

Journal of Fractional Calculus and Applications Vol. 16(1) Jan. 2025, No. 9. ISSN: 2090-5858. ISSN 2090-584X (print) http://jfca.journals.ekb.eg/

SOME RESULTS DUE TO UNIQUENESS OF MEROMORPHIC FUNCTIONS CONCERNING NON-LINEAR DIFFERENTIAL POLYNOMIALS

B. SAHA, S. PAL

ABSTRACT. In this paper, we deal with the uniqueness problems on meromorphic functions concerning non-linear differential polynomials with regard to multiplicity. Moreover, we greatly generalize and improve some results obtained by V. Husna [J. Anal., Vol. 29, 1191-1206, 2021].

1. INTRODUCTION, DEFINITIONS AND RESULTS

In what follows by a meromorphic function we mean that the function has poles as its singularities only in the complex plane \mathbb{C} , we assume that the reader is familier with standard notations such as T(r, f), m(r, f), N(r, f) and the fundamental results of Nevanlinna theory of meromorphic functions (see [3, 9, 14, 16]). The notation S(r, f) denotes any quantity that satisfies the condition $S(r, f) = o\{T(r, f)\}$ as $r \to \infty$, possibly outside of a set of finite linear measure. A meromorphic function $\alpha(z) \neq 0, \infty$ defined in \mathbb{C} is called a small function with respect to f if $T(r, \alpha(z)) = S(r, f)$.

Let $a \in \mathbb{C} \cup \{\infty\}$. Set $E(a, f) = \{z : f(z) - a = 0\}$, where a zero with multiplicity k is counted k times. If the zeros are counted only once, then we denote the set by $\overline{E}(a, f)$. Let f and g be two nonconstant meromorphic functions. If E(a, f) = E(a, g), then we say that f and g share the value a CM (Counting Multiplicities). If $\overline{E}(a, f) = \overline{E}(a, g)$, then we say that f and g share the value a IM (Ignoring Multiplicities). We denote by $E_k(a, f)$ the set of all a-points of f with multiplicities not exceeding k, where an a-point is counted according to its multiplicities not greater than k. In addition, we need the following definitions.

²⁰²⁰ Mathematics Subject Classification. Primary 30D35.

 $Key\ words\ and\ phrases.$ Uniqueness, Differential polynomial, Meromorphic function, Weighted sharing.

Submitted July 22, 2024. Revised Sep. 26, 2024.

Definition 1.1. A non-linear differential polynomial P[f] of a nonconstant meromorphic function f is defined as

$$P[f] = \sum_{i=1}^{t} M_i[f]$$

where $M_i[f] = a_i \prod_{j=0}^{l} (f^{(j)})^{n_{ij}}$ with $n_{i0}, n_{i1}, \ldots, n_{il}$ as nonnegative integers and $a_i \neq 0$ are meromorphic functions satisfying $T(r, a_i) = o(T(r, f))$ as $r \to \infty$. The numbers $\overline{d}(P) = \max_{1 \le i \le t} \sum_{j=0}^{l} n_{ij}$ and $\underline{d}(P) = \min_{1 \le i \le t} \sum_{j=0}^{l} n_{ij}$ are respectively

called the degree and lower degree of P[f]. If $\overline{d}(P) = \underline{d}(P) = d'(say)$, then we say that P[f] is a homogeneous differential polynomial of degree d'. Also we define $Q = \max_{1 \leq i \leq t} \{n_{i0} + n_{i1} + 2n_{i2} + \dots + ln_{il}\}.$

Definition 1.2. [5] Let $a \in \mathbb{C} \cup \{\infty\}$. We denote by N(r, a; f) the counting function of simple a-points of f. For a positive integer k we denote by $N_{k}(r, a; f)$ the counting function of those a-points of f (counted with proper multiplicities) whose multiplicities are not greater than k. By $\overline{N}_{k}(r, a; f)$ we denote the corresponding reduced counting function. Analogously we can define $N_{(k}(r, a; f)$ and $\overline{N}_{(k}(r, a; f)$.

Definition 1.3. [6, 7] For a complex number $a \in \mathbb{C} \cup \{\infty\}$, we denote by $E_k(a, f)$ the set of all a-points of f where an a-points with multiplicity m is counted m times if $m \leq k$ and k + 1 times if m > k. If $E_k(a, f) = E_k(a, g)$, then we say that f and g share the value a with weight k.

The definition implies that if f, g share a value a with weight k, then z_0 is a zero of f - a with multiplicity $m(\leq k)$ if and only if it is a zero of g - a with multiplicity $m(\leq k)$ and z_0 is a zero of f - a with multiplicity m(>k) if and only if it is a zero of g - a with multiplicity n(>k), where m is not necessarily equal to n. We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for all integers $p, 0 \leq p < k$. Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a, ∞) respectively.

Definition 1.4. [6] Let S be a set of distinct elements of $\mathbb{C} \cup \{\infty\}$ and k a nonnegtive integer or ∞ . We denote by $E_f(S, K)$ the set $\bigcup_{a \in S} E_k(a, f)$. Clearly $E_f(S) = E_f(S, \infty)$ and $\overline{E}_f(S) = E_f(S, 0)$.

W. K. Hayman proposed the following well-known conjecture.

Hayman's Conjecture [3] If an entire function satisfies $f^n f' \neq 1$ for all positive integers $n \in N$, then f is a constant.

In 1997, corresponding to the famous conjecture of Hayman, Yang and Hua [15] studied the unicity of differential monomials and obtained the following theorem.

Theorem A. Let f(z) and g(z) be two nonconstant entire functions, $n \ge 6$ a positive integer. If $f^n f'$ and $g^n g'$ share 1 CM, then either $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$ where c_1, c_2, c are three constants satisfying $(c_1 c_2)^{n+1} c^2 = -1$ or f = tg for a constant t such that $t^{n+1} = 1$.

In 2018, V. H. An and H. H. Khoai [1] considered the set of roots of unity of degree d and studied the relations of f and g when $E_{(f^n)^{(k)}}(S) = E_{(g^n)^{(k)}}(S)$ and they proved the following result.

Theorem B. Let f(z) and g(z) be two nonconstant meromorphic functions and let n, d, k be positive integers with $n > 2k + \frac{2k+8}{d}, d \ge 2$ and $S = \{a \in \mathbb{C} : a^d = 1\}$. If $E_{(f^n)^{(k)}}(S) = E_{(g^n)^{(k)}}(S)$, then one of the following two cases holds: (i) $f(z) = c_1 e^{cz}$ and $g(z) = c_2 e^{-cz}$ for three nonzero constants c_1, c_2 and c such that $(-1)^{kd}(c_1c_2)^{nd}(nc)^{2kd} = 1$; (ii) f = tg with $t^{nd} = 1, t \in \mathbb{C}$.

In 2019, C. Meng and X. Li [11] proved the following results.

Theorem C. Let f(z) and g(z) be two nonconstant meromorphic functions and let n, d, k be positive integers with $n > 2k + \frac{3k+9}{d}, d \ge 2$ and $S = \{a \in \mathbb{C} : a^d = 1\}$. If $E_{(f^n)^{(k)}}(S, 1) = E_{(g^n)^{(k)}}(S, 1)$, then one of the following two cases holds: (i) $f(z) = c_1 e^{cz}$ and $g(z) = c_2 e^{-cz}$ for three nonzero constants c_1, c_2 and c such that $(-1)^{kd}(c_1c_2)^{nd}(nc)^{2kd} = 1$; (ii) f = tg with $t^{nd} = 1, t \in \mathbb{C}$.

Theorem D. Let f(z) and g(z) be two nonconstant meromorphic functions and let n, d, k be positive integers with $n > 2k + \frac{8k+14}{d}$, $d \ge 2$ and $S = \{a \in \mathbb{C} : a^d = 1\}$. If $E_{(f^n)^{(k)}}(S,0) = E_{(g^n)^{(k)}}(S,0)$, then one of the following two cases holds: (i) $f(z) = c_1 e^{cz}$ and $g(z) = c_2 e^{-cz}$ for three nonzero constants c_1, c_2 and c such that $(-1)^{kd}(c_1c_2)^{nd}(nc)^{2kd} = 1$; (ii) f = tg with $t^{nd} = 1$, $t \in \mathbb{C}$.

Question 1.1. What can be said about the relationship between two meromorphic functions f(z) and g(z), if $(f^n(z)(f-1)^s)^{(k)}$ is the differential polynomials, where $n(\geq 1)$, $s(\geq 1)$ are integers?

Considering Question 1.1, V. Husna [4] proved the following theorems.

Theorem E. Let f(z) and g(z) be two nonconstant meromorphic functions and let n, d, k, s be positive integers with $n > 2k-s+\frac{3k+9}{d}, d \ge 2$ and $S = \{a \in \mathbb{C} : a^d = 1\}$. If $E_{(f^n(f-1)^s)^{(k)}}(S,1) = E_{(g^n(g-1)^s)^{(k)}}(S,1)$, then one of the following two cases holds: (i) $f(z) = c_1 e^{cz}$ and $g(z) = c_2 e^{-cz}$ for three nonzero constants c_1, c_2 and c such that $(-1)^{kd}(c_1c_2)^{(n+s)d}((n+s)c)^{2kd} = 1$; (ii) f = tg with $t^{(n+s)d} = 1, t \in \mathbb{C}$.

Theorem F. Let f(z) and g(z) be two nonconstant meromorphic functions and let n, d, k, s be positive integers with $n > 2k - s + \frac{8k+14}{d}, d \ge 2$ and $S = \{a \in \mathbb{C} : a^d = 1\}$. If $E_{(f^n(f-1)^s)^{(k)}}(S,0) = E_{(g^n(g-1)^s)^{(k)}}(S,0)$, then one of the following two cases holds: (i) $f(z) = c_1e^{cz}$ and $g(z) = c_2e^{-cz}$ for three nonzero constants c_1, c_2 and c such that $(-1)^{kd}(c_1c_2)^{(n+s)d}((n+s)c)^{2kd} = 1$; (ii) f = tg with $t^{(n+s)d} = 1, t \in \mathbb{C}$.

According to the results of V. Husna, it is natural to ask the following question which is the motive of the present paper.

Question 1.2. What will happen if we replace $(f^n(z)(f-1)^s)^{(k)}$ by the nonlinear differential polynomial $(f^n(z)(f-1)^s P[f])^{(k)}$, where P[f] is defined in Definition 1.1 ?

In this paper, our main concern is to find the possible answer of Question 1.2. We prove the following theorems which generalize and improve Theorems E and F. The following theorems are the main results of the paper.

Theorem 1.1. Let f(z) and g(z) be two nonconstant meromorphic functions whose zeros and poles are of multiplicities atleast m, where m is a positive integer and let $n, d, k, s, l, Q, \overline{d}(P)$ be positive integers with $n > 2k - s - \overline{d}(P) + \frac{6k + 5Q + 18}{2md}, d \ge 2$ and $S = \{a \in \mathbb{C} : a^d = 1\}$. If $E_{(f^n(f-1)^s P[f])^{(k)}}(S, 1) = E_{(g^n(g-1)^s P[g])^{(k)}}(S, 1)$, then

either f = tg for a constant t such that $t^{\sigma d} = 1$, where $\sigma = gcd(n + s + \overline{d}(P), ..., n + s - i + \overline{d}(P), ..., n + \overline{d}(P))$ or f and g satisfy the algebric relation equation R(f, g) = 0, where $R(f, g) = (f^n(f - 1)^s P[f])^{(k)} - (g^n(g - 1)^s P[g])^{(k)}$.

Theorem 1.2. Let f(z) and g(z) be two nonconstant meromorphic functions whose zeros and poles are of multiplicities atleast m, where m is a positive integer and let $n, d, k, s, l, Q, \overline{d}(P)$ be positive integers with $n > 2k - s - \overline{d}(P) + \frac{8k + 5Q + 14}{md}, d \ge 2$ and $S = \{a \in \mathbb{C} : a^d = 1\}$. If $E_{(f^n(f-1)^s P[f])^{(k)}}(S, 0) = E_{(g^n(g-1)^s P[g])^{(k)}}(S, 0)$, then the conclusion of Theorem 1.1 holds.

Remark 1. Since Theorems E-F are the special cases of Theorems 1.1 and 1.2 respectively for Q = 0 and $\overline{d}(P) = 0$ then Theorems 1.1 and 1.2 improve and extend Theorems E-F respectively.

2. Lemmas

In this section, we state some Lemmas which will be needed in the sequel. We denote by H the following function:

$$H = \left(\frac{F''}{F'} - \frac{2F'}{F-1}\right) - \left(\frac{G''}{G'} - \frac{2G'}{G-1}\right),\,$$

where F and G are nonconstant meromorphic functions defined in the complex plane \mathbb{C} .

Lemma 2.1. [13] Let f(z) be a non-constant meromorphic function and P[f] be a differential polynomial of f(z). Then

$$T(r, P[f]) \leq \overline{d}(P)T(r, f) + Q\overline{N}(r, \infty; f) + S(r, f)$$

and

$$N(r,\infty;P[f]) \leq \overline{d}(P)N(r,\infty;f) + Q\overline{N}(r,\infty;f) + S(r,f)$$

where $Q = \max_{1 \le i \le t} \{ n_{i0} + n_{i1} + 2n_{i2} + \dots + ln_{il} \}.$

Lemma 2.2. [2] Let H be defined as above. If F and G share (1,1) and $H \neq 0$, then

$$T(r,F) \leq N_2(r,0;F) + N_2(r,\infty;F) + N_2(r,0;G) + N_2(r,\infty;G) + \frac{1}{2}\overline{N}(r,0;F) + \frac{1}{2}\overline{N}(r,\infty;F) + S(r,F) + S(r,G)$$

and the same inequality holds for T(r, G).

Lemma 2.3. [8] Let f(z) be a nonconstant meromorphic function, k be a positive integer, then

$$N_p(r,0;f^{(k)}) \le N_{p+k}(r,0;f) + k\overline{N}(r,\infty;f) + S(r,f).$$

Lemma 2.4. Let f(z) be a non-constant meromorphic function and $n, s, \overline{d}(P), Q$, k be positive integers with n > k. Then

$$N\left(r,\infty;\frac{(f^n(f-1)^s P[f])^{(k)}}{f^{n+s+\overline{d}(P)-k}}\right) \le kN(r,\infty;f) + Q\overline{N}(r,\infty;f) + k\overline{N}(r,\infty;f) + S(r,f) + S$$

Proof. Let z_0 be a pole of f(z) with multiplicity p, then in some neighbourhood of z_0

$$\frac{(f^n(f-1)^s P[f])^{(k)}}{f^{n+s+\overline{d}(P)-k}} = \frac{h_k(z)}{(z-z_0)^{(p+1)k+Q_1}},$$
(2.1)

where $h_k(z)$ is regular at z_0 and $h_k(z_0) \neq 0$ $Q_1 = \max_{1 \le i \le t} \{n_{i1} + 2n_{i2} + ... + ln_{il}\}$. Now from (2.1), we have

$$\begin{split} N\left(r,\infty;\frac{(f^n(f-1)^s P[f])^{(k)}}{f^{n+s+\overline{d}(P)-k}}\right) &\leq kN(r,\infty;f) + Q_1\overline{N}(r,\infty;f) + k\overline{N}(r,\infty;f) \\ &+ S(r,f). \\ &\leq kN(r,\infty;f) + Q\overline{N}(r,\infty;f) + k\overline{N}(r,\infty;f) \\ &+ S(r,f). \end{split}$$

This completes the proof of Lemma.

Lemma 2.5. Let g(z) be a non-constant meromorphic function and $n, s, \overline{d}(P), Q$, k be positive integers with n > k. Then

$$\overline{N}\left(r,0;\frac{(g^n(g-1)^sP[g])^{(k)}}{g^{n+\overline{d}(P)-k}}\right) \leq k\overline{N}(r,0;g) + Q\overline{N}(r,\infty;g) + k\overline{N}(r,\infty;g) + S(r,g).$$

Proof. Let z_0 be a zero of g(z) with multiplicity p, then in some neighbourhood of z_0

$$\frac{(g^n(g-1)^s P[g])^{(k)}}{q^{n+\overline{d}(P)-k}} = \frac{h_k(z)(z-z_0)^{pk}}{(z-z_0)^{Q_1+k}},\tag{2.2}$$

where $h_k(z)$ is regular at z_0 and $h_k(z_0) \neq 0$, $Q_1 = \max_{1 \le i \le t} \{n_{i1} + 2n_{i2} + \dots + ln_{il}\}.$

Now from (2.2), we have

$$\begin{split} \overline{N}\left(r,0;\frac{(g^n(g-1)^s P[g])^{(k)}}{g^{n+\overline{d}(P)-k}}\right) &\leq k\overline{N}(r,0;g) + Q_1\overline{N}(r,\infty;g) + k\overline{N}(r,\infty;g) \\ &+ S(r,g). \\ &\leq k\overline{N}(r,0;g) + Q\overline{N}(r,\infty;g) + k\overline{N}(r,\infty;g) \\ &+ S(r,g). \end{split}$$

This completes the proof of Lemma.

Lemma 2.6. [2] Let H be defined as above. If F and G share (1,0) and $H \neq 0$, then

$$T(r,F) \leq N_2(r,0;F) + N_2(r,\infty;F) + N_2(r,0;G) + N_2(r,\infty;G) + 2\overline{N}(r,0;F) + 2\overline{N}(r,\infty;F) + \overline{N}(r,0;G) + \overline{N}(r,\infty;G) + S(r,F) + S(r,G)$$

and the same inequality holds for T(r, G).

Lemma 2.7. Let f(z) be a nonconstant meromorphic function and $n, k, s, Q, \overline{d}(P)$ be positive integers, n > 2k. Then

$$(n+s+\overline{d}(P)-2k)T(r,f)+kN(r,\infty;f)+N\left(r,\infty;\frac{f^{n+s+\overline{d}(P)-k}}{(f^n(f-1)^sP[f])^{(k)}}\right) \le T(r,(f^n(f-1)^sP[f])^{(k)})+S(r,f).$$

Proof. Let $F_2 = (F_1)^{(k)}$, where $F_1 = f^n (f-1)^s P[f]$. By Lemma 2.1, we have

$$N(r,\infty;F_2) = N(r,\infty;F_1) + k\overline{N}(r,\infty;F_1)$$

$$\leq (n+s+\overline{d}(P))N(r,\infty;f) + (Q+k)\overline{N}(r,\infty;f). \quad (2.3)$$

From this and noting that $S(r, f) = S(r, F_1)$ and $m\left(r, \frac{(f)^{(k)}}{f}\right) = S(r, f)$, we obtain $(n + s + \overline{d}(P) - k)m(r, \infty; f) = m(r, \infty; f^{n+s+\overline{d}(P)-k})$

$$\begin{aligned} (n+s+\overline{d}(P)-k)m(r,\infty;f) &= m(r,\infty;f^{n+s+d(P)-k}) \\ &\leq m(r,\infty;F_2) + m\left(r,\infty;\frac{f^{n+s+\overline{d}(P)-k}}{F_2}\right) + S(r,f) \\ &= m(r,\infty;F_2) + T\left(r,\frac{F_2}{f^{n+s+\overline{d}(P)-k}}\right) \\ &- N\left(r,\infty;\frac{f^{n+s+\overline{d}(P)-k}}{F_2}\right) + S(r,f) \\ &\leq m(r,\infty;F_2) + m\left(r,\infty;\frac{F_2}{f^{n+s+\overline{d}(P)-k}}\right) \\ &+ N\left(r,\infty;\frac{F_2}{f^{n+s+\overline{d}(P)-k}}\right) - N\left(r,\infty;\frac{f^{n+s+\overline{d}(P)-k}}{F_2}\right) \\ &+ S(r,f) \\ &\leq m(r,\infty;F_2) + km(r,\infty;f) \\ &+ N\left(r,\infty;\frac{F_2}{f^{n+s+\overline{d}(P)-k}}\right) - N\left(r,\infty;\frac{f^{n+s+\overline{d}(P)-k}}{F_2}\right) \\ &+ S(r,f) \end{aligned}$$

By Lemma 2.4, we get

$$\begin{aligned}
(n+s+\overline{d}(P)-k)m(r,\infty;f) &\leq m(r,\infty;F_2)+km(r,\infty;f)+kN(r,\infty;f)+Q\overline{N}(r,\infty;f) \\
&+k\overline{N}(r,\infty;f)-N\left(r,\infty;\frac{f^{n+s+\overline{d}(P)-k}}{F_2}\right)+S(r,f) \\
&\leq m(r,\infty;F_2)+kT(r,f)+(k+Q)\overline{N}(r,\infty;f)) \\
&-N\left(r,\infty;\frac{f^{n+s+\overline{d}(P)-k}}{F_2}\right)+S(r,f).
\end{aligned}$$
(2.4)

From (2.3) and (2.4) it implies that

$$(n+s+\overline{d}(P)-k)T(r,f)+kN(r,\infty;f) = (n+s+\overline{d}(P)-k)m(r,\infty;f) + (n+s+\overline{d}(P))N(r,\infty;f)$$

$$\leq m(r,\infty;F_2)+kT(r,f)+(k+Q)\overline{N}(r,\infty;f)) - N\left(r,\infty;\overline{f_2}\right)+N(r,\infty;F_2) + N(r,\infty;F_2) - (Q+k)\overline{N}(r,\infty;f)+S(r,f).$$
(2.5)

Thus from (2.5), we have

$$(n+s+\overline{d}(P)-2k)T(r,f)+kN(r,\infty;f)+N\left(r,\infty;\frac{f^{n+s+\overline{d}(P)-k}}{F_2}\right)$$
$$\leq T(r,F_2)+S(r,f).$$

Lemma 2.8. [12] Let f(z) and g(z) be two transcendental meromorphic functions, whose zeros and poles are of multiplicities at least m, where m is a positive integer. Let P[f] be defined as in Definition 1.1, and let n, s, k, Q and $\overline{d}(P)$ are positive integers. Then

$$(f^n(f-1)^s P[f])^{(k)} (g^n(g-1)^s P[g])^{(k)} \neq 1.$$

Lemma 2.9. Let f(z) and g(z) be two non constant meromorphic functions, whose zeros and poles are of multiplicities atleast m, where m is a positive integer. Let P[f] be defined as in Definition 1.1. Let n, s, k, l, $\overline{d}(P)$ and Q be positive integers. Let $F = (F_2)^d$ and $G = (G_2)^d$, where $d \ge 2$, $F_2 = (f^n(f-1)^s P[f])^{(k)}$ and $G_2 = (g^n(g-1)^s P[g])^{(k)}$. If there exists two non zero constants b_1 and b_2 such that $\overline{N}(r,0;F) = \overline{N}(r,b_1;G)$ and $\overline{N}(r,0;G) = \overline{N}(r,b_2;F)$, then $n < 2k - s - \overline{d}(P) + \frac{k+Q+3}{md}$.

Proof. By Nevanlinna second fundamental theorem we get

$$T(r,F) \leq \overline{N}(r,\infty;F) + \overline{N}(r,0;F) + \overline{N}(r,b_2;F) + S(r,F)$$

$$\leq \overline{N}(r,\infty;F) + N_2(r,0;F) + \overline{N}(r,0;G) + S(r,f).$$
(2.6)

By Lemma 2.3 and Lemma 2.5, we have

$$\overline{N}(r,0;G) = \overline{N}\left(r,0;\left((g^{n}(g-1)^{s}P[g])^{(k)}\right)^{d}\right)$$

$$= \overline{N}(r,0;\left(g^{n}(g-1)^{s}P[g]\right)^{(k)})$$

$$\leq \overline{N}\left(r,0;\frac{(g^{n}(g-1)^{s}P[g])^{(k)}}{g^{n+\overline{d}(P)-k}}\right) + \overline{N}(r,0;g^{n+\overline{d}(P)-k}) + S(r,g)$$

$$\leq k\overline{N}(r,0;g) + Q\overline{N}(r,\infty;g) + k\overline{N}(r,\infty;g) + \overline{N}(r,0;g) + S(r,g)$$

$$\leq (k+1)\overline{N}(r,0;g) + (Q+k)\overline{N}(r,\infty;g) + S(r,g) \qquad (2.7)$$

and similarly the same argument can be obtained for $\overline{N}(r,0;F).$

$$N_{2}(r,0;F) = 2\overline{N}(r,0;(f^{n}(f-1)^{s}P[f])^{(k)})$$

$$\leq 2\left(\overline{N}(r,0;f^{n+s+\overline{d}(P)-k}) + N\left(r,\infty;\frac{f^{n+s+\overline{d}(P)-k}}{(f^{n}(f-1)^{s}P[f])^{(k)}}\right)\right) + S(r,f)$$

$$\leq 2\left(\overline{N}(r,0;f) + N\left(r,\infty;\frac{f^{n+s+\overline{d}(P)-k}}{(f^{n}(f-1)^{s}P[f])^{(k)}}\right)\right) + S(r,f)$$
(2.8)

and similarly the same argument can be obtained for $N_2(r, 0; G)$. Also

$$\overline{N}(r,\infty;F) = \overline{N}(r,\infty;f).$$
(2.9)

Using (2.7), (2.8) and (2.9) in (2.6), we obtain

$$T(r,F) \leq \overline{N}(r,\infty;f) + 2\left(\overline{N}(r,0;f) + N\left(r,\infty;\frac{f^{n+s+\overline{d}(P)-k}}{(f^n(f-1)^s P[f])^{(k)}}\right)\right) + (k+1)\overline{N}(r,0;g) + (Q+k)\overline{N}(r,\infty;g) + S(r,f)$$
(2.10)

and similarly

$$T(r,G) \leq \overline{N}(r,\infty;g) + 2\left(\overline{N}(r,0;g) + N\left(r,\infty;\frac{g^{n+s+\overline{d}(P)-k}}{(g^n(g-1)^s P[g])^{(k)}}\right)\right) + (k+1)\overline{N}(r,0;f) + (Q+k)\overline{N}(r,\infty;f) + S(r,g).$$
(2.11)

Again since $d \geq 2$,

$$kdN(r,\infty;g) \ge (k+1)\overline{N}(r,\infty;g), \qquad (2.12)$$

$$kdN(r,\infty;f) \ge (k+1)\overline{N}(r,\infty;f).$$
(2.13)

By Lemma 2.7, we have

$$(n+s+\overline{d}(P)-2k)dT(r,f) + kdN(r,\infty;f) + dN\left(r,\infty;\frac{f^{n+s+\overline{d}(P)-k}}{(f^n(f-1)^sP[f])^{(k)}}\right) \le T(r,F) + S(r,f) (2.14)$$

and similarly the same argument can be obtained for T(r, G). Hence from (2.10)-(2.14), we obtain

$$\left(nd + sd + \overline{d}(P)d - 2kd - \frac{k+Q+3}{m} \right) (T(r,f) + T(r,g)) \le (S(r,f) + S(r,g)),$$
which gives $n < 2k - s - \overline{d}(P) + \frac{k+Q+3}{md}.$
This proves the lemma.

This proves the lemma.

3. Proof of Theorems

Proof of Theorem 1.1. Let $F = (F_2)^d$, $G = (G_2)^d$ and $F_2 = (F_1)^{(k)}$, $G_2 = (G_1)^{(k)}$, where $F_1 = f^n (f - 1)^s P[f]$ and $G_1 = g^n (g - 1)^s P[g]$. Since $E_{F_2}(S, 1) = E_{G_2}(S, 1)$, we see that F and G share (1, 1). If $H \neq 0$, then by Lemma 2.2

$$T(r,F) \leq N_{2}(r,0;F) + N_{2}(r,\infty;F) + N_{2}(r,0;G) + N_{2}(r,\infty;G) + \frac{1}{2}\overline{N}(r,0;F) + \frac{1}{2}\overline{N}(r,\infty;F) + S(r,F) + S(r,G).$$
(3.1)

By Lemma 2.7, we obtain

$$(n+s+\overline{d}(P)-2k)T(r,f) \leq T(r,F_2) + S(r,f) \leq (k+1)(n+s+\overline{d}(P)+Q)T(r,f) + S(r,f)$$
(3.2)

and similarly the same argument can be obtained for T(r,g). Since $T(r,F) = dT(r,F_2) + S(r,F_2)$ and $T(r,G) = dT(r,G_2) + S(r,G_2)$, it is easy to see that $S(r,F) = S(r,F_2) = S(r,f)$ and $S(r,G) = S(r,G_2) = S(r,g)$. On the other hand

$$N_2(r,\infty;F) = 2\overline{N}(r,\infty;f), \qquad (3.3)$$

$$N_2(r,\infty;G) = 2\overline{N}(r,\infty;g), \qquad (3.4)$$

$$\frac{1}{2}\overline{N}(r,\infty;F) = \frac{1}{2}\overline{N}(r,\infty;f).$$
(3.5)

By Lemma 2.3 and Lemma 2.5, we have

$$N_{2}(r,0;F) = N_{2}\left(r,0;\left((f^{n}(f-1)^{s}P[f])^{(k)}\right)^{d}\right)$$

$$= 2\overline{N}(r,0;\left(f^{n}(f-1)^{s}P[f]\right)^{(k)})$$

$$\leq 2\overline{N}\left(r,0;\frac{(f^{n}(f-1)^{s}P[f])^{(k)}}{f^{n+\overline{d}(P)-k}}\right) + 2\overline{N}(r,0;f^{n+\overline{d}(P)-k}) + S(r,f)$$

$$\leq 2k\overline{N}(r,0;f) + 2Q\overline{N}(r,\infty;f) + 2k\overline{N}(r,\infty;f) + 2\overline{N}(r,0;f) + S(r,f)$$

$$\leq 2(k+1)\overline{N}(r,0;f) + 2(Q+k)\overline{N}(r,\infty;f) + S(r,f)$$
(3.6)

and similarly the same argument can be obtained for $N_2(r, 0; G)$. Similarly, we have

$$\frac{1}{2}\overline{N}(r,0;F) \le \frac{1}{2}(k+1)\overline{N}(r,0;f) + \frac{1}{2}(Q+k)\overline{N}(r,\infty;f) + S(r,f).$$
(3.7)

Again

$$N_{2}(r,0;G) = 2\overline{N}(r,0;(g^{n}(g-1)^{s}P[g])^{(k)})$$

$$\leq 2\left(\overline{N}(r,0;g^{n+s+\overline{d}(P)-k}) + N\left(r,\infty;\frac{g^{n+s+\overline{d}(P)-k}}{(g^{n}(g-1)^{s}P[g])^{(k)}}\right)\right) + S(r,g)$$

$$\leq 2\left(\overline{N}(r,0;g) + N\left(r,\infty;\frac{g^{n+s+\overline{d}(P)-k}}{(g^{n}(g-1)^{s}P[g])^{(k)}}\right)\right) + S(r,g)$$
(3.8)

and similarly the same argument can be obtained for $N_2(r, 0; F)$. Combining (3.1) and (3.3)-(3.8), we deduce

$$T(r,F) \leq \frac{6k+5Q+10}{2m}T(r,f) + \frac{4}{m}T(r,g) + 2k\overline{N}(r,\infty;f) + 2N\left(r,\infty;\frac{g^{n+s+\overline{d}(P)-k}}{(g^n(g-1)^sP[g])^{(k)}}\right) + S(r,f) + S(r,g) \quad (3.9)$$

and similarly the same argument can be obtained for T(r, G). By Lemma 2.7, we have

$$(n+s+\overline{d}(P)-2k)dT(r,f)+kdN(r,\infty;f)+dN\left(r,\infty;\frac{f^{n+s+\overline{d}(P)-k}}{(f^n(f-1)^sP[f])^{(k)}}\right)$$

$$\leq T(r,F)+S(r,f)(3.10)$$

and similarly the same argument can be obtained for T(r,G). Again since $d\geq 2$

$$dN\left(r,\infty;\frac{f^{n+s+\overline{d}(P)-k}}{(f^n(f-1)^s P[f])^{(k)}}\right) \ge 2N\left(r,\infty;\frac{f^{n+s+\overline{d}(P)-k}}{(f^n(f-1)^s P[f])^{(k)}}\right),$$
 (3.11)

$$kdN(r,\infty;f) \ge 2k\overline{N}(r,\infty;f)$$
 (3.12)

and similarly the same argument can be obtained for g. From (3.9) - (3.12), we have

$$\left(nd + sd + \overline{d}(P)d - 2kd - \frac{6k + 5Q + 18}{2m}\right)(T(r, f) + T(r, g)) \le (S(r, f) + S(r, g)),$$

which contradicts $n > 2k - s - \overline{d}(P) + \frac{6k + 5Q + 18}{2md}$.

Therefore we must have $H \equiv 0$. Then

$$\left(\frac{F''}{F'} - \frac{2F'}{F-1}\right) - \left(\frac{G''}{G'} - \frac{2G'}{G-1}\right) = 0.$$
(3.13)

Integrating both side twice, we get from (3.13)

$$\frac{1}{G-1} = \frac{A}{F-1} + B,$$
(3.14)

where $A \neq 0$ and B are constants. Thus

$$G = \frac{(B+1)F + (A-B-1)}{BF + (A-B)}$$
(3.15)

and

$$F = \frac{(B-A)G + (A-B-1)}{BG - (B+1)}.$$
(3.16)

Next we consider the following three cases: **Case 1.** $B \neq 0, -1$. Then from (3.16), we have

$$\overline{N}\left(r,\frac{B+1}{B};G\right) = \overline{N}(r,\infty;F).$$
(3.17)

By Nevanlinna second fundamental theorem and (3.8), we get

$$T(r,G) \leq \overline{N}(r,\infty;G) + \overline{N}(r,0;G) + \overline{N}\left(r,\frac{B+1}{B};G\right) + S(r,G)$$

$$\leq \overline{N}(r,\infty;G) + N_2(r,0;G) + \overline{N}(r,\infty;F) + S(r,G)$$

$$\leq \overline{N}(r,\infty;g) + 2\left(\overline{N}(r,0;g) + N\left(r,\infty;\frac{g^{n+s+\overline{d}(P)-k}}{(g^n(g-1)^s P[g])^{(k)}}\right)\right)$$

$$+\overline{N}(r,\infty;f) + S(r,g).$$
(3.18)

If $A - B - 1 \neq 0$, then it follows from (3.15) that

$$\overline{N}\left(r,\frac{B+1-A}{B+1};F\right) = \overline{N}(r,0;G).$$
(3.19)

Again by Nevanlinna second fundamental theorem and (3.7), (3.8), we get

$$T(r,F) \leq \overline{N}(r,\infty;F) + \overline{N}(r,0;F) + \overline{N}\left(r,\frac{B+1-A}{B+1};F\right) + S(r,F)$$

$$\leq \overline{N}(r,\infty;F) + N_2(r,0;F) + \overline{N}(r,0;G) + S(r,f)$$

$$\leq \overline{N}(r,\infty;f) + 2\left(\overline{N}(r,0;f) + N\left(r,\infty;\frac{f^{n+s+\overline{d}(P)-k}}{(f^n(f-1)^s P[f])^{(k)}}\right)\right)$$

$$+(k+1)\overline{N}(r,0;g) + (Q+k)\overline{N}(r,\infty;g) + S(r,f).$$
(3.20)

Again since $d \ge 2$,

$$kdN(r,\infty;g) \ge (k+1)\overline{N}(r,\infty;g), \qquad (3.21)$$

$$kdN(r,\infty;f) \ge 2\overline{N}(r,\infty;f). \tag{3.22}$$

Hence combining (3.10), (3.11), (3.12), (3.18), (3.20), (3.21) and (3.22), we obtain

$$\left(nd + sd + \overline{d}(P)d - 2kd - \frac{2}{m} \right) T(r, f) + \left(nd + sd + \overline{d}(P)d - 2kd - \frac{k+3+Q}{m} \right) T(r, g)$$

$$\leq S(r, f) + S(r, g).$$

which contradicts with $n > 2k - s - \overline{d}(P) + \frac{6k + 5Q + 18}{2md}$. Hence A - B - 1 = 0. Then by (3.15), we have

$$\overline{N}\left(r, -\frac{1}{B}; F\right) = N(r, \infty; G).$$
(3.23)

Again by Nevanlinna second fundamental theorem

$$T(r,F) \leq \overline{N}(r,\infty;F) + \overline{N}(r,0;F) + \overline{N}\left(r,-\frac{1}{B};F\right) + S(r,F)$$

$$\leq \overline{N}(r,\infty;F) + N_2(r,0;F) + \overline{N}\left(r,\infty;G\right) + S(r,f)$$

$$\leq \overline{N}(r,\infty;f) + 2\left(\overline{N}(r,0;f) + N\left(r,\infty;\frac{f^{n+s+\overline{d}(P)-k}}{(f^n(f-1)^s P[f])^{(k)}}\right)\right)$$

$$+\overline{N}(r,\infty;g) + S(r,f).$$
(3.24)

Again since $d \geq 2$,

$$kdN(r,\infty;f) \ge 2\overline{N}(r,\infty;f),$$
(3.25)

$$kdN(r,\infty;g) \ge 2N(r,\infty;g). \tag{3.26}$$

Now combining (3.11), (3.18), (3.24), (3.25) and (3.26), we obtain

$$\left(nd + sd + \overline{d}(P)d - 2kd - \frac{2}{m}\right)\left[T(r, f) + T(r, g)\right] \le S(r, f) + S(r, g).$$

which contradicts with $n > 2k - s - \overline{d}(P) + \frac{6k+5Q+18}{2md}$. **Case 2.** B = -1. Then $G = \frac{A}{A+1-F}$ and $F = \frac{(1+A)G-A}{G}$ If $A+1 \neq 0$. We obtain $\overline{N}(r, A+1; F) = \overline{N}(r, \infty; G)$ and $\overline{N}(r, \frac{A}{A+1}; G) = \overline{N}(r, 0; F)$. By similar arguments as in case 1 we arrive at a contradiction. Therefore A + 1 = 0, then $FG \equiv 1$. That is $((f^n(f-1)^s P[f])^{(k)})^d ((g^n(g-1)^s P[g])^{(k)})^d \equiv 1$. Thus we have $(f^n(f-1)^s P[f])^{(k)} (g^n(g-1)^s P[g])^{(k)} = h$, where $h^d = 1$. Then by Lemma 2.8 we arrive at a contradiction.

Case 3. B = 0. Then (3.15) and (3.16) gives $G = \frac{F+A-1}{A}$ and F = AG + 1 - A. If $A - 1 \neq 0$, then $\overline{N}(r, 1 - A; F) = \overline{N}(r, 0; G)$ and $\overline{N}(r, \frac{A-1}{A}; G) = \overline{N}(r, 0; F)$. By Lemma 2.9 we arrive at a contradiction. Hence A - 1 = 0, therefore $F \equiv G$, that is $((f^n(f-1)^s P[f])^{(k)})^d \equiv ((g^n(g-1)^s P[g])^{(k)})^d$. We have

$$(f^n(f-1)^s P[f])^{(k)} = h(g^n(g-1)^s P[g])^{(k)}$$
(3.27)

with $h^d = 1$. By integration, we get

$$(f^{n}(f-1)^{s}P[f])^{(k-1)} = h(g^{n}(g-1)^{s}P[g])^{(k-1)} + c_{k-1},$$

where c_{k-1} is a constant. If $c_{k-1} \neq 0$, using Lemma 2.9, we arrive at a contradiction. Hence $c_{k-1} = 0$.

Repeating the process (k-1)-times, we deduce that

$$f^{n}(f-1)^{s}P[f] = hg^{n}(g-1)^{s}P[g].$$
(3.28)

Let $t = \frac{f}{q}$. If t is a constant, by putting f = tg in (3.28), we get

$$g^{n+s}(t^{n+s+\overline{d}(P)}-h) + \dots + (-1)^{i}s_{C_{s-i}}g^{n+s-i}(t^{n+s-i+\overline{d}(P)}-h) + \dots + (-1)^{s}g^{n}(h^{n+\overline{d}(P)}-h) = 0,$$

which implies that $t^{\sigma} = h$, where $\sigma = gcd(n+s+\overline{d}(P), n+s-1+\overline{d}(P), ..., n+\overline{d}(P))$. Thus f(z) = tg(z) for a constant t such that $t^{\sigma d} = 1$.

If t is not constant then from (3.28), we find that f and g satisfying the algebraic equation R(f,g) = 0, where $R(f,g) = f^n(f-1)^s P[f] - hg^n(g-1)^s P[g]$ with $h^{d} = 1.$

This completes the proof of Theorem 1.1.

Proof of Theorem 1.2.

Proof. Let $F = (F_2)^d$, $G = (G_2)^d$, and $F_2 = (F_1)^{(k)}$, $G_2 = (G_1)^{(k)}$ where $F_1 = (F_2)^d$ $f^{n}(f-1)^{s}P[f]$ and $G_{1} = g^{n}(g-1)^{s}P[g]$.

Since $E_{F_2}(S,0) = E_{G_2}(S,0)$, we see that F and G share (1,0). If $H \neq 0$, then by Lemma 2.6

$$T(r,F) \leq N_{2}(r,0;F) + N_{2}(r,\infty;F) + N_{2}(r,0;G) + N_{2}(r,\infty;G) + 2\overline{N}(r,0;F) + 2\overline{N}(r,\infty;F) + \overline{N}(r,0;G) + \overline{N}(r,\infty;G) + S(r,F) + S(r,G).$$
(3.29)

Now using (3.3)-(3.8) and (3.10)-(3.12) in (3.29), we obtain

$$\left(nd + sd + \overline{d}(P)d - 2kd - \frac{8k + 5Q + 14}{m}\right)(T(r, f) + T(r, g)) \le (S(r, f) + S(r, g)),$$

which contradicts $n > 2k - s - \overline{d}(P) + \frac{8k + 5Q + 14}{2}$.

Thus we must have $H \equiv 0$. Then the result follows from the proof of Theorem 1.1. This completes the proof of Theorem 1.2.

4. Acknowledgement

The authors are grateful to the referee for his/her valuable suggestions /comments towards the improvement of the paper.

References

- V. H. An and H. H. Khoai, On uniqueness for meromorphic functions and their nth derivatives, Ann. Univ. Sci. Budapest. Sect. Comput., Vol. 47, 117-126, 2018.
- [2] A. Banerjee, Meromorphic functions sharing one value, Int. J. Math. Sci., Vol. 22, 3587-3598, 2005.
- [3] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
- [4] V. Husna, Some results on uniqueness of meromorphic functions concerning differential polynomials, J. Anal., Vol. 29, 1191-1206, 2021.
- [5] I. Lahiri, value distribution of certain differential polynomials, Int. J. Math. Math. Sci., Vol. 28, 83-91, 2001.
- [6] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nayoga Math. J., Vol. 161, 193-206, 2001.
- [7] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theory Appl., Vol. 46, 241-253, 2001.
- [8] I. Lahiri, Uniqueness of a meromorphic function and its derivative, J. Inequal. Pure Appl. Math., Vol. 5 No. 1, 2004.
- [9] I. Lahiri and K. Sinha, Linear differential polynomials sharing a set of the roots of unity, Commun. Korean. Math. Soc., Vol. 35, 773-787, 2020.
- [10] S. H. Lin and W. C. Lin, Uniqueness of meromorphic functions concerning weakly weighted sharing, Kodai Math. J., Vol. 29, 269-280, 2006.
- [11] C. Meng and X. Li, On unicity of meromorphic functions and their derivatives, J. Anal., Vol. 28, 1-6, 2019.
- [12] B. Saha and S. Pal, On the uniqueness of certain type of nonlinear differential polynomials with regard to multiplicity sharing a small function, J. Anal., 31, 519-537, 2023.
- [13] H. P. Waghamore and S. B. Vijaylaxmi, Unicity result sharing one small function with the general differential-difference polynomial, J. Anal., Vol. 29, 781-801, 2021.
- [14] L.Yang, Value distribution theory, translated and revised from the 1982 Chinese original, Springer-Verlag, Berlin, 1993.
- [15] C.C.Yang and X.Hua : Uniqueness and value sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math., Vol. 22,395-406, 1997.
- [16] C.C.Yang and H.X.Yi.: Uniqueness Theory of Meromorphic Functions, Kluwer, Dordrecht, 2003.

B. SAHA

DEPARTMENT OF MATHEMATICS, GOVERNMENT GENERAL DEGREE COLLEGE NAKASHIPARA, MURA-GACHHA, NADIA, WEST BENGAL, INDIA, PIN-741101

$Email \ address: \verb| sahaanjan110gmail.com, \verb| sahabiswajitku0gmail.com| | \\$

S. Pal

Sahebpara Malithapara Primary School, Karimpur New Circle, Natidanga, Nadia, West Bengal, India, Pin-741152

 $Email \ address: \verb"subratapal.pal1993@gmail.com"$