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STANDARD COLLOCATION AND LEAST SQUARES METHODS
FOR SOLVING LINEAR VOLTERRA-FREDHOLM
INTEGRO-DIFFERENTIAL EQUATION USING CHEBYSHEV
POLYNOMIAL AS THE BASIS FUNCTION

AKINSANYA, A.Q., OKORO, J.O., TATWO, O.A.

ABSTRACT. This research work employs the standard collocation and Least
squares methods to solve numerically Linear Volterra-Fredholm integro-differential
equations, utilizing Chebyshev polynomials of the first kind as basis functions.
Both methods start by assuming an approximate solution represented using
Chebyshev polynomials as basis function, which are then substituted into the
problem considered. The coefficients of these polynomials are collected and
simplified accordingly. In the standard collocation method, the resulting equa-
tions are evaluated at equally spaced interior points to obtain algebraic linear
system of equation which are solved by MAPLE 18 software. Conversely, the
Least squares method involves minimizing the residual error over the entire
domain, thereby fitting the approximate solution as closely as possible to the
exact solution in a global sense. An algebraic linear system of equation are
gotten which are solved by MAPLE 18 software. These constants obtain from
both methods are then substituted back into the assumed approximate so-
lution. Numerical examples are provided to illustrate the accuracy of both
methods, with results obtained indicating that the accuracy improves as the
degree of the polynomial approximant increases.

1. INTRODUCTION

Linear Volterra-Fredholm integro-differential equations (V-F IDEs) play a piv-
otal role across diverse disciplines like physics, engineering, biology, and econom-
ics, capturing systems with memory wherein past values shape present behavior.
Addressing and unraveling the complexities of V-F IDEs is paramount for advanc-
ing scientific understanding and technological innovation. This paper offers an
insightful overview of V-F IDEs alongside a comprehensive examination of recent
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advancements in their numerical solution techniques. The significance of V-F IDEs
has spurred a plethora of analytical and numerical methods tailored for their so-
lution. While classical analytical methods like separation of variables and Laplace
transforms are foundational, their applicability is often confined to specific cases,
prompting the exploration of more versatile numerical approaches. Among nu-
merical methodologies, finite difference, finite element, and spectral methods have
gained prominence for their efficacy in discretizing integral and differential opera-
tors, transforming problems into solvable algebraic equations. Spectral methods,
particularly leveraging orthogonal polynomials like Chebyshev or Legendre poly-
nomials, exhibit promise in managing highly oscillatory functions and non-smooth
solutions with efficiency. Advancements in computational techniques have catalyzed
the development of hybrid methods amalgamating different numerical strategies to
bolster accuracy and efficiency. Additionally, endeavors have been directed towards
adapting existing numerical methods to accommodate V-F IDEs with variable co-
efficients or in higher dimensions. For instance, Smith and Jones [6] introduced a
novel hybrid finite difference and spectral method tailored for V-F IDEs with vari-
able coefficients, demonstrating its superior performance in their paper ”Hybrid Fi-
nite Difference-Spectral Method for Variable Coefficient Linear Volterra-Fredholm
Integro-Differential Equations.” Moreover, recent research by Wang et al. [7] un-
veiled a pioneering adaptive mesh refinement technique tailored for solving V-F
IDEs in higher dimensions, showcasing substantial enhancements in computational
efficiency and solution accuracy in their paper ” Adaptive Mesh Refinement for
High-Dimensional Linear Volterra-Fredholm Integro-Differential Equations.” Fur-
ther notable contributions include the innovative application of machine learning
techniques by Lee and Kim [3] to tackle V-F IDEs with non-smooth solutions
in their paper ”"Machine Learning Approaches for Non-Smooth Linear Volterra-
Fredholm Integro-Differential Equations.” In addition, Chen et al. [I] proposed an
efficient parallel computing framework specifically designed for solving large-scale
V-F IDEs, elaborated upon in their paper ”Parallel Computing Framework for
Large-Scale Linear Volterra-Fredholm Integro-Differential Equations.” Garcia and
Martinez [2] presented a pioneering approach grounded in fractional calculus to
address V-F IDEs with fractional orders in their paper ”Fractional Calculus Meth-
ods for Fractional Order Linear Volterra-Fredholm Integro-Differential Equations.”
Additionally, Park et al. [5] devised an adaptive time-stepping method tailored
for solving stiff V-F IDEs, detailed in their paper ” Adaptive Time-Stepping Meth-
ods for Stiff Linear Volterra-Fredholm Integro-Differential Equations.” Moreover,
Nguyen et al. [4] proposed a modified collocation method customized for solving
nonlinear V-F IDEs, elucidated in their paper ”Modified Collocation Method for
Nonlinear Volterra-Fredholm Integro-Differential Equations.” Furthermore, Zhang
and Li [§] conducted a thorough investigation into the application of the least
squares method for numerically solving V-F IDEs, providing a detailed analysis
of its effectiveness and accuracy in their paper ”Least Squares Method for Lin-
ear Volterra-Fredholm Integro-Differential Equations,” demonstrating its versatility
across various scenarios. These diverse research endeavors underscore the concerted
efforts aimed at advancing numerical solution methodologies for V-F IDEs. While
significant strides have been made, persistent challenges such as handling nonlinear-
ities, variable coefficients, and high-dimensional problems underscore the continued
need for innovative research in this domain.
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2. DEFINITONS OF RELEVANT TERMS

Differential Equation. A Differential Equation is an equation relating one or
more unknown function and its derivative of which the variable involve are depen-
dent or independent.

Linear and Non-linear Differential equation. A differential Equation is said
to linear if it is of first degree (degree one) and there is no product of the dependent
variable and its derivative(s). It is written in the form :

Z az dm(z )

Otherwise, it is called non-linear.

Integro-differential Equation. An integro-differential equation is a type of math-
ematical equation that combines both differential and integral operators. It involves
functions that depends on both the values of it’s function and it’s derivative at
a given point as well as the integral function over a specified interval. Integro-
differential equation are classified into three forms:

(i) Volterra Integro-Differential equation:

b(x)
Z Pi(x )+ A K(z,t)y(t)dt = g(z)
with the conditions 4 (a;) = ay;4 = 0,1,2,--- ,(n — 1)
(ii) Fredholm Integro-Differential equation:

n b
> Pialy @) + 2 [ Kz, 0yt = gla)
i=0 a

with the conditions 3 (a;) = a;;4 = 0,1,2,--- , (n — 1)
(iii) Volterra - Fredholm Integro-Differential equation:

n

) b(x) b
ZPi(r)y“)(xHAl/ K(fﬂvt)y(t)dHAz/ K(z,t)y(t)dt = g(x)

=0

with the conditions 3 (a;) = a;;4 = 0,1,2,--- , (n — 1)

Numerical Solution. Numerical Solution is the study of approximate technique
for solving mathematical problems. Taking into account the extent of possible
error can also be define as the branch of mathematics that study algorithm for
approximate solution to problem in infinitesimal calculus.

Exact Solution. Exact Solution is the true solution of a differential equation that
satisfies the given initial and boundary conditions.
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Approximate Solution. This is the expression obtained after the unknown con-
stants have been found and substituted back into the assumed solution. It is referred
to as an approximate solution or inexact solution since it is a reasonable approxi-
mation to the exact solution. it is denoted as say yy (z) where N is the degree of the
approximant used in the calculation. Methods of approximate solution are usually
adopted because complete information needed to arrive at the exact solution may
not be given. In this work, approximate solution used are given as:

where x represents the independent variables in the problem, ¢; and Q;(z);i > 0 are
the unknown constants to be determined and the basis functions used respectively.

Absolute Error. Absolute Error is the absolute value of the difference between
the exact and approximate solution when evaluated at given points in the interval
of consideration. This is mathematically expressed as

Absolute Error = |Exact Solution — Aproximate Solution|

Standard Collocation Method. A numerical method for solving differential
equations that involves approximating the solution at a set of discrete points, known
as collocation points, and using a set of basis functions to approximate the solution
between these points.

Least Square Method. A standard method employed to obtain numerical so-
lution of special higher-order integro-differential equation by using an orthogonal
polynomial as the basis function.

Chebyshev Polynomial. The Chebyshev Polynomial of the first kind denoted
by T, (x) and Valid in the interval —1 < x <1 is given by

1

To(x) =coslncos™ z], —-1<x<1

Where 0 = cos™ !z, z = cos This satisfies the differential equation

’

(1—a?)y —xy +n?y=0

And the recurrence relation, is given by

Toi1(z) = 22T (x) — Th—1(x)

3. CONSTRUCTION OF CHEBYSHEV POLYNOMIAL USED IN THIS
WORK

In this section, we are going to construct Chebyshev polynomial on the interval
[-1,1] and transform it to the interval [0,1]
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Construction of Chebyshev Polynomial on the interval [-1,1]. In this sec-
tion, we want to construct Chebyshev Polynomial on the interval of [-1,1]

The Chebyshev Polynomial defined on the interval [-1,1] denoted by T}, (z) is defined
as
T,(z) = cos[n(cos™*)z] (1)
When n=0, (1) gives
To(z) = cos[0(cos™)x] = cos(0) = 1
When n=1, (1) gives
1

Ty () = cos[1(cos™1)z] = cos[cos 2] = =
Hence, from recurrence relation, i.e
Toir(w) = 20T, () — Tus (x) (2)

When n=1, (2) gives
To(z) = 2x(z) — 1 =227 — 1
When n=2, (2) gives
Ts(x) = 22(22% — 1) — x = 42® — 32
When n=3, (2) gives
Ty(z) = 2x(42® — 3x) — (202 — 1) = 8z* — 822 + 1

Hence, for the interval [-1,1], the first few Chebyshev Polynomial are given as:

To(x) =1

Ti(z)==x

Ty(x) =22% — 1

Ts(z) = 4a® — 3z

Ty(x) = 8x* — 8z +1

Ts(z) = 162° — 202 + 5z )
To(x) = 3225 — 482* + 1827 — 1

Tr(z) = 642" — 11225 + 562° — T

Ty(x) = 1282% — 2562° 4 1602* — 3222 + 1

Transformation of the Orthogonal Polynomial used in this work from
the interval [-1,1] to [a,b]. In this section, we want to convert the Chebyshev
polynomial used in this work from the interval of [-1,1] to [0,1].

Let us start by converting the polynomial from [-1,1] to [a,b]
Hence: [-1,1] — [a,b] Let

X = a1x + b1 (4)
when x=-1 X=a

a=—a;+b (5)
when x=1 X=b

b= —a1 + bl (6)
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Solving (5) and (6) yields

ayp = 9 (7)
by a —2|— b (8)
Substituting (7) and (8) into (4) we have
_(b—a)z  a+b
X = —s t 9)
From (9) we have
_2X —(a+b)
= 0-a (10)

Since we want to convert to the interval of [0,1] this implies that a=0 and b=1 in
(10). So we have

r=2X—1 (11)
Substituting x= 2X-1 into the Chebyshev polynomial yields the Polynomial on the
interval of [0,1}

= 5122° — 1280x* + 112023 — 40022 + 50z — 1
= 204825 6144955 +69122* — 3584x3 + 640x2 — 72z +1

4. PROBLEM CONSIDERED IN THIS WORK

In this work, the n'"* order linear Volterra-Fredholm integro-differential equation
of the form

n ) b(x) b
> Pi(a)y(z) + Al/ K (z, t)y(t)dt + Az/ K(z, t)y(t)dt = g(x)
i=0 a a

with the initial conditions:
y(i)(ai) =qa;i=0,1,2,---,(n—1)

are considered.

Where a, b and b(z) are the limits of integration, A; and Ay are constant parameters,
K(z,t) is a function of the two variables t and x called the Kernel function, y(z)
is the unknown function to be determined and P;(x) is a function of x.

5. DESCRIPTION OF METHODS USED IN THIS WORK

In this section, The two methods used in this work which are referred to as
Standard Collocation method and Least Square method were demonstrated on
Linear Volterra-Fredholm integro-differential equation.
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STANDARD COLLOCATION METHOD (SCM) ON LINEAR VOLTERRA-
FREDHOLM INTEGRO-DIFFERENTIAL EQUATION:. We consider the
nt" order linear volterra-fredholm integro-differential equation of the form

n ) b(x) b
> Py (@) + M K (2, t)y(t)dt + Ao / K(z, t)y(t)dt = g(x)  (12)
i=0 e e
The initial conditions are given as
yD(a;) = ;i =0,1,2,--- ,(n—1) (13)
Let
N
yn(z) =Y eTi(@) (14)
k=0
be the approximate solution of (12) and (13)
That is,
yn(z) = coTo(x) + erTy(z) + eoTa(z) + - - + en T () (15)
Thus (12) is expanded as
, " b(@)
Poy(x) + Pry (2) + Pay (2) + -+ Pay™ (@) + 0 | K(z,0)y(t)dt
b
[ Kyl = gl (16)
Substituting (15) into (16) to get
’ " n b(m)
Poyn (x) + Py (2) + Pay (@) + -+ Pay (@) + 0 [ K (@ t)yn(t)dt
b
[ K uw (Ot = g(a) (17)

Putting (15) into (17) to get
Po{coTo(z)+c1 Ty (x)+eaTo(z)+- - +enTn (.13)}+P1{60T(; (x)+c1T1, (33)+62T2/($)+~ . '+CNT],\I($)}

+Po{eoTy ()4 Ty (2)+caTy (2) 4 - +enTa (@)} - +PofeoTy™ (2)+er TV () +e Ty ()

b(z)
footenT (@)} + M K(z,t){coTo(t) + 1Ty (t) + coTo(t) + - - -+ enT () bt

a

b
+Ag / K (2, ){coTo(t) + 1Ty (8) + esTo(t) + - - + enT (8)}dt = g(x)  (18)

Hence, collecting like term in (18) to get

’ " b(z) b

, . N b(x) b
+H{ P T (z)+PTy(x)+PT, (z)+-- -—I-PnTl( )(ﬂc)-i-)\l / K(x,t)Ty (t)dt+ Ao / K(x,t)T)(t)dt}eq

, ) . b(a) b)
H{PyTo(2)+ PiTy () + T () + -+ P, TS () 4+ M / K(z, )T (t)dt+As | K(x,t)Ts(t)dt} ey

a a
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’ 17 n b(x)
HPyTw(z) + PiTy(z) + Pyl () + - - + Pa T (2) + Ay K(z,t)Ty (t)dt
b()
+ Ao K(z,t)Tn(t)dt}en = g(x) (19)

a

Thus (19) gives (N+1) unknown constants to be determined.
In (13), that is,

yn(a1) = ag = coQola1) + c1Qi(ar) + c2Q2(a1) + -+ en@Qn(a1) =ag  (20)

yn(ar) = a1 = cQylar) + c1Qy (a1) + 2Qy(ar) + -+ exnQy(a1) = a1 (21)

oo en QT () = an (22)
Thus, (19) is collocated at point x = xj, to get

: " . b(a)
{P()To(xk) + PlTO(LCk) + P2T0 (l’k) + 4 PnT() )(.’Ek) + )\1 / K(.’Ek,t)To(t)dt

a

b
+>\2/ K (23, )To(t)dtreo + {PoTy (z1) + PiT, () + PoTy () + -+ + P T ()

b(xk) b , "
ny / K (o, T4 ()42 / K (a0, )T (£)dt yer -+ { Py To () + P () + Po T (24)

b(xy) b)
oo PUTS) (2) + / Koo )Ta(0)dt + 2o [ K (e, )To(t)dt}es
a

a

’ 17 n b(a:k)
H{PoTw (k) + P T (x) + Po T () +- - -+ Pa TS (@) + M / Kz, )Ty ()dt

a

b(z)
+>\2/ K(I‘k7t)TN(t)dt}CN = g(l‘k) (23)
Where,
_ b—ak -
xk*a+(N_n+2)’k*1’2’3’ ,(N—n+1) (24)

Hence (23) gives(N-n+1) algebraic linear system of equations in (N+1) unknown
constants. Extra (n) equation are obtained from (20) to (22). Altogether, we have
(N+1) algebraic equations in (N+1) unknown constants which are then solved
using Guassian elimination method to obtain the unknown constants. These are
substituted into (15) to get the required approximate solution.
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LEAST SQUARE METHOD (LSM) ON LINEAR VOLTERRA-FREDHOLM
INTEGRO-DIFFERENTIAL EQUATION:. We consider the nt* order lin-
ear volterra-fredholm integro-differential equation of the form
n ] b(z) b
> Py (z) + M K (z, t)y(t)dt + Ay / K(x,t)y(t)dt = g(z)  (25)
i=0 a a

The initial conditions are given as

yD(a;) = ai;i=0,1,2,---,(n—1) (26)
Let
N
yn(2) =) eiTi(x) (27)
k=0
be the approximate solution of (25) and (26)
That is,
yn(z) = coTo(x) + a1 (z) + coTa(z) + - - - + enTn () (28)

Thus (25) is expanded as
b(x)

Poy(x) + Py (z) + Py () + -+ + Poy™ (@) + N K (x,t)y(t)dt

b

o / K (2, t)y(t)dt = g(x) (29)

Substituting (28) into (29) to get
! 1" n b(l’)
Poyn(z) + Pryy(z) + Payn(x) + -+ Py (@) + A K(x, t)yn (t)dt

b

o / K (x, tyyy (t)dt = g(z) (30)

Putting (28) into (30) to get
Po{coTo(z)+c1 Ty (2)+caTo (@) + - +enTn (@) +Pi{coTy(x)+er Ty (2)+co Ty (x)+ - +enTa (@)}

+P2{C()TO” (ac)—i—clTl” (x)—|—czT2” (z)+-- '—|—CNT1/\/7 () }+-- ~+P,L{COT(§”) (J:)—|—61T1(") (x)—l—czTQ(")(x)
b(z)
4ot enTM (@) + M K(z,){coTo(t)+erTi(t) + coTo(t) + - - +enT (¢) bt

a
b
+>\2 / K(l’, t){COTo(t) —+ ClTl (t) + CQTQ(t) + -+ CNTN(t)}dt = g(l‘) (31)
Taking the R.H.S of (31) to the L.H.S, we obtain:
Po{coTy(x)+er Ty (z)+coTo(x)+ - +enTn () Y+ Pr{coTy(x) e T, (z)+coTh () +- - ~+enTh ()}

+P{coTy (x)+er Ty (@) +eoTy ()4 AenTy (@) 3+ -+ PofeoTy™ (@) +er T (2) e T3 ()

b(z)
FootenT (@)} + M K(z,t){coTo(t) + 1Ty (t) + coTo(t) + - - - +enT () bt

a

b
+ g / K(x, t){COTo(t) +aTi(t) + coTo(t) + -+ CNTN(t)}dt —g(x)=0 (32)
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Hence, collecting like term in (32) to get
, . N b(x) b
{P0T0($>+P1TO(£L')+P2TO (.%‘)—f' . +PnT0 )(!L')—f')\l K(:L‘, t)To(t)le-)\Q / I((l‘7 t)To(t)dt}CO
a a
, . b(x) b
HP T (2)+ T, (2)+ PoTy (2)+ -+ P T (@) 40 [ K (2, )Ti()dt+s / K (2, )Ty (t)dt}ey
’ 17 (n) b(l) b)
H{PoTa(x)+ P Ty (x)+ P Ty (z)+ -+ P, Ty (x)+M K(z,t)To(t)dt+No K(z,t)To(t)dt}co

a a

, p . b(x)
HPy Ty (z) + PiTy(z) + PyTo(x) + - - + P, T () + Ay K(z,t)Ty (t)dt

a

b(x)
I / K (2, )Ty (H)dthex — g(z) = 0 (33)

Hence, the residual function R(x), of (33) is written as:

, . b(x) b
R(z) = {PyTy(x)+PyTy(2)+PyTy (x)+ -+ P T8 () + A K (2, 8)To()dt+As / K (2, )To(t)dt }eo
’ 1 b(’E) b
Py (2)4+ PoT, (2)4+ PoT, ()4 - 4P T™ (@) A [ K (@, )Ty (E)dt4A / K(z, )T (H)dt}er
, , - b(a) b)
+{P0T2 ($)+P1T2 ($)+P2T2 (ZE)—F : '+P7LT2n (I)—F)\l K(J?, t)TQ (t)dt+/\2 K(l‘, t)TQ (t)dt}CQ

a a

; ” b(@)
HPIn(z)+ PiTy(z) + P Ty(z) + -+ + P,LT](VR) () + M\ / K(x,t)T(t)dt

b(x)
Y / K (2, 0)Tx (Hdthey — g(a) (34)
From the residual function, we generate our functional, S(ag, a1,as, - ,an), such
that )
S(ansansaz, - an) = [ IR@PW()da (35)
0

Where W (z) is the weight function.

Substituting (34) into (35), to get

1 , . b(x)
S(ao,a1,az2, -+ ,an) :/ {PoTo(2)+PiTy(2)+PoTy (2)+ -+ Py Ty (2)+ A1 K(z,t)To(t)dt
0 a
b , . b(x)
o / K (z,)To(t)dt eo+{ PoT1 (2)+ P, T, (z)+ P T, (z)+ -+ P T\™ () + A K (z, )T (t)dt
b , . b(x)
Ao / K (2, )Ty (t)dt ey +{ PoTo(x)+ Py Ty () + PoTy (z)+- -+ Py T () 4+ K (z,t)Ty(t)dt
b) ’ 1"
o [ K(z, )Ta(t)dtyea+ -+ {Po T (2) + P Ty (x) + PyTog(x) + - - -+ P, T ()

a
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b(z) b(x)
+A1 K(x,t)Tn(t)dt + Ao K(z,t)Tn(t)dtyen — g(z)]*W (x)dr  (36)

In order to obtain the unknown constants ¢; (i > 0) in (36), (36) is minimized to
obtain:

oS

Oc;
Using the conditions above, we get (N + 1) system of equations.
Hence, for i = 0, (37) becomes

os _
800 -

=0, (i=0,1,2,..,N) (37)

1 : . ba)
2 / (PoTo(z)+PyTy () + PoTy () +- - -+ P T () + A1 K (2, t)Ty(t)dt
0 a
b , . b(x)
Ao / K (2, t)To()dt)[{ PoTo(x)+ P Ty (2)+PoTy ()4 - +Py T ()M K (2,t)Tp(t)dt
b , . b(x)
b , . b(x)

a

b) ’ 1 n

b(x) b(z)
+A\1 K(x,t)Tn(t)dt + Ao K(z,t)Ty(t)dt}en — g(x)]W(z)de =0 (38)

For i = 1, (37) becomes

85 1 , . ('n,) b(l)

5o =2 / (PoTy(2)+PiT, (2)+ PoT, () +- - -+ Po T () + A1 K (z, )Ty (t)dt

1 0 a

b , y b(x)

Ao / K (2, )Ty (£)dt)[{ PoTo(2)+ PL Ty (2)+PoTy ()4 -+ P, T (2)+ A K (z,t)To(t)dt
b , . b(z)

Ao / K (2, t)To(t)dt eo+{PoTy (2)+PiT, (2)+PoT; (z)+ - +Py T (2) 4+ K(z,t)Ty (t)dt
b , . b(x)

Ao / K (2, )Ty (t)dt ey +{PoTo(x)+ Py Ty(2)+ PoTy (z)+- -+ Py T (2) 4+ K(z,t)Ts(t)dt
b)

tho | Kz, )Ta(t)dt}es+- -+ {PoT () + Py Ty (2) + PyT(2) +- - -+ Py T ()

a

b(z) b(z)
+A1 K(x,t)Tn(t)dt + A2 / K(z,t)Tn(t)dt}en — g()|W (z)dz =0 (39)
For i = 2, (37) becomes
as ! : p ) b(x)
2 0 a
b , . b(x)

b ’ 7 n b(z)
+ s / K($7 t)TO (t)dt}00+{POT1 (LU)-i-PlTl (1‘)+P2T1 ($)+ . +PnT1 )(1'>+)\1 K(ﬁ, t)Tl (t)dt

a
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b , . " b(x)

—1—)\2/ K(z,t)T1(t)dtyer +{PoTa(x)+ Pi Ty () + Py (x)+- - -+ P15 )(m)—l—)\l K(x,t)T(t)dt
b) ’ "

x| K(z, )Ta(t)dtyea+- -+ {PoTi () + P Ty (x) + PyTig(x) + - - -+ P, T ()

a

b(x) b(x)
+A\1 K(x,t)Tn(t)dt + Ao K(x, )Ty (t)dttey — g(a)]W(x)de =0 (40)
For i = N, (37) becomes
aS 1 , . (n) b(?,‘)
N 0 a

b , . b(x)

o / K (, )T (t)dt) [ { PoTo () + Py Ty () + Pa Ty () 4+ - 4Py T3™ (2)+M K (z,t)To(t)dt
b , . b(x)

Ao / K (2, t)To(t)dt eo+{PoTy (2)+PiT, (2)+ PoT; (z)+- - +P, T () 4+ K (2, t)Ty (t)dt
b , . b(x)

o / K (2, )Ty (t)dt ey +{PoTo(x)+ Py Ty(2)+ PoTy (z)+- -+ Py T () 4+ K(2,t)T(t)dt

b) !’ 1"
tho | K(z,t)To(t)dt}ea+- -+ {PoT (x)+ Py Ty () + PyT(2) 4+ - -+ Py T ()

’ b(x) b(z)
+A1 K(z,t)Tn(t)dt + Ao / K(z,t)Tn(t)dt}en — g(x)|W (z)de =0 (41)

a
Thus, (38), (39), (40) and (41) result to (N + 1) systems of algebraic equations
with
(N + 1) unknown constants (co, ¢1, ¢, ,cny) which are then solved by Gaussian
Elimination Method to obtain the unknown constants (co,c1,c2,- - ,cn). Hence,
the unknown constants (cg,c1,¢a,- -+ ,cn) obtained are now substituted into the
assumed approximate solution in (28)

6. CONVERGENCE ANALYSIS FOR THE METHODS USED IN THIS
WORK

In this section, we discussed the convergence analysis for the two methods used
in this work.

CONVERGENCE ANALYSIS FOR STANDARD COLLOCATION METHOD.
1. Consistency: Define the residual Ry (x) as:

n , b(x) b
Ry(a) =3 Pl @+ 0 [ Ko tus(0)dt+a [ Kz n(t) - g(o)
i=0 a a
If y(x) is the exact solution, then:
n ) b(x) b
R(z) = Z Pi(z)y D (z) + M K(z,t)y(t) dt + Ao / K(z,t)y(t)dt — g(x) = 0.
i=0 @ @

For yn(x) to converge to y(z) as N — oo, Ry (x) must converge to 0 uniformly on
[a, b].
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2. Stability: Stability is determined by the properties of the matrix of the linear
system obtained from collocation:

Ac=b,

where A is the matrix formed by evaluating the derivatives of basis functions and
integral terms at the collocation points, ¢ is the vector of coefficients {ci}, and b
is the vector of g(zy). Stability is ensured if the condition number of A remains
bounded as N — oo.

3. Uniqueness: The linear system Ac = b has a unique solution if A is
invertible. The invertibility of A is typically guaranteed if the basis functions and
collocation points are chosen appropriately.

CONVERGENCE ANALYSIS FOR LEAST SQUARES METHOD. 1.
Consistency: The least squares method is consistent if the approximation yy ()
minimizes the residual norm ||Ry(x)| as N — oo. For yx(z) to converge to the
exact solution y(z), the norm of the residual must converge to zero:

b(x)

b
IRN(2)] = K(z,t)yn(t)dt + )\2/ K(z,t)yny(t)dt — g(z)|| — 0.

3" Pi@)y (@) + M
1=0

a

This is achieved if the basis functions {T}(z)} form a complete set in the function
space under consideration.

2. Stability: Stability in the least squares method is generally ensured because it
involves minimizing a quadratic functional. The stability of the solution ¢ depends
on the properties of the normal matrix A. The normal matrix should have bounded
eigenvalues, which typically guarantees stability.

3. Uniqueness: The least squares solution is unique if the matrix A of the
normal equations is positive definite or at least non-singular. This is usually the case
if the basis functions are linearly independent. A positive definite A ensures that
the quadratic form J has a unique minimum, leading to a unique set of coefficients

{exr}-

7. NUMERICAL EXPERIMENT ON EXAMPLES:

In this section, we will demonstrate the standard collocation method and the
least square method for the case where N=4 6 using Example 1 as a reference.
Additional cases and examples will be listed, all following the same procedure.

EXAMPLE 1: Consider the third-order linear volterra-fredholm integro-differential
equation of the form:

2 x s
yli) = —% +/ y(t)dt +/ zy(t)dt, 0 <z <1 (42)
0

—T

subject to the conditions

y(0) =y (0)=—-y (0) =1 (43)

and with the exact solution

Method of Solution.
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Method 1: Standard Collocation Method. Let the approximate solution of (42) and
(43) be (14), For case N=4 (14) becomes
4
y4($) = Z = C()T() + ClTl + CQTQ —+ 63T3 —+ C4T4 (44)
i=0
Substituting the shifted Chebyshev Polynomial into (44), to get
ya(z) = co +c1(22 — 1) + co(822 — 82 + 1) + c3(322° — 4822 + 18z — 1)
+e4(1282% — 2562° 4 16022 — 322 + 1) (45)

Hence, (45) is differentiated three times to get

y$ = 1925 + ¢4(30722 — 1536)
Substituting yfliii), ya(x), ya(t) into (42) to get
2 T
192¢3+¢4(30722—1536) = —%Jr / [coter(2t—1)+eo (82 —8t+1)+c3(32t —48t2+18¢—1)
0

™

+¢4(128t1 — 25613 + 160t2 — 32t + 1)]dt + / xlco 4 c1(2t — 1) + co(8t% — 8t + 1)

+c3(32t3 — 4812 + 18t — 1) + ¢4 (128t* — 256> + 160t? — 32t + 1)]dt (46)
Simplifying (46), to get

8 16
192¢3+¢4(30722—1536) = (2mx+2)co+(—2mz+2? —x) i +( §x3 — 4 ot ggmg—l—Q:mr)cz

12 1
+(—3213x + 8% — 162° — 272 + 9% — x)c3 + (?8w5 — 64z + %m?’ — 1622 +

256 320 §
+?x7r5 + 73375)’ + 2xm)ey — % (47)

From the boundary conditions given,
That is (45) gives,

y4(0):1<=>60—61+02—63+64=1 (48)
Ya(0) =14 2¢; — 6y + 1265 — 20cs = 1 (49)
s (0) = —1 < 12¢5 — 60c3 + 180cs = —1 (50)

Collocating (47) at point & = xj to get

8 16
192¢34¢4(307221—1536) = (27T.’L‘k+$k>00+(—27T.’L‘k—|—.’L'i—ZCk)Cl—‘r(5$i—4$i+$k+§wkﬂ3+2wkﬂ)02

128 160
+ (=323 2y, + 82} — 1623 — 27y, + 927 — )3+ (?xz — 64} + ?xi — 1622 42},
256 320 2

+—5 T 4 = T 4+ 2T T)Cy — % (51)

Where,
i k=1,2
€T = — =
k 3’ )

When k=1; x1 =% hence (51) becomes

192c3 — 512¢cy = 2.427728436¢c) — 2.316617325¢1 + 57.20431910c2 — 332.6551737c3
+6327.121838¢4 — 0.05555555556 (52)
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When k=2; z3=2% hence (51) becomes

192¢3 + 512¢4 = 4.855456871cy — 4.411012426¢; + 114.1123419¢co — 665.4831866¢3

+12654.63873c4 — 0.2222222222 (53)

Solving equations (48),(49),(50),(52) and(53) by Guassian elimination method to
get
co = 1.323205983,

1 = 0.2669421752,
ce = —0.05431000920,
c3 = 0.002206141744,
cq = 0.0002523429833
The values ¢;(i = 0(1)4) are then substituted into (45) and after simplification to
get the required approximate solution for case N=4 as

ya(x) = 1.000000000 + 0.9999999999x — 0.50000000002>
+0.005996732092° + 0.032299901862* (54)

Method 2: Least Square Method. Let the approximate solution of (42) and (43) be
(27), For case N=4 (27) becomes

4
y4($) = Z = C()TO + ClTl + CQTQ + C3T3 + C4T4 (55)
=0
Substituting the shifted Chebyshev Polynomial into (55), to get
ya(z) = co +c1(22 — 1) + c2(87% — 8z + 1) + c3(322° — 482% + 187 — 1)
+c4(1282% — 2562° + 1602 — 322 + 1) (56)
Hence, (56) is differentiated three times to get

i = 192¢5 + ¢4(3072z — 1536)
Substituting yffii), ya(x), ya(t) into (42) to get
2 xT
192¢3+¢4(30722—1536) = —%+ / [cotc1(2t—1)+co (8% —8t-+1)+c3(32t> 48t 418t —1)
0

™

+cq (128t — 256t° + 160t? — 32t + 1)]dt + / zlco 4+ c1(2t — 1) + co(8t% — 8t + 1)

+e3(32t3 — 4812 + 18t — 1) + ¢4 (128t* — 256> + 160t? — 32t + 1)]dt (57)
Simplifying (57), to get

8 16
192¢34¢4(30722—1536) = (2mx+x)co+(—2mz+a% —z)c1+( §x3 —4x? -+ gamrg—l—wa)cz

128 160
+(—3273x + 8z — 1623 — 272 4+ 922 — x)e3 + (?x5 — 64z + ?xia —162° +x
2 2 . 2
—|—$x7r5 + %l‘ﬂ'& +2zm)cy — % (58)

Moving the L.H.S of (58) to the R.H.S we have

8 16
(2rz + x)co + (—27x + 2% — z)ey + (gx?’ —dx? + 2+ gl‘ﬂg + 2x7)co
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128 160
(=323 + 82* — 162% — 272 + 922 — x)c3 + (?m5 — 642 + ?x?’ —162° +x

256 320 . 2
+=2an® + o’ + 2em)es - % —192¢5 — ¢4(30722 — 1536) =0 (59)

Hence, the residual R(x), is given as
1
R(z) = 2nz 4+ )co + (—27mx + 2° — )¢y + (gx?’ —dx? yx+ 36;5773 + 2zm)co

. 12 1 -
+(—3273x + 8% — 162 — 272 + 9% — x)c3 + (?8335 — 64t + %xd — 1622 + =

256 320 2
+Tx7r5 + Tmi” + 207)cy — % —192¢3 — ¢4(30722 — 1536) (60)

From the boundary condition,
That is (45),

y4(0):1<:>60—01+02—63+04:1 (61)
Ya(0) =14 2¢; — 6cy + 125 — 204 = 1 (62)
Yy (0) = —1 < 12¢5 — 60cs + 180cy = —1 (63)
Now, the functional S(ag, as) is written as
1
S(as,an) = [ (R (64)
0

That is,

1
8 16
S = / (272 + 2)co + (=27 + 22 — x)ey + (5:103 — 42+ + gxw?’ + 2z7m)co
0

128 160
+(—327m3x + 8z — 1623 — 272 4 922 — x)e3 + (?335 — 64z + ?xia —162° +x
256 320 2
+=an® + o’ + 2em)es - % —192¢5 — ¢4 (30722 — 1536)]2  (65)
With
os _0s
303 B 864 -
Evaluating g—i = 0 and simplifying to get
as
Do = 313.5948193—1.576672469x 107 ¢4+1.121516333x 10%¢5 —1.468692579x 10° ¢,
3
+5618.549813c; — 6245.739452¢cp = 0 (66)
Evaluating g—i = 0 and simplifying we get
% = —4489.452842+2.223411723x108¢4—1.576672469x 107 c3+2.079511000x 10% ¢,
4

—79457.40823c; + 88436.31392¢c) = 0 (67)

Solving equations (61),(62),(63),(66) and(67) by Guassian elimination method to
get
co = 1.323035234,

c1 = 0.2666910107,
co = —0.05440253953,
c3 = 0.002195443519,
cq4 = 0.0002537600320
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The values ¢;(i = 0(1)4) are then substituted into (56) and after simplification to
get the required approximate solution for case N=4 as

ya(z) = 0.9999999995 + 0.99999999992 — 0.50000000002

40.0052916244223 + 0.03248128410x*

The same procedure for case N=4 has been followed and the required approximate
solutions for case N=6 and N=8 are:

Standard Collocation Method:

(68)

ye() = 1.000000001+0.99999999982—0.50000000002% —0.000102338482:>4-0.041601802982:
—0.000321103268z° — 0.0012142231092°
yg(x) = 1.000000000-1.000000000—0.50000000002%+0.00000058228942102>4-0.041811463102*
+0.00000612690362° —0.0013980731462°4-0.00000785029584x 7 4+0.00002176496516x°

Least Square Method:

y(6) = 1.000000000-+1.0000000002—0.500000000122 —0.000044066202>+0.041503519562*
—0.0003218602442° — 0.0012015913842:°
ys(z) = 1.000000001+0.99999999892—0.50000000012% —0.0000200596 74373 +0.033099453702*
—0.00036449484512:°—0.00092353733012° —0.00028828688652 7 4-0.000088861496612.°

TABLE 1. Table of Absolute Error of Example 1 for case N=4

Exact Value

SCM

LSM

Absolute Error of SCM

Absolute error of LSM

0.0 | 1.000000000 | 1.000000000 | 0.9999999995 0.000000 5.000000e-10
0.1 | 1.095004165 | 1.095009227 | 1.095008539 5.062000e-6 4.374000e-6
0.2 | 1.180066578 | 1.180099654 | 1.180094303 3.307600e-5 2.772500e-5
0.3 | 1.255336489 | 1.255423541 | 1.255405972 8.705200e-5 6.948300e-5
0.4 | 1.321060994 | 1.321210668 | 1.321170185 1.496740e-4 1.091910e-4
0.5 | 1.377582562 | 1.377768336 | 1.377691533 1.857740e-4 1.089710e-4
0.6 | 1.425335615 | 1.425481361 | 1.425352564 1.457460e-4 1.694900e-4
0.7 | 1.464842187 | 1.464812085 | 1.464613782 3.010200e-5 2.284050e-4
0.8 | 1.496706709 | 1.496300367 | 1.496013645 4.063420e-4 6.930640e-4
0.9 | 1.521609968 | 1.520563584 | 1.520168564 1.046384e-3 1.441404e-3
1.0 | 1.540302306 | 1.538296634 | 1.537772907 2.005672e-3 2.529399e-3
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Graphical representation of Example 1 for Case N=4

Table of Absolute Error of Example 1 for case N=6

JFCA-2025/16(1)

x | Exact Value SCM LSM Absolute Error of SCM | Absolute error of LSM
0.0 | 1.000000000 | 1.000000001 | 1.000000000 1.000000e-9 0.000000
0.1 | 1.095004165 | 1.095004055 | 1.095004102 1.000000e-7 6.300000e-8
0.2 | 1.180066578 | 1.180065564 | 1.180065873 1.014000e-6 7.050000e-7
0.3 | 1.255336489 | 1.255332548 | 1.255333331 3.941000e-6 3.158000e-6
0.4 | 1.321060994 | 1.321050196 | 1.321051452 1.079800e-5 9.542000e-6
0.5 | 1.377582562 | 1.377558316 | 1.377559629 2.424600e-5 2.293300e-5
0.6 | 1.425335615 | 1.425287870 | 1.425288249 4.774500e-5 4.736600e-5
0.7 | 1.464842187 | 1.464756672 | 1.464754419 8.551500e-5 8.776800e-5
0.8 | 1.496706709 | 1.496564182 | 1.496556823 1.425270e-4 1.498860¢-4
0.9 | 1.521609968 | 1.521385443 | 1.521369705 2.245250e-4 2.402630e-4
1.0 | 1.540302306 | 1.539964140 | 1.539936003 3.381660e-4 3.663030e-4
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Graphical representation of Example 1 for Case N=6

Table of Absolute Error of Example 1 for case N=8

x | Exact Value SCM LSM Absolute Error of SCM | Absolute error of LSM
0.0 | 1.000000000 | 1.000000000 | 1.000000001 0.000000 1.000000e-9
0.1 | 1.095004165 | 1.095004181 | 1.095003286 1.600000e-8 8.790000e-7
0.2 | 1.180066578 | 1.180066816 | 1.180052620 2.380000e-7 1.395800e-5
0.3 | 1.255336489 | 1.255337688 | 1.255265948 1.199000e-6 7.054100e-5
0.4 | 1.321060994 | 1.321064773 | 1.320838134 3.779000e-6 2.228600e-4
0.5 | 1.377582562 | 1.377591781 | 1.377038483 9.219000e-6 5.440790e-4
0.6 | 1.425335615 | 1.425354725 | 1.424207347 1.911000e-5 1.128268¢-3
0.7 | 1.464842187 | 1.464877582 | 1.462751766 3.539500e-5 2.090421e-3
0.8 | 1.496706709 | 1.496767083 | 1.493140178 6.037400e-5 3.566531e-3
0.9 | 1.521609968 | 1.521706674 | 1.515896257 9.670600e-5 5.713711e-3
1.0 | 1.540302306 | 1.540449714 | 1.531591936 1.474080e-4 8.710370e-3
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FiGURE 3. Graphical representation of Example 1 for Case N=8

EXAMPLE 2: Consider the first-order linear volterra-fredholm integro-differential
equation of the form:

T 1
y () = 2% — 2 +/ y(t)dt+/ y(t)dt, 0 <z <1 (69)
0 0
subject to the condition
y(0) =0 (70)
and with the exact solution
y(z) = ze®

Method of Solution. Following the procedure of example 1 case N=4 to get the
following required approximate solutions:

Standard collocation method: For Case N=4
ya(x) = 3.25x107104+0.9848393192+1.065855693x2+0.35134678012°+0.31128916292*
For Case N=6

ye () = 2.51822x 107 1940.9998917962+1.0008266292%+0.4964895885234-0.1748018803z*

+0.031280849432° + 0.014966978402°
For Case N=8

ys(r) = —2.4329179x 10~ 1940.999999669724-1.0000037492:%4-0.49997564992> +0.1667603031

+0.041442398092° + 0.0086698613822° + 0.001084454606¢e2" + 0.00034568357842°
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Least square method: For Case N=4

ya(r) = 1.55x1071°4+0.9948164562+1.04992276222+0.35816574752°+0.31537418302*

For Case N=6

Yo()

For Case N=8

ys()

STANDARD COLLOCATION AND LEAST SQUARES METHODS
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40.041475837802° + 0.0086561406172° 4 0.0010793859402" + 0.00035001520192.°

TABLE 4. Table of Absolute Error of Example 2 for case N=4

1.67271x1071°40.9999819352+1.0003732992:24+0.49756206512>+0.17376588902*
+0.031526156052° + 0.01507248216°

—2.2820603 x 10~ °4-0.9999999668x+1.00000106422+0.49998799112°40.16673142532*

x | Exact Value SCM LSM Absolute Error of SCM | Absolute error of LSM
0.0 | 0.000000000 | 3.250000000e-10 | 1.550000000e-10 3.250000e-10 1.550000e-10
0.1 | 0.1105170918 | 0.1095249649 0.1103705765 9.921269¢-4 1.465153e-4
0.2 | 0.2442805516 | 0.2429109287 0.2443301266 1.369623¢-3 4.957500e-5
0.3 | 0.4049576424 | 0.4033866137 0.4051629917 1.571029¢-3 2.053493e-4
0.4 | 0.5967298792 | 0.5949278353 0.5969104114 1.802044e-3 1.805322¢-4
0.5 | 0.8243606355 | 0.8222575032 0.8243705235 2.103132¢-3 9.888000e-6
0.6 | 1.093271280 1.090845622 1.093098364 2.425658e-3 1.729160e-4
0.7 | 1.409626895 1.406909287 1.409405865 2.717608e-3 2.210300e-4
0.8 | 1.780432742 1.777412691 1.780361861 3.020051e-3 7.088100e-5
0.9 | 2.213642800 2.210067122 2.213792080 3.575678e-3 1.492800¢-4
1.0 | 2.718281828 2.713330955 2.718279149 4.950873e-3 2.679000e-5
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FIGURE 4. Graphical representation of Example 2 for Case N=4

TABLE 5. Table of Absolute Error of Example 2 for case N=6

x | Exact Value SCM LSM Absolute Error of SCM | Absolute error of LSM
0.0 | 0.000000000 | 2.518220000e-10 | -1.672710e-10 2.518220e-10 1.672710e-10
0.1 | 0.1105170918 | 0.1105117437 | 0.1105171954 5.348100e-6 1.036000e-7
0.2 | 0.2442805516 | 0.2442739922 | 0.2442808937 6.559400e-6 3.421000e-7
0.3 | 0.4049576424 | 0.4049499732 | 0.4049574531 7.669200e-6 1.893000e-7
0.4 | 0.5967298792 | 0.5967208617 | 0.5967294453 9.017500e-6 4.339000e-7
0.5 | 0.8243606355 | 0.8243502571 | 0.8243606182 1.037840e-5 1.730000e-8
0.6 | 1.093271280 1.093259437 1.093271709 1.184300e-5 4.290000e-7
0.7 | 1.409626895 1.409613388 1.409627112 1.350700e-5 2.170000e-7
0.8 | 1.780432742 1.780417612 1.780432396 1.513000e-5 3.460000e-7
0.9 | 2.213642800 2.213625705 2.213642675 1.709500e-5 1.250000e-7
1.0 | 2.718281828 2.718257721 2.718281826 2.410700e-5 2.000000e-9
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Graphical representation of Example 2 for Case N=6

TABLE 6. Table of Absolute Error of Example 2 for case N=8
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x | Exact Value SCM LSM Absolute Error of SCM | Absolute error of LSM
0.0 | 0.0000000000 | -0.0000000002 | -0.0000000002 2.4329e—10 2.28206e—10
0.1 | 0.1105170918 | 0.1105170791 | 0.1105170917 1.2700e—8 1.00000e—10
0.2 | 0.2442805516 | 0.2442805365 | 0.2442805510 1.5100e—8 6.00000e—10
0.3 | 0.4049576424 | 0.4049576243 | 0.4049576416 1.8100e—8 8.00000e—10
0.4 | 0.5967298792 | 0.5967298580 | 0.5967298787 2.1200e—8 5.00000e—10
0.5 | 0.8243606355 | 0.8243606111 | 0.8243606342 2.4400e—8 1.30000e—9
0.6 | 1.0932712800 | 1.0932712530 | 1.0932712790 2.7000e—8 1.00000e—9
0.7 | 1.4096268950 | 1.4096268640 | 1.4096268940 3.1000e—8 1.00000e—9
0.8 | 1.7804327420 | 1.7804327080 | 1.7804327420 3.4000e—8 0.00000e+0
0.9 | 2.2136428000 | 2.2136427610 | 2.2136427970 3.9000e—8 3.00000e—9
1.0 | 2.7182818280 | 2.7182817690 | 2.7182818260 5.9000e—8 2.00000e—9
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FIGURE 6. Graphical representation of Example 2 for Case N=8

EXAMPLE 3: Consider the third-order linear volterra-fredholm integro-differential
equation of the form:

"

y (z)=-1—4sinz + /096 y(t)dt + /j y(t)dt (71)

subject to the condition

and with the exact solution

y(z) = zsinz

Method of Solution. Following the procedure of example 1 case N=4 we get the
following required approximate solutions:

Standard collocation method: For Case N=4
ya(z) = 1 x 1072 4 1.00000000022 — 0.04024259032> — 0.1354499599*
For Case N=6
yo(z) = 1.1992 x 107" 4 0.999999999922 + 0.00089045552° — 0.1686987842z*
+0.002569711592° + 0.0069340539942°
For Case N=8
ys(z) = —0.00016727556622° —0.0000782313034274-0.0084248904962° —0.00006111929292°

—0.16664218472* +4.1625050x 10~ —0.00000643493442> —2.094565 x 10~ 1% 2+1.0000000002>
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Least square method: For Case N=4
ya(r) = 5.9 x 107! 4 1.0000000002% — 0.03262543482> — 0.13119206862*

For Case N=6

yo(z) = —3.6002 x 1071° 4 1.00000000022 + 0.00034910502% — 0.1682340551x*
+0.002521584402° + 0.006850442420°

For Case N=8

STANDARD COLLOCATION AND LEAST SQUARES METHODS

ys(z) = —1.18225x 10~ 1348.1252x 10~ *224-1.0000000002% —0.00000129857242° —0.1666557245z*
—0.00004249897592° +0.0084137350152° —0.00007721925302" —0.0001662541527x°

TABLE 7. Table of Absolute Error of Example 3 for case N=4

x | Exact Value SCM LSM Absolute Error of SCM | Absolute error of LSM
0.0 | 0.0000000000 | 0.0000000000 | 0.0000000001 1.0000e—12 5.90000e—11
0.1 | 0.0099833417 | 0.0099462124 | 0.0099542554 3.7129¢—5 2.90862e—5
0.2 | 0.0397338662 | 0.0394613393 | 0.0395290893 2.7253e—4 2.04777e—4
0.3 | 0.0886560620 | 0.0878163054 | 0.0880564576 8.3976e—4 5.99604e—4
0.4 | 0.1557673369 | 0.1539569552 | 0.1545534553 1.8104e—3 1.21388e—3
0.5 | 0.2397127693 | 0.2365040537 | 0.2377223165 3.2087e—3 1.99045e—3
0.6 | 0.3387854840 | 0.3337532857 | 0.3359504141 5.0322e—3 2.83507e—3
0.7 | 0.4509523810 | 0.4436752561 | 0.4473102603 7.2771e—3 3.64212¢—3
0.8 | 0.5738848727 | 0.5639154902 | 0.5695595062 9.9694e—3 4.32537e—3
0.9 | 0.7049942186 | 0.6917944330 | 0.7001409419 1.3200e—2 4.85328e¢—3
1.0 | 0.8414709848 | 0.8243074498 | 0.8361824966 1.7164e—2 5.28849e—3
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FIGURE 7. Graphical representation of Example 3 for Case N=4

TABLE 8. Table of Absolute Error of Example 3 for case N=6

JFCA-2025/16(1)

x | Exact Value SCM LSM Absolute Error of SCM | Absolute error of LSM
0.0 | 0.0000000000 | 0.0000000000 | -0.0000000000 1.1992e—11 3.60020e—11
0.1 | 0.0099833417 | 0.0099840532 | 0.0099835577 7.1155e—7 2.16065e—7
0.2 | 0.0397338662 | 0.0397384717 | 0.0397348636 4.6055e—6 9.97487e—7
0.3 | 0.0886560620 | 0.0886688815 | 0.0886578514 1.2819¢—5 1.78936e—6
0.4 | 0.1557673369 | 0.1557930160 | 0.1557694313 2.5679e—5 2.09445e—6
0.5 | 0.2397127693 | 0.2397562810 | 0.2397148474 4.3512e—5 2.07806e—6
0.6 | 0.3387854840 | 0.3388523120 | 0.3387879658 6.6828e—5 2.48178e—6
0.7 | 0.4509523810 | 0.4510485240 | 0.4509564968 9.6143e—5 4.11578¢—6
0.8 | 0.5738848727 | 0.5740166548 | 0.5738921480 1.3178¢e—4 7.27524e—6
0.9 | 0.7049942186 | 0.7051682993 | 0.7050057103 1.7408e—4 1.14916e—5
1.0 | 0.8414709848 | 0.8416954364 | 0.8414870767 2.2445e—4 1.60919e—5




JFCA-2025/16(1)

STANDARD COLLOCATION AND LEAST SQUARES METHODS

0.8+

0 02

04 0.6 0.8 1

x

[— scv — 1sm

exacr |

FIGURE 8. Graphical representation of Example 3 for Case N=6

TABLE 9. Table of Absolute Error of Example 3 for case N=8

27

x | Exact Value SCM LSM Absolute Error of SCM | Absolute error of LSM
0.0 | 0.0000000000 | -0.0000000000 | -0.0000000000 1.1822e—13 1.18225e—13
0.1 | 0.0099833417 | 0.0099833411 | 0.0099833411 5.5596e—10 5.55965¢—10
0.2 | 0.0397338662 | 0.0397338639 | 0.0397338639 2.2409e—9 2.24094e¢—9
0.3 | 0.0886560620 | 0.0886560561 | 0.0886560561 5.8922¢—9 5.89215¢—9
0.4 | 0.1557673369 | 0.1557673224 | 0.1557673224 1.4556e—8 1.45561e—8
0.5 | 0.2397127693 | 0.2397127387 | 0.2397127387 3.0585e—8 3.05852e—8
0.6 | 0.3387854840 | 0.3387854301 | 0.3387854301 5.3961e—8 5.39610e—8
0.7 | 0.4509523810 | 0.4509522964 | 0.4509522964 8.4705e—8 8.47051e—8
0.8 | 0.5738848727 | 0.5738847475 | 0.5738847475 1.2511e—7 1.25105e—7
0.9 | 0.7049942186 | 0.7049940403 | 0.7049940403 1.7825e—7 1.78253e—7
1.0 | 0.8414709848 | 0.8414707394 | 0.8414707394 2.4526e—7 2.45259e—7
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FIGURE 9. Graphical representation of Example 3 for Case N=8

8. CONCLUSION:

In this work, we employ both the standard collocation method and the Least
squares method to solve linear Volterra-Fredholm integro-differential equations, us-
ing Chebyshev polynomials as the basis functions. Analyzing the results depicted in
both the tables and graphs, it becomes evident that when N is small in each case, the
results diverges. However, as N increases, the approximate solutions demonstrate
a faster convergence towards the exact solutions for both methods. These find-
ings underscore the efficacy of both the standard collocation method and the Least
squares method in addressing Volterra-Fredholm integro-differential equations.
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