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SOME RESULTS DUE TO UNIQUENESS OF MEROMORPHIC

FUNCTIONS CONCERNING NON-LINEAR DIFFERENTIAL

POLYNOMIALS

B. SAHA, S. PAL

Abstract. In this paper, we deal with the uniqueness problems on meromor-

phic functions concerning non-linear dierential polynomials with regard to

multiplicity. Moreover, we greatly generalize and improve some results ob-

tained by V. Husna [J. Anal., Vol. 29, 1191-1206, 2021].

1. Introduction, Definitions and Results

In what follows by a meromorphic function we mean that the function has poles
as its singularities only in the complex plane C, we assume that the reader is fami-
lier with standard notations such as T (r, f), m(r, f), N(r, f) and the fundamental
results of Nevanlinna theory of meromorphic functions ( see [3, 9, 14, 16]). The no-
tation S(r, f) denotes any quantity that satises the condition S(r, f) = o{T (r, f)}
as r → ∞, possibly outside of a set of nite linear measure. A meromorphic
function α(z)( ̸≡ 0,∞) dened in C is called a small function with respect to f if
T (r,α(z)) = S(r, f).
Let a ∈ C ∪ {∞}. Set E(a, f) = {z : f(z) − a = 0}, where a zero with multi-
plicity k is counted k times. If the zeros are counted only once, then we denote
the set by E(a, f). Let f and g be two nonconstant meromorphic functions. If
E(a, f) = E(a, g), then we say that f and g share the value a CM (Counting
Multiplicities). If E(a, f) = E(a, g), then we say that f and g share the value a
IM (Ignoring Multiplicities). We denote by Ek)(a, f) the set of all a−points of f
with multiplicities not exceeding k, where an a−point is counted according to its
multiplicity. Also we denote by Ek)(a, f) the set of all distinct a−points of f with
multiplicities not greater than k. In addition, we need the following denitions.
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Denition 1.1. A non-linear dierential polynomial P[f ] of a nonconstant mero-
morphic function f is dened as

P [f ] =

t

i=1

Mi[f ]

where Mi[f ] = ai

l

j=0


f (j)

nij

with ni0, ni1, . . . , nil as nonnegative integers and

ai(̸≡ 0) are meromorphic functions satisfying T (r, ai) = o(T (r, f)) as r → ∞.

The numbers d(P ) = max1≤i≤t

l

j=0

nij and d(P ) = min1≤i≤t

l

j=0

nij are respectively

called the degree and lower degree of P [f ]. If d(P ) = d(P ) = d′(say), then we say
that P [f ] is a homogeneous dierential polynomial of degree d′. Also we dene
Q = max

1≤i≤t
{ni0 + ni1 + 2ni2 + ...+ lnil}.

Denition 1.2. [5] Let a ∈ C∪{∞}. We denote by N(r, a; f) the counting function
of simple a-points of f . For a positive integer k we denote by Nk)(r, a; f) the
counting function of those a-points of f (counted with proper multiplicities) whose
multiplicities are not greater than k. By Nk)(r, a; f) we denote the corresponding

reduced counting function. Analogously we can dene N(k(r, a; f) and N (k(r, a; f).

Denition 1.3. [6, 7] For a complex number a ∈ C ∪ {∞}, we denote by Ek(a, f)
the set of all a-points of f where an a-points with multiplicity m is counted m times
if m ≤ k and k + 1 times if m > k. If Ek(a, f) = Ek(a, g), then we say that f and
g share the value a with weight k.
The denition implies that if f, g share a value a with weight k, then z0 is a zero
of f −a with multiplicity m(≤ k) if and only if it is a zero of g−a with multiplicity
m(≤ k) and z0 is a zero of f − a with multiplicity m(> k) if and only if it is a zero
of g − a with multiplicity n(> k), where m is not necessarily equal to n. We write
f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if f, g
share (a, k) then f, g share (a, p) for all integers p, 0 ≤ p < k. Also we note that f,
g share a value a IM or CM if and only if f, g share (a, 0) or (a,∞) respectively.

Denition 1.4. [6] Let S be a set of distinct elements of C ∪ {∞} and k a
nonnegtive integer or ∞. We denote by Ef (S,K) the set ∪a∈SEk(a, f). Clearly

Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0).

W. K. Hayman proposed the following well-known conjecture.
Hayman’s Conjecture [3] If an entire function satises fnf ′ ̸= 1 for all positive
integers n ∈ N, then f is a constant.
In 1997, corresponding to the famous conjecture of Hayman, Yang and Hua [15]
studied the unicity of dierential monomials and obtained the following theorem.

Theorem A. Let f(z) and g(z) be two nonconstant entire functions, n ≥ 6 a
positive integer. If fnf ′ and gng′ share 1 CM, then either f(z) = c1e

cz, g(z) =
c2e

−cz where c1, c2, c are three constants satisfying (c1c2)
n+1c2 = −1 or f = tg for

a constant t such that tn+1 = 1.

In 2018, V. H. An and H. H. Khoai [1] considered the set of roots of unity of
degree d and studied the relations of f and g when E(fn)(k)(S) = E(gn)(k)(S) and
they proved the following result.
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Theorem B. Let f(z) and g(z) be two nonconstant meromorphic functions and
let n, d, k be positive integers with n > 2k + 2k+8

d , d ≥ 2 and S = {a ∈ C :

ad = 1}. If E(fn)(k)(S) = E(gn)(k)(S), then one of the following two cases holds: (i)

f(z) = c1e
cz and g(z) = c2e

−cz for three nonzero constants c1, c2 and c such that
(−1)kd(c1c2)

nd(nc)2kd = 1; (ii) f = tg with tnd = 1, t ∈ C.

In 2019, C. Meng and X. Li [11] proved the following results.

Theorem C. Let f(z) and g(z) be two nonconstant meromorphic functions and
let n, d, k be positive integers with n > 2k+ 3k+9

d , d ≥ 2 and S = {a ∈ C : ad = 1}.
If E(fn)(k)(S, 1) = E(gn)(k)(S, 1), then one of the following two cases holds: (i)

f(z) = c1e
cz and g(z) = c2e

−cz for three nonzero constants c1, c2 and c such that
(−1)kd(c1c2)

nd(nc)2kd = 1; (ii) f = tg with tnd = 1, t ∈ C.

Theorem D. Let f(z) and g(z) be two nonconstant meromorphic functions and let
n, d, k be positive integers with n > 2k + 8k+14

d , d ≥ 2 and S = {a ∈ C : ad = 1}.
If E(fn)(k)(S, 0) = E(gn)(k)(S, 0), then one of the following two cases holds: (i)

f(z) = c1e
cz and g(z) = c2e

−cz for three nonzero constants c1, c2 and c such that
(−1)kd(c1c2)

nd(nc)2kd = 1; (ii) f = tg with tnd = 1, t ∈ C.

Question 1.1. What can be said about the relationship between two meromorphic
functions f(z) and g(z), if (fn(z)(f − 1)s)(k) is the dierential polynomials, where
n(≥ 1), s(≥ 1) are integers?

Considering Question 1.1, V. Husna [4] proved the following theorems.

Theorem E. Let f(z) and g(z) be two nonconstant meromorphic functions and let
n, d, k, s be positive integers with n > 2k−s+ 3k+9

d , d ≥ 2 and S = {a ∈ C : ad = 1}.
If E(fn(f−1)s)(k)(S, 1) = E(gn(g−1)s)(k)(S, 1), then one of the following two cases

holds: (i) f(z) = c1e
cz and g(z) = c2e

−cz for three nonzero constants c1, c2 and c
such that (−1)kd(c1c2)

(n+s)d((n+ s)c)2kd = 1; (ii) f = tg with t(n+s)d = 1, t ∈ C.

Theorem F. Let f(z) and g(z) be two nonconstant meromorphic functions and let
n, d, k, s be positive integers with n > 2k− s+ 8k+14

d , d ≥ 2 and S = {a ∈ C : ad =
1}. If E(fn(f−1)s)(k)(S, 0) = E(gn(g−1)s)(k)(S, 0), then one of the following two cases

holds: (i) f(z) = c1e
cz and g(z) = c2e

−cz for three nonzero constants c1, c2 and c
such that (−1)kd(c1c2)

(n+s)d((n+ s)c)2kd = 1; (ii) f = tg with t(n+s)d = 1, t ∈ C.

According to the results of V. Husna, it is natural to ask the following question
which is the motive of the present paper.

Question 1.2. What will happen if we replace (fn(z)(f − 1)s)(k) by the nonlinear
dierential polynomial (fn(z)(f − 1)sP [f ])(k), where P [f ] is dened in Denition
1.1 ?

In this paper, our main concern is to nd the possible answer of Question 1.2.
We prove the following theorems which generalize and improve Theorems E and F.
The following theorems are the main results of the paper.

Theorem 1.1. Let f(z) and g(z) be two nonconstant meromorphic functions whose
zeros and poles are of multiplicities atleast m, where m is a positive integer and let
n, d, k, s, l, Q, d(P ) be positive integers with n > 2k− s− d(P ) + 6k+5Q+18

2md , d ≥ 2

and S = {a ∈ C : ad = 1}. If E(fn(f−1)sP [f ])(k)(S, 1) = E(gn(g−1)sP [g])(k)(S, 1), then
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either f = tg for a constant t such that tσd = 1, where σ = gcd(n+ s+d(P ), ..., n+
s−i+d(P ), ..., n+d(P )) or f and g satisfy the algebric relation equation R(f, g) = 0,
where R(f, g) = (fn(f − 1)sP [f ])(k) − (gn(g − 1)sP [g])(k).

Theorem 1.2. Let f(z) and g(z) be two nonconstant meromorphic functions whose
zeros and poles are of multiplicities atleast m, where m is a positive integer and let
n, d, k, s, l, Q, d(P ) be positive integers with n > 2k− s− d(P ) + 8k+5Q+14

md , d ≥ 2

and S = {a ∈ C : ad = 1}. If E(fn(f−1)sP [f ])(k)(S, 0) = E(gn(g−1)sP [g])(k)(S, 0), then
the conclusion of Theorem 1.1 holds.

Remark 1. Since Theorems E-F are the special cases of Theorems 1.1 and 1.2
respectively for Q = 0 and d(P ) = 0 then Theorems 1.1 and 1.2 improve and
extend Theorems E-F respectively.

2. Lemmas

In this section, we state some Lemmas which will be needed in the sequel. We
denote by H the following function:

H =


F ′′

F ′ − 2F ′

F − 1


−


G′′

G′ − 2G′

G− 1


,

where F and G are nonconstant meromorphic functions dened in the complex
plane C.

Lemma 2.1. [13] Let f(z) be a non-constant meromorphic function and P [f ] be a
dierential polynomial of f(z). Then

T (r, P [f ]) ≤ d(P )T (r, f) +QN(r,∞; f) + S(r, f)

and

N(r,∞;P [f ]) ≤ d(P )N(r,∞; f) +QN(r,∞; f) + S(r, f)

where Q = max
1≤i≤t

{ni0 + ni1 + 2ni2 + ...+ lnil}.

Lemma 2.2. [2] Let H be dened as above. If F and G share (1, 1) and H ̸≡ 0,
then

T (r, F ) ≤ N2(r, 0;F ) +N2(r,∞;F ) +N2(r, 0;G) +N2(r,∞;G) +
1

2
N(r, 0;F )

+
1

2
N(r,∞;F ) + S(r, F ) + S(r,G)

and the same inequality holds for T (r,G).

Lemma 2.3. [8] Let f(z) be a nonconstant meromorphic function, k be a positive
integer, then

Np(r, 0; f
(k)) ≤ Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 2.4. Let f(z) be a non-constant meromorphic function and n, s, d(P ), Q,
k be positive integers with n > k. Then

N


r,∞;

(fn(f − 1)sP [f ])(k)

fn+s+d(P )−k


≤ kN(r,∞; f) +QN(r,∞; f) + kN(r,∞; f) + S(r, f).
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Proof. Let z0 be a pole of f(z) with multiplicity p, then in some neighbourhood of
z0

(fn(f − 1)sP [f ])(k)

fn+s+d(P )−k
=

hk(z)

(z − z0)(p+1)k+Q1
, (2.1)

where hk(z) is regular at z0 and hk(z0) ̸= 0 Q1 = max
1≤i≤t

{ni1 + 2ni2 + ...+ lnil}.
Now from (2.1), we have

N


r,∞;

(fn(f − 1)sP [f ])(k)

fn+s+d(P )−k


≤ kN(r,∞; f) +Q1N(r,∞; f) + kN(r,∞; f)

+S(r, f).

≤ kN(r,∞; f) +QN(r,∞; f) + kN(r,∞; f)

+S(r, f).

□

This completes the proof of Lemma.

Lemma 2.5. Let g(z) be a non-constant meromorphic function and n, s, d(P ), Q,
k be positive integers with n > k. Then

N


r, 0;

(gn(g − 1)sP [g])(k)

gn+d(P )−k


≤ kN(r, 0; g) +QN(r,∞; g) + kN(r,∞; g) + S(r, g).

Proof. Let z0 be a zero of g(z) with multiplicity p, then in some neighbourhood of
z0

(gn(g − 1)sP [g])(k)

gn+d(P )−k
=

hk(z)(z − z0)
pk

(z − z0)Q1+k
, (2.2)

where hk(z) is regular at z0 and hk(z0) ̸= 0, Q1 = max
1≤i≤t

{ni1 + 2ni2 + ...+ lnil}.

Now from (2.2), we have

N


r, 0;

(gn(g − 1)sP [g])(k)

gn+d(P )−k


≤ kN(r, 0; g) +Q1N(r,∞; g) + kN(r,∞; g)

+S(r, g).

≤ kN(r, 0; g) +QN(r,∞; g) + kN(r,∞; g)

+S(r, g).

□

This completes the proof of Lemma.

Lemma 2.6. [2] Let H be dened as above. If F and G share (1, 0) and H ̸≡ 0,
then

T (r, F ) ≤ N2(r, 0;F ) +N2(r,∞;F ) +N2(r, 0;G) +N2(r,∞;G) + 2N(r, 0;F )

+2N(r,∞;F ) +N(r, 0;G) +N(r,∞;G) + S(r, F ) + S(r,G)



6 B. SAHA, S. PAL JFCA-2025/16(1)

and the same inequality holds for T (r,G).

Lemma 2.7. Let f(z) be a nonconstant meromorphic function and n, k, s, Q, d(P )
be positive integers, n > 2k. Then

(n+ s+ d(P )− 2k)T (r, f) + kN(r,∞; f) +N


r,∞;

fn+s+d(P )−k

(fn(f − 1)sP [f ])(k)



≤ T (r, (fn(f − 1)sP [f ])(k)) + S(r, f).

Proof. Let F2 = (F1)
(k), where F1 = fn(f − 1)sP [f ].

By Lemma 2.1, we have

N(r,∞;F2) = N(r,∞;F1) + kN(r,∞;F1)

≤ (n+ s+ d(P ))N(r,∞; f) + (Q+ k)N(r,∞; f). (2.3)

From this and noting that S(r, f) = S(r, F1) and m

r, (f)(k)

f


= S(r, f), we obtain

(n+ s+ d(P )− k)m(r,∞; f) = m(r,∞; fn+s+d(P )−k)

≤ m(r,∞;F2) +m


r,∞;

fn+s+d(P )−k

F2


+ S(r, f)

= m(r,∞;F2) + T


r,

F2

fn+s+d(P )−k



−N


r,∞;

fn+s+d(P )−k

F2


+ S(r, f)

≤ m(r,∞;F2) +m


r,∞;

F2

fn+s+d(P )−k



+N


r,∞;

F2

fn+s+d(P )−k


−N


r,∞;

fn+s+d(P )−k

F2



+S(r, f)

≤ m(r,∞;F2) + km(r,∞; f)

+N


r,∞;

F2

fn+s+d(P )−k


−N


r,∞;

fn+s+d(P )−k

F2



+S(r, f)

By Lemma 2.4, we get

(n+ s+ d(P )− k)m(r,∞; f) ≤ m(r,∞;F2) + km(r,∞; f) + kN(r,∞; f) +QN(r,∞; f)

+kN(r,∞; f)−N


r,∞;

fn+s+d(P )−k

F2


+ S(r, f)

≤ m(r,∞;F2) + kT (r, f) + (k +Q)N(r,∞; f))

−N


r,∞;

fn+s+d(P )−k

F2


+ S(r, f). (2.4)
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From (2.3) and (2.4) it implies that

(n+ s+ d(P )− k)T (r, f) + kN(r,∞; f) = (n+ s+ d(P )− k)m(r,∞; f)

+(n+ s+ d(P ))N(r,∞; f)

≤ m(r,∞;F2) + kT (r, f) + (k +Q)N(r,∞; f))

−N


r,∞;

fn+s+d(P )−k

F2


+N(r,∞;F2)

−(Q+ k)N(r,∞; f) + S(r, f). (2.5)

Thus from (2.5), we have

(n+ s+ d(P )− 2k)T (r, f) + kN(r,∞; f) +N


r,∞;

fn+s+d(P )−k

F2



≤ T (r, F2) + S(r, f).

□

Lemma 2.8. [12] Let f(z) and g(z) be two transcendental meromorphic functions,
whose zeros and poles are of multiplicities at least m, where m is a positive integer.
Let P [f ] be dened as in Denition 1.1, and let n, s, k, Q and d(P ) are positive
integers. Then

(fn(f − 1)sP [f ])(k)(gn(g − 1)sP [g])(k) ̸≡ 1.

Lemma 2.9. Let f(z) and g(z) be two non constant meromorphic functions, whose
zeros and poles are of multiplicities atleast m, where m is a positive integer. Let
P [f ] be dened as in Denition 1.1. Let n, s, k, l, d(P ) and Q be positive integers.
Let F = (F2)

d and G = (G2)
d, where d ≥ 2, F2 = (fn(f − 1)sP [f ])(k) and G2 =

(gn(g − 1)sP [g])(k). If there exists two non zero constants b1 and b2 such that
N(r, 0;F ) = N(r, b1;G) and N(r, 0;G) = N(r, b2;F ), then n < 2k − s − d(P ) +
k+Q+3

md .

Proof. By Nevanlinna second fundamental theorem we get

T (r, F ) ≤ N(r,∞;F ) +N(r, 0;F ) +N (r, b2;F ) + S(r, F )

≤ N(r,∞;F ) +N2(r, 0;F ) +N(r, 0;G) + S(r, f). (2.6)

By Lemma 2.3 and Lemma 2.5, we have

N(r, 0;G) = N

r, 0; ((gn(g − 1)sP [g])(k))d



= N(r, 0; (gn(g − 1)sP [g])(k))

≤ N


r, 0;

(gn(g − 1)sP [g])(k)

gn+d(P )−k


+N(r, 0; gn+d(P )−k) + S(r, g)

≤ kN(r, 0; g) +QN(r,∞; g) + kN(r,∞; g) +N(r, 0; g) + S(r, g)

≤ (k + 1)N(r, 0; g) + (Q+ k)N(r,∞; g) + S(r, g) (2.7)
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and similarly the same argument can be obtained for N(r, 0;F ).

N2(r, 0;F ) = 2N(r, 0; (fn(f − 1)sP [f ])(k))

≤ 2


N(r, 0; fn+s+d(P )−k) +N


r,∞;

fn+s+d(P )−k

(fn(f − 1)sP [f ])(k)


+ S(r, f)

≤ 2


N(r, 0; f) +N


r,∞;

fn+s+d(P )−k

(fn(f − 1)sP [f ])(k)


+ S(r, f) (2.8)

and similarly the same argument can be obtained for N2(r, 0;G).
Also

N(r,∞;F ) = N(r,∞; f). (2.9)

Using (2.7), (2.8) and (2.9) in (2.6), we obtain

T (r, F ) ≤ N(r,∞; f) + 2


N(r, 0; f) +N


r,∞;

fn+s+d(P )−k

(fn(f − 1)sP [f ])(k)



+(k + 1)N(r, 0; g) + (Q+ k)N(r,∞; g) + S(r, f) (2.10)

and similarly

T (r,G) ≤ N(r,∞; g) + 2


N(r, 0; g) +N


r,∞;

gn+s+d(P )−k

(gn(g − 1)sP [g])(k)



+(k + 1)N(r, 0; f) + (Q+ k)N(r,∞; f) + S(r, g). (2.11)

Again since d ≥ 2,

kdN(r,∞; g) ≥ (k + 1)N(r,∞; g), (2.12)

kdN(r,∞; f) ≥ (k + 1)N(r,∞; f). (2.13)

By Lemma 2.7, we have

(n+ s+ d(P )− 2k)dT (r, f) + kdN(r,∞; f) + dN


r,∞;

fn+s+d(P )−k

(fn(f − 1)sP [f ])(k)



≤ T (r, F ) + S(r, f)(2.14)

and similarly the same argument can be obtained for T (r,G).
Hence from (2.10)-(2.14), we obtain


nd+ sd+ d(P )d− 2kd− k +Q+ 3

m


(T (r, f) + T (r, g)) ≤ (S(r, f) + S(r, g)),

which gives n < 2k − s− d(P ) + k+Q+3
md .

This proves the lemma. □
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3. Proof of Theorems

Proof of Theorem 1.1. Let F = (F2)
d, G = (G2)

d and F2 = (F1)
(k), G2 =

(G1)
(k), where F1 = fn(f − 1)sP [f ] and G1 = gn(g − 1)sP [g].

Since EF2
(S, 1) = EG2

(S, 1), we see that F and G share (1, 1). If H ̸≡ 0, then by
Lemma 2.2

T (r, F ) ≤ N2(r, 0;F ) +N2(r,∞;F ) +N2(r, 0;G) +N2(r,∞;G) +
1

2
N(r, 0;F )

+
1

2
N(r,∞;F ) + S(r, F ) + S(r,G). (3.1)

By Lemma 2.7, we obtain

(n+ s+ d(P )− 2k)T (r, f) ≤ T (r, F2) + S(r, f)

≤ (k + 1)(n+ s+ d(P ) +Q)T (r, f)

+S(r, f) (3.2)

and similarly the same argument can be obtained for T(r,g).
Since T (r, F ) = dT (r, F2) + S(r, F2) and T (r,G) = dT (r,G2) + S(r,G2), it is easy
to see that S(r, F ) = S(r, F2) = S(r, f) and S(r,G) = S(r,G2) = S(r, g).
On the other hand

N2(r,∞;F ) = 2N(r,∞; f), (3.3)

N2(r,∞;G) = 2N(r,∞; g), (3.4)

1

2
N(r,∞;F ) =

1

2
N(r,∞; f). (3.5)

By Lemma 2.3 and Lemma 2.5, we have

N2(r, 0;F ) = N2


r, 0; ((fn(f − 1)sP [f ])(k))d



= 2N(r, 0; (fn(f − 1)sP [f ])(k))

≤ 2N


r, 0;

(fn(f − 1)sP [f ])(k)

fn+d(P )−k


+ 2N(r, 0; fn+d(P )−k) + S(r, f)

≤ 2kN(r, 0; f) + 2QN(r,∞; f) + 2kN(r,∞; f) + 2N(r, 0; f) + S(r, f)

≤ 2(k + 1)N(r, 0; f) + 2(Q+ k)N(r,∞; f) + S(r, f) (3.6)

and similarly the same argument can be obtained for N2(r, 0;G).
Similarly, we have

1

2
N(r, 0;F ) ≤ 1

2
(k + 1)N(r, 0; f) +

1

2
(Q+ k)N(r,∞; f) + S(r, f). (3.7)

Again

N2(r, 0;G) = 2N(r, 0; (gn(g − 1)sP [g])(k))

≤ 2


N(r, 0; gn+s+d(P )−k) +N


r,∞;

gn+s+d(P )−k

(gn(g − 1)sP [g])(k)


+ S(r, g)

≤ 2


N(r, 0; g) +N


r,∞;

gn+s+d(P )−k

(gn(g − 1)sP [g])(k)


+ S(r, g) (3.8)
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and similarly the same argument can be obtained for N2(r, 0;F ).
Combining (3.1) and (3.3)-(3.8), we deduce

T (r, F ) ≤ 6k + 5Q+ 10

2m
T (r, f) +

4

m
T (r, g) + 2kN(r,∞; f)

+2N


r,∞;

gn+s+d(P )−k

(gn(g − 1)sP [g])(k)


+ S(r, f) + S(r, g) (3.9)

and similarly the same argument can be obtained for T (r,G).
By Lemma 2.7, we have

(n+ s+ d(P )− 2k)dT (r, f) + kdN(r,∞; f) + dN


r,∞;

fn+s+d(P )−k

(fn(f − 1)sP [f ])(k)



≤ T (r, F ) + S(r, f)(3.10)

and similarly the same argument can be obtained for T (r,G).
Again since d ≥ 2

dN


r,∞;

fn+s+d(P )−k

(fn(f − 1)sP [f ])(k)


≥ 2N


r,∞;

fn+s+d(P )−k

(fn(f − 1)sP [f ])(k)


, (3.11)

kdN(r,∞; f) ≥ 2kN(r,∞; f) (3.12)

and similarly the same argument can be obtained for g.
From (3.9) - (3.12), we have

nd+ sd+ d(P )d− 2kd− 6k + 5Q+ 18

2m


(T (r, f) + T (r, g)) ≤ (S(r, f) + S(r, g)),

which contradicts n > 2k − s− d(P ) + 6k+5Q+18
2md .

Therefore we must have H ≡ 0. Then
F ′′

F ′ − 2F ′

F − 1


−


G′′

G′ − 2G′

G− 1


= 0. (3.13)

Integrating both side twice, we get from (3.13)

1

G− 1
=

A

F − 1
+B, (3.14)

where A ̸= 0 and B are constants. Thus

G =
(B + 1)F + (A−B − 1)

BF + (A−B)
(3.15)

and

F =
(B − A)G+ (A−B − 1)

BG− (B + 1)
. (3.16)

Next we consider the following three cases:
Case 1. B ̸= 0,−1. Then from (3.16), we have

N


r,
B + 1

B
;G


= N(r,∞;F ). (3.17)
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By Nevanlinna second fundamental theorem and (3.8), we get

T (r,G) ≤ N(r,∞;G) +N(r, 0;G) +N


r,
B + 1

B
;G


+ S(r,G)

≤ N(r,∞;G) +N2(r, 0;G) +N(r,∞;F ) + S(r,G)

≤ N(r,∞; g) + 2


N(r, 0; g) +N


r,∞;

gn+s+d(P )−k

(gn(g − 1)sP [g])(k)



+N(r,∞; f) + S(r, g). (3.18)

If A−B − 1 ̸= 0, then it follows from (3.15) that

N


r,
B + 1− A

B + 1
;F


= N(r, 0;G). (3.19)

Again by Nevanlinna second fundamental theorem and (3.7), (3.8), we get

T (r, F ) ≤ N(r,∞;F ) +N(r, 0;F ) +N


r,
B + 1− A

B + 1
;F


+ S(r, F )

≤ N(r,∞;F ) +N2(r, 0;F ) +N(r, 0;G) + S(r, f)

≤ N(r,∞; f) + 2


N(r, 0; f) +N


r,∞;

fn+s+d(P )−k

(fn(f − 1)sP [f ])(k)



+(k + 1)N(r, 0; g) + (Q+ k)N(r,∞; g) + S(r, f). (3.20)

Again since d ≥ 2,

kdN(r,∞; g) ≥ (k + 1)N(r,∞; g), (3.21)

kdN(r,∞; f) ≥ 2N(r,∞; f). (3.22)

Hence combining (3.10), (3.11), (3.12), (3.18), (3.20), (3.21) and (3.22), we obtain

nd+ sd+ d(P )d− 2kd− 2

m


T (r, f) +


nd+ sd+ d(P )d− 2kd− k + 3 +Q

m


T (r, g)

≤ S(r, f) + S(r, g).

which contradicts with n > 2k − s− d(P ) + 6k+5Q+18
2md . Hence A−B − 1 = 0.

Then by (3.15), we have

N


r,− 1

B
;F


= N(r,∞;G). (3.23)

Again by Nevanlinna second fundamental theorem

T (r, F ) ≤ N(r,∞;F ) +N(r, 0;F ) +N


r,− 1

B
;F


+ S(r, F )

≤ N(r,∞;F ) +N2(r, 0;F ) +N (r,∞;G) + S(r, f)

≤ N(r,∞; f) + 2


N(r, 0; f) +N


r,∞;

fn+s+d(P )−k

(fn(f − 1)sP [f ])(k)



+N(r,∞; g) + S(r, f). (3.24)

Again since d ≥ 2,

kdN(r,∞; f) ≥ 2N(r,∞; f), (3.25)
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kdN(r,∞; g) ≥ 2N(r,∞; g). (3.26)

Now combining (3.11), (3.18), (3.24), (3.25) and (3.26), we obtain

nd+ sd+ d(P )d− 2kd− 2

m


[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g).

which contradicts with n > 2k − s− d(P ) + 6k+5Q+18
2md .

Case 2. B = −1. Then G = A
A+1−F and F = (1+A)G−A

G

If A+1 ̸= 0. We obtain N(r, A+1;F ) = N(r,∞;G) and N(r, A
A+1 ;G) = N(r, 0;F ).

By similar arguments as in case 1 we arrive at a contradiction. Therefore A+1 = 0,
then FG ≡ 1. That is ((fn(f − 1)sP [f ])(k))d((gn(g − 1)sP [g])(k))d ≡ 1. Thus we
have (fn(f − 1)sP [f ])(k)(gn(g − 1)sP [g])(k) = h, where hd = 1. Then by Lemma
2.8 we arrive at a contradiction.

Case 3. B = 0. Then (3.15) and (3.16) gives G = F+A−1
A and F = AG+1−A.

If A − 1 ̸= 0, then N(r, 1 − A;F ) = N(r, 0;G) and N(r, A−1
A ;G) = N(r, 0;F ). By

Lemma 2.9 we arrive at a contradiction. Hence A − 1 = 0, therefore F ≡ G, that
is ((fn(f − 1)sP [f ])(k))d ≡ ((gn(g − 1)sP [g])(k))d. We have

(fn(f − 1)sP [f ])(k) = h(gn(g − 1)sP [g])(k) (3.27)

with hd = 1. By integration, we get

(fn(f − 1)sP [f ])(k−1) = h(gn(g − 1)sP [g])(k−1) + ck−1,

where ck−1 is a constant. If ck−1 ̸= 0 , using Lemma 2.9, we arrive at a contradic-
tion. Hence ck−1 = 0 .
Repeating the process (k − 1)-times, we deduce that

fn(f − 1)sP [f ] = hgn(g − 1)sP [g]. (3.28)

Let t = f
g . If t is a constant, by putting f = tg in (3.28), we get

gn+s(tn+s+d(P ) − h) + .....+ (−1)isCs−i
gn+s−i(tn+s−i+d(P ) − h)

+......+ (−1)sgn(hn+d(P ) − h) = 0,

which implies that tσ = h, where σ = gcd(n+s+d(P ), n+s−1+d(P ), ...., n+d(P )).
Thus f(z) = tg(z) for a constant t such that tσd = 1.

If t is not constant then from (3.28), we nd that f and g satisfying the alge-
braic equation R(f, g) = 0, where R(f, g) = fn(f − 1)sP [f ]− hgn(g− 1)sP [g] with
hd = 1.
This completes the proof of Theorem 1.1. □

Proof of Theorem 1.2.

Proof. Let F = (F2)
d, G = (G2)

d, and F2 = (F1)
(k), G2 = (G1)

(k) where F1 =
fn(f − 1)sP [f ] and G1 = gn(g − 1)sP [g].
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Since EF2
(S, 0) = EG2

(S, 0), we see that F and G share (1, 0). If H ̸≡ 0, then by
Lemma 2.6

T (r, F ) ≤ N2(r, 0;F ) +N2(r,∞;F ) +N2(r, 0;G) +N2(r,∞;G) + 2N(r, 0;F )

+2N(r,∞;F ) +N(r, 0;G) +N(r,∞;G) + S(r, F ) + S(r,G). (3.29)

Now using (3.3)-(3.8) and (3.10)-(3.12) in (3.29), we obtain

nd+ sd+ d(P )d− 2kd− 8k + 5Q+ 14

m


(T (r, f) + T (r, g)) ≤ (S(r, f) + S(r, g)),

which contradicts n > 2k − s− d(P ) + 8k+5Q+14
md .

Thus we must have H ≡ 0. Then the result follows from the proof of Theorem 1.1.
This completes the proof of Theorem 1.2.

□
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