2|I/| v =0.

Where v(s,0) = e [10].

Multiply (-i) in above nonlinear Schrodinger equation then it can be rewritten as,
ov 0%
oy _;Zr
ot 032

Try Aboodh transform and inverese Aboodh transform on it,

1 0% 9

s A(—zw + 2iv°p)].

+ 2125 = 0.

V(%,t) = I/(%,O) _A_l[

By HPM [11]
vo = v(s,0) = e'”,
1 62V0 ;
1. _ —1 - - - _ . it
p i =A [;A(zﬁ — 2ivgy)] = —3ie @
.82]/1 t2a

1 )
Pty = A_l[s—aA(z 952 2ivivn — divor )] = 9i%e™” Ga)l’

tOt

similarly,
3a
-3 i U

3 . — _97,
p° vy = —27i%e Ba)l

Approximate solution,
v(s,t) =vyg+ v +va+uvs+ ...

) o 9 2c 3 3o
(s, t) = e — 3ie"” —— + 9i“e"” — 27i%e"” +
(3. 4) @! T Ray T Ba)
Classical Schrodinger equation for a = 1 has the solution,
i . i -2 i tQ -3 i t3
V(s t) = e = Bie'"t + 9i%e™” = — 2Ti%e e 4

(2) ®3)!

Applying convergence analysis, we have

= Il _ g5 1)

~ wll
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FIGURE 5. ATHPM FIGURE 6. ATHPM
solution for real part solution for imagi-
of Example 3.3 with nary part of Exam-
a=1. ple 3.3 with a = 1.

Ficure 7. Exact Ficure 8. Exact
solution for real part solution for imagi-
of Example 3.3 with nary part of Exam-
a=1. ple 3.3 with oo = 1.
=l gy g,
([ ]
o= Wl 0001 < 1.
[[va]]

Hence, for o = 1 above series solution v(s,t) can be converge to,

v(s,t) = @38,
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Which is the exact solution.

t X ATHPM Exact Absolute error
Real part Imaginary part

0.1 0.5 0.980086+0.198571i  0.980067+0.198669i 0.0000020 0.000098
0.75 0.900491+40.4348751  0.900447+0.434966i  0.000043 0.000090

1 0.764907+0.6441411  0.764842+0.6442181  0.000064 0.000076

0.3 0.5 0.920944-0.3896951  0.921061-0.3894180i  0.00012 0.000276
0.75  0.988726-0.149735i  0.988771-0.149438i  0.000045 0.000297

1 0.995034+4-0.0995349i 0.995004+0.099833i  0.00003 0.000299

0.5 0.5  0.539882-0.841741i  0.540302-0.841471i  0.000421 0.00027
0.75  0.731348-0.682005i  0.731689-0.681639i  0.000341 0.000366

1 0.877343-0.479864i  0.877583-0.479426i  0.00024 0.000439

TABLE 3. v(s,1) in case of @ =1 in Example 3.3.

1
§w8=_]-

Example 4 Consider the followig nonlinear Schrédinger equation v =

and non-homogeneous term —v cos?(x) [10],
0%  10%w 5 5
2%4‘58%2 S ($)+|V| v=0.

Where v(s,0) = sin(z) [6].

Multiply (-i) in above nonlinear Schrédinger equation then it can be rewritten
as,

v _1.0%v e

e = 3ip,a — Wweos 2(z) —i?p.
Applychboodh transform and inverese Aboodh transform on it,

1 82
v(se,t) = v(3¢,0) + A! [ A( — ivcos®(z) — iv?D)].
s
By HPM [11],
v = v(3,0) = sin(x),
1 8 3i e
pliy = A_l[ 2152 7o — ivg cos?(x) — ivgin)] = _Ez sin(z) )
1 72 2
privy=A"1 [ A(2 ?9 . ivy cos(x) — g — 2iver )] = 9% sin(x) o)
p® g = 1471[—14(1 6——71/2 cos? (z) —ivg v —ivp (ui+2ugra) —2ivor 1 )] = ——B sinx s
' a7 P ’ 0 ! g8 T (3a)!
Approximate solution,
v(se,t) =vy+ v +va+rs+ ...
3 e ;2 t2a 27 -3 t3cx
v(se,t) = sin(z) — gsin(w)@ + e sin(a;)m - ?Z sinw(?)a)!
Classical Schrodinger equation for o = 1 has the solution,
31 942 12 2743 3
v(s,t) = sin(x) — Ezsin(x)t + % Sin(x)(2—)! — % sinx@...
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FIGURE
FIGure 9. ATHPM 10. ATHPM SO-
solution for real part lution for imaginary
of Example 3.4 with part of Example 3.4
a=1. with a = 1.

Ficure 11. Exact Ficure 12. Exact
solution for real part solution for imagi-
of Example 3.4 with nary part of Exam-
a=1. ple 3.4 with a = 1.

Applying convergence analysis, we have

o=l o454 1,
[voll
= W2l o g
(121
o= 0 60151 < 1.

el
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Hence, for o = 1 above series solution v(s,t) can be converge to ,

—3it

v(s,t) =e 2 sin(z).
Which is the exact solution.
t X ATHPM Exact Absolute error
Real part Imaginary part
0.1 0.5 0.07175526822-0.06785552537i  0.07304699971-0.06805032633i  0.00129173149  0.00019480096
0.75  0.03665758267-0.088621655961  0.04304582485-1-0.090076456651 0.00638824218  0.00145480069
1 -0.01247917705-0.09359382813i  0.007061936527-0.09958333260i 0.01954111358  0.0059895044
0.3 0.5 0.2124051486-0.20086139061 0.2162288458-0.2014380272i 0.0038236972  0.0005766366
0.75  0.1085113259-0.2623319022i 0.1274213734-0.26663830591 0.0189100475  0.0043064037
1 -0.0369400258-0.27705019371 0.02090427246-0.29477992461  0.05784429826  0.0177297309
0.5 0.5 0.3445871059-0.32585954581 0.3507903301-0.32679502961 0.0062032242  0.0009354838
0.75  0.1760390649-0.4255838034i 0.2067170338-0.4325701273i1 0.0306779689  0.0069863239
1 -0.0599281923-0.4494614424i 0.03391322101-0.47822457121  0.09384141331  0.0287631288
TABLE 4. v(s,t) in case of & =1 in Example 3.4
4. CoMPARISON oF ATHPM sorLuTioN wiTH MGMLFM
To compare ATHPM solution with MGMLFM [5], take v = %, 3 = —1 and
non-homogeneous term —v cos?(z) in equation (1.2) then we get,
v 10% 9 9
t—— + - +vcos’(z) + |v|"v=0. 4
O S veost(a) + 1] (1)

Where v(,0) = sin(z) [5].
Now, using ATHPM to solve above equation, we get the following solution,

v(s,t) = sin(z) — %sin(z)

«

t
o

Z‘Q tQu

273
Ve sin(x) ri

(20)! 8

t3o¢

sinx—— + ...

(3a)!

Similarly by MGMLFM [5], solution of the equation (4) is given by

e
2 (a)!

v(s,t) = sin(x)

92 2 2733 3

T2 8 Bal T

numerical results validate the effectiveness of ATHPM, showing excellent agree-
ment with the exact solutions and MGMFEFFM. A comparative analysis (see Tables
5,6,7) highlights that the absolute error remains minimal across different fractional
orders. This demonstrates that ATHPM is a robust technique for solving fractional
Schrédinger equations with high precision.
To further emphasize the novelty and contribution of the work, a detailed compara-
tive study with the Modified Generalized Mittag-Leffler Function Method (MGMLFM)
has been performed. Tables 5—7 present side-by-side comparisons of the real and
imaginary parts of the solution as well as the absolute errors for different frac-
tional orders (o« = 0.5,0.8, and 1). The results demonstrate that ATHPM not only
matches but, in several cases, outperforms MGMLFM in terms of computational
efficiency and accuracy.
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X ot ATHPM at « =0.5 MGMLFM at o =0.5
Re Im Re Im
-5 0.01 0.937348 - 0.15797 0.937348 - 0.15797
0.03 0.894197 - 0.258595 0.894197 - 0.258595
0.06 0.829469 - 0.333855 0.829469 - 0.333855
-1 0.01 -0.822538 0.139004  -0.822538 0.139004
0.03 -0.784672 0.228914  -0.784672 0.228914
0.06 -0.727872 0.298599  -0.727872 0.298599
1 0.01 0.822538 - 0.139004 0.822538 - 0.139004
0.03 0.784672 - 0.228914 0.784672 - 0.228914
0.06 0.727872 - 0.298599 0.727872 - 0.298599
5 0.01 -0.937348 0.15797 -0.937348 0.15797
0.03 -0.894197 0.258595  -0.894197 0.258595
0.06 -0.829469 0.333855  -0.829469 0.333855
TABLE 5. Comparision of ATHPM with MGMLFM in case of o =
0.5 .

x ot ATHPM at a = 0.8 MGMLFM at a = 0.8
Re Im Re Im
-5 0.01 0.957976 - 0.0387581 0.957976 - 0.0387581
0.03 0.953531 - 0.092958 0.953531 - 0.092958
0.06 0.943374 - 0.1604281 0.943374 - 0.1604281
-1 0.01 -0.840638 0.0340142 -0.840638 0.0340142
0.03 -0.836709 0.0816136 -0.836709 0.0816136
0.06 -0.827552  0.140918  -0.827552  0.140918
1 0.01 0.840638 -0.0340142 0.840638 - 0.0340142
0.03 0.836709 - 0.0816136 0.836709 - 0.0816136
0.06 0.827552 - 0.140918  0.827552 - 0.140918
5 0.01 -0.957976 0.0387581 -0.957976 0.0387581
0.03 -0.953531  0.092958  -0.953531  0.092958
0.06 -0.943374 0.160428  -0.943374  0.160428
TABLE 6. Comparision of ATHPM with MGMLFM v(s¢,t) in case
of a =0.8.

5. CONCLUSION

This study demonstrates that the Aboodh Transform Homotopy Perturbation
Method (ATHPM) is an efficient and robust tool for solving fractional-order Schrédinger
equations in both linear and nonlinear forms. By transforming the fractional deriva-
tives into a more tractable algebraic form, ATHPM circumvents the need for lin-
earization or small-parameter assumptions, leading to a solution process that is both
straightforward and computationally efficient. The numerical experiments, along
with comprehensive comparisons with exact solutions and alternative methods such
as the Modified Generalized Mittag-Leffler Function Method (MGMLEM), confirm
the rapid convergence and high accuracy of the ATHPM approach. Importantly,
the results of this study have broader implications for the fields of applied math-
ematics and quantum mechanics. The simplicity and effectiveness of ATHPM not
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X t ATHPM at 1 MGMLFM at 1 Exact Absolute Error MGMLEFM  Absolute Error for ATHPM
Re Im Re Im Re Im

-5 0.01  0.958816 - 0.0143827 0.958816 - 0.0143827 0.958816 - 0.0143833 6.61738 x 1077 6.61738 x 10~7
0.03  0.957957  0.0431194  0.957957  0.0431194  0.957954 - 0.043137 1.79569 x 10~ 1.79569 x 10—°
0.06  0.955094 - 0.0860496 0.955094 - 0.0860496 0.955043 - 0.0861867 1.46139 x 10~ 4 1.46139 x 10~

-1 0.01 -0.841376 0.0126211 -0.841376 0.0126211 -0.841376  0.0126216 447172 x 1077 4.47172 x 1077
0.03 -0.840621 0.0378414 -0.840621 0.0378414 -0.840619  0.0378534 1.21395 x 107° 1.21395 x 1075
0.06 -0.838097 0.0755366 -0.838097  0.0755366 -0.838065  0.0756302 9.89065 x 107° 9.89065 x 107°

1 0.01 0.841376 -0.0126211 0.841376 - 0.0126211 0.841376 - 0.0126216 4.47172 x 1077 4.47172 x 1077
0.03  0.840621 - 0.0378414 0.840621 - 0.0378414 0.840619 - 0.0378534 1.1395 x 107 1.1395 x 107
0.06 0.838097 - 0.0755366 0.838097 - 0.0755366 0.838065 - 0.0756302 9.89065 x 10~ 9.89065 x 10~°

5 0.01 -0.958816 0.0143827 -0.958816  0.0143827 -0.958816  0.0143833 6.61738 x 1077 6.61738 x 1077
0.03 -0.957957 0.0431194 -0.957957  0.0431194 -0.957954  0.043137 1.79569 x 10~° 1.79569 x 10~°
0.06 -0.955094  0.0860496 -0.955094 0.0860496 -0.955043 0.0861867 1.46139 x 10~* 1.46139 x 104

TABLE 7. Comparision of ATHPM with MGMLFM v(sr,t) and
absolute erroes with different time t and x at o = 1.

only make it a promising alternative for solving complex differential equations but
also open up new avenues for its application in areas such as plasma physics, non-
linear optics, and beyond. Looking ahead, future research could explore extending
the ATHPM framework to multi-dimensional and more complex fractional differen-
tial equations. There is also potential for integrating ATHPM with other numerical
or analytical methods to create hybrid approaches that further enhance computa-
tional performance. The insights gained from this work provide a solid foundation
for the development of advanced techniques that can address increasingly intricate
problems across various scientific and engineering disciplines.
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