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SOME FAMILIES OF ANALYTIC FUNCTIONS RELATED TO

THE ERDELY-KOBER INTEGRAL OPERATOR

ADITYA LAGAD, RAJKUMAR N.INGLE, P.THIRUPATHI REDDY

Abstract. The Erdelyi-Kober integral operator is a specific integral trans-

form used in mathematical analysis, particularly in connection with solv-

ing certain differential equations and studying properties of functions. The
study of analytic functions in connection with the Erdelyi-Kober integral op-

erator involves analyzing how the operator affects the analytic properties of

functions, ensuring convergence, and understanding the behavior near singu-
larities. These properties are crucial for applications in various branches of

mathematics, including differential equations, harmonic analysis, and integral

transforms. This paper aims to explore a novel category of regular mapping
characterized by negative coefficients in connection with the Erdely-Kober in-

tegral operator within the unit disk. We will establish fundamental properties

such as coefficient inequalities, extreme points, integral means inequalities and
subordination results for this class.

1. Introduction

The Erdelyi-Kober integral operator, named after mathematicians Arthur Erde-
lyi and Hans Kober, finds applications in various areas of mathematics, physics,
engineering, and other fields. Some of the key applications include: Integral Equa-
tions, Differential Equations, Potential Theory, Fractional Calculus, Special Func-
tions, Probability Theory and Analytic Number Theory. It serves as a bridge
between different mathematical concepts and provides a common framework for
tackling complex problems. Furthermore, the Erdelyi-Kober operator continues to
inspire research and innovation, as mathematicians and scientists explore new appli-
cations, extensions, and connections with other areas of mathematics and physics.
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Its theoretical foundations, coupled with its practical implications, make it an in-
dispensable tool in the toolkit of researchers and practitioners alike. The Erdelyi-
Kober integral operator represents not only a mathematical concept but also a
gateway to deeper understanding and broader applications across disciplines. Its
continued study and exploration promise further advancements and insights into
the intricate workings of the mathematical universe.
The Erdelyi-Kober integral is a versatile mathematical tool with applications across
different domains, including pure mathematics, applied mathematics, physics, and
engineering. Its importance lies in providing solutions to various types of differen-
tial and integral equations, as well as facilitating the study of special functions and
their properties.
Let A represent the set encompassing all mapping v(z) in the following type:

v(z) = z +

∞∑
n=2

anz
n, (1)

in the open unit disk U = {z ∈ C : |z| < 1}, we define a subclass, signified as S,
within the larger class A, which consists of univalent mapping. These mappings
adhere to the common normalization condition of v(0) = v′(0)− 1 = 0.

Specifically, the subclass S is a subset of A comprising mapping v(z) that are
schlicht in the unit disk U .

A function v ∈ A is classified as a star shape mapping of order ξ, where 0 ≤ ξ < 1,
if it fulfils the following criteria:

ℜ
{
zv′(z)

v(z)

}
> ξ, z ∈ U. (2)

We represent this class as S∗(ξ). A mapping u belonging to the broader class A
is considered a convex function of order ξ, where 0 ≤ ξ < 1, when it meets the
subsequent conditions:

ℜ
{
1 +

zv′′(z)

v′(z)

}
> ξ, z ∈ U. (3)

We represent this class using the notation K(ξ). It’s worth noting that S∗(0) = S∗

and K(0) = K correspond to the conventional classes of star-shape and convex
mapping within the unit disk U , respectively.

For a mapping v in A defined by equation (1) and as a mapping g(z) ∈ A
provided by:

g(z) = z +

∞∑
n=2

bnz
n (4)

their convolution , signified by (v ∗ g), is specified as

(v ∗ g)(z) = z +

∞∑
n=2

anbnz
n = (g ∗ v)(z), z ∈ U. (5)

Note that v ∗ g ∈ A.
We’ll designate the class of mapping that is regular within the unit disk U as T ,
and these mapping can be expressed sequentially:

v(z) = z −
∞∑

n=2

anz
n, (an ≥ 0, z ∈ U) (6)
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and let T (ξ) = S(ξ) ∩ T and C(ξ) = K(ξ) ∩ T. The category of T (ξ) and related
groups exhibits noteworthy characteristics and has been thoroughly explored by
Silverman [27].

Let’s now revisit the definition of the Erdély-Kober type integral operator ( [14],
Ch. 5) that will be consistently employed in this paper, as obeys:
Definition 1 Given ϑ > 0, and complex plane values for A and c with ℜ(c−a) ≥ 0,
we express an Erdély-Kober type integral operator indicated as Ia,cϑ : A → A. The
operator is specified in the domain where ℜ(c − a) > 0 and ℜ(a) > −ϑ, and its
definition is as obeys:

Ia,cϑ v(z) =
Γ(c+ ϑ)

Γ(a+ ϑ)

1

Γ(c− a)

∫ 1

0

(1− t)c−a−1v(ztϑ)dt, ϑ > 0. (7)

When ϑ > 0, ℜ(c− a) ≥ 0, ℜ(a) > −ϑ, and v ∈ A of the type (1), it obeys that:

Ia,cϑ v(z) = z +

∞∑
n=2

ℵa,c
ϑ (n)anz

n, (8)

where

ℵa,c
ϑ (n) =

Γ(c+ ϑ)Γ(a+ nϑ)

Γ(a+ ϑ)Γ(c+ nϑ)
and ℵa,c

ϑ (2) =
Γ(c+ ϑ)Γ(a+ 2ϑ)

Γ(a+ ϑ)Γ(c+ 2ϑ)
. (9)

Note that Ia,aϑ v(z) = v(z). The operator Ia,cϑ v(z) extends to encompass various
well-known operators that have been previously explored. Several notable specific
cases include:

(i). When a = κ, c = ς + κ, and ϑ = 1, we acquire the operator Qς
κv(z) for

ς ≥ 0 and κ > 1, as explored by Jung et al. [13].
(ii). When a = ς − 1, c = κ − 1, and ϑ = 1, we acquire the operator Lς,κv(z),

where ς and κ belong to C ∈ Z0 (Z0 = {0,−1,−2, · · · }), as examined by
Carlson and Shafer [9].

(iii). If a = ς − 1, c = ℓ, and ϑ = 1, the operator Iς,ℓ is acquireed, where ς > 0
and ℓ > 0, as studied by Choi et al. [11].

(iv). When a = ς, c = 0, and ϑ = 1, the operator Dς is acquired, with ς > −1,
as explored by Ruschweyh [24].

(v). For a = 1, c = n, and ϑ = 1, the operator In is acquired, where n > N0, as
deliberated by Noor [19], Noor and Noor [20].

(vi). In the case where a = κ, c = κ+ 1, and ϑ = 1, the integral operator Iκ,1 is
acquired, as deliberated by Bernardi [8].

(vii). When a = 1, c = 2, and ϑ = 1, the integral operator I1,1 = I is acquired,
as examined by Libera [15] and Livingston [17].

Inspired by the contributions of several researchers [1, 2, 5, 6, 18, 23, 31] , we
propose a novel subclass of mapping within the broader class A.
Definition 2 For ℏ ≥ 0, 0 ≤ ℓ < 1, we set Sa,c

ϑ (ℏ, ℓ) be the subclass of A consisting
of functions of the form (1) and satisfy

Re

(
Ia,cϑ v(z)

z

)
≥ ℏ

∣∣∣∣(Ia,cϑ v(z))
′ −

Ia,cϑ v(z)

z

∣∣∣∣+ ℓwhere

Ia,cϑ v(z) is given by (7).
We further let TSa,c

ϑ (ℏ, ℓ) = Sa,c
ϑ (ℏ, ℓ) ∩ T.

In this paper, we obtain coefficient inequalities, extreme points, integral means
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inequalities for the functions in the class TSa,c
ϑ (ℏ, ℓ) and also subordination results

for the class of function v ∈ Sa,c
ϑ (ℏ, ℓ).

2. Coefficient Estimates

Theorem 1 The function v defined by (1) is in the class Sa,c
ϑ (ℏ, ℓ) if

∞∑
n=2

[1 + ℏ(n− 1)]ℵa,c
ϑ (n)|an| ≤ 1− ℓ, (11)

where ℏ ≥ 0, 0 ≤ ℓ < 1 and ℵa,c
ϑ (n) is given by (7).

Proof. It suffices to show that

ℏ
∣∣∣∣(Ia,cϑ v(z))

′ −
Ia,cϑ v(z)

z

∣∣∣∣−Re

{
Ia,cϑ v(z)

z
− 1

}
≤ 1− ℓ.

We have the next inequality

ℏ
∣∣∣∣(Ia,cϑ v(z))

′ −
Ia,cϑ v(z)

z

∣∣∣∣−Re

{
Ia,cϑ v(z)

z
− 1

}

≤ℏ

∣∣∣∣∣∣∣∣
∞∑

n=2
(n− 1)ℵa,c

ϑ (n)anz
n

z

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

∞∑
n=2

ℵa,c
ϑ (n)anz

n

z

∣∣∣∣∣∣∣∣
≤ℏ

∞∑
n=2

(n− 1)ℵa,c
ϑ (n)|an|+

∞∑
n=2

ℵa,c
ϑ (n)|an|

=

∞∑
n=2

[1 + ℏ(n− 1)]ℵa,c
ϑ (n)|an|.

The last expression is bounded above by (1− ℓ) if

∞∑
n=2

[1 + ℏ(n− 1)]ℵa,c
ϑ (n)|an| ≤ 1− ℓ

and the proof of theorem is completed.
In the following theorem, we obtain necessary and sufficient conditions for func-

tions in TSa,c
ϑ (ℏ, ℓ).

Theorem 2 For ℏ ≥ 0, 0 ≤ ℓ < 1, a function v of the form (2) to be in the class
TSa,c

ϑ (ℏ, ℓ) if and only if

∞∑
n=2

[1 + ℏ(n− 1)]ℵa,c
ϑ (n)|an| ≤ 1− ℓ.

Proof. Suppose v(z) of the form (2) is in the class TSa,c
ϑ (ℏ, ℓ). Then

Re

{
Ia,cϑ v(z)

z

}
− ℏ

∣∣∣∣(Ia,cϑ v(z))
′ −

Ia,cϑ v(z)

z

∣∣∣∣ ≥ ℓ.

Equivalently,

Re

[
1−

∞∑
n=2

ℵa,c
ϑ (n)|an|zn−1

]
− ℏ

[ ∞∑
n=2

(n− 1)ℵa,c
ϑ (n)anz

n−1

]
≥ ℓ.

Letting z to be real values and as |z| → 1, we have
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1−
∞∑

n=2

ℵa,c
ϑ (n)|an| − ℏ

∞∑
n=2

(n− 1)ℵa,c
ϑ (n)|an| ≥ ℓ

which implies

∞∑
n=2

[1 + ℏ(n− 1)]ℵa,c
ϑ (n)|an| ≤ 1− ℓ,

where ℏ ≥ 0, 0 ≤ ℓ < 1,ℵa,c
ϑ (n) is given by (7) and the sufficiency follows from

Theorem 2.
Corollary 1 If v ∈ TSa,c

ϑ (ℏ, ℓ) then

an ≤ 1− ℓ

[1 + ℏ(n− 1)]ℵa,c
ϑ (n)

.

Equality holds for the function

v(z) = z − 1− ℓ

[1 + ℏ(n− 1)]ℵa,c
ϑ (n)

zn,

ℏ ≥ 0, 0 ≤ ℓ < 1,ℵa,c
ϑ (n) is given by (7).

3. Extreme Points

Theorem 3 Let v1(z) = z and vn(z) = z − 1−ℓ
[1+ℏ(n−1)]ℵa,c

ϑ (n)
zn, n ≥ 2 for ℏ ≥

0, 0 ≤ ℓ < 1,ℵa,c
ϑ (n) is given by (7). Then v(z) is in the class ℵa,c

ϑ (n) if and only

if it can be expressed in the form v(z) =
∞∑

n=1
λnvn(z), where λn and

∞∑
n=1

λn = 1.

Proof. If v(z) =
∞∑

n=1
λnvn(z) with λn ≥ 0 and

∞∑
n=1

λn = 1. Then

v(z) =

∞∑
n=1

λnvn(z)

= λ1v1(z) +
∞∑

n=2

λnvn(z)

=

(
1−

∞∑
n=2

λn

)
z +

∞∑
n=2

[
λn

(
z − 1− ℓ

[1 + ℏ(n− 1)]ℵa,c
ϑ (n)

zn
)]

= z −
∞∑

n=2

1− ℓ

[1 + ℏ(n− 1)]ℵa,c
ϑ (n)

zn.

Now

∞∑
n=2

[1 + ℏ(n− 1)]ℵa,c
ϑ (n)

1− ℓ

1− ℓ

[1 + ℏ(n− 1)]ℵa,c
ϑ (n)

λn

=

∞∑
n=2

λn = 1− λ1 ≤ 1.
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Then v ∈ TSa,c
ϑ (ℏ, ℓ). Conversely suppose that v ∈ TSa,c

ϑ (ℏ, ℓ). Then Corollary
gives

an ≤ 1− ℓ

[1 + ℏ(n− 1)]ℵa,c
ϑ (n)

, n ≥ 2

set λn =
[1 + ℏ(n− 1)]ℵa,c

ϑ (n)

1− ℓ
an, n ≥ 2

where λn = 1−
∞∑

n=2

λn.

Then

v(z) = z −
∞∑

n=2

anz
n

= z −
∞∑

n=2

λn
1− ℓ

[1 + ℏ(n− 1)]ℵa,c
ϑ (n)

= z −

[
1−

∞∑
n=2

λn

]
+

∞∑
n=2

λnvn(z)

= λ1v1(z) +

∞∑
n=2

λnvn(z)

=

∞∑
n=1

λnvn(z).

The poof of theorem is completed

4. Integral Means Inequalities

Definition 3 (Subordination principle) for analytic function g and h with
g(0) = h(0), g is said to be subordinate to h, denoted by g ≺ h if there exists an
analytic function ω such that ω(0) = 0, |ω(z)| < 1 and g(z) = h(ω(z)), for all z ∈ U.
Lemma 1[16] If the function v(z) and g(z) are analytic in U with g(z) ≺ v(z) then

2π∫
0

∣∣g(reiθ)∣∣p dθ ≤
2π∫
0

∣∣v(reiθ)∣∣p dθ (0 ≤ r < 1, p > 0 and z = reiθ).

Theorem 4 Suppose v ∈ TSa,c
ϑ (ℏ, ℓ), p > 0, ℏ ≥ 0, 0 ≤ ℓ < 1 and v(z) is defined by

v2(z) = z − 1− ℓ

(1 + ℏ)ℵa,c
ϑ (2)

z2.

Then for z = reiθ, 0 ≤ r < 1,

2π∫
0

|v(z)|pdθ ≤
2π∫
0

|v2(z)|pdθ (12)
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Proof. For v(z) = z −
∞∑

n=2
|an|zn, (12) is equivalent to proving that

2π∫
0

∣∣∣∣∣1−
∞∑

n=2

|an|zn−1

∣∣∣∣∣
p

dθ ≤
2π∫
0

∣∣∣∣1− 1− ℓ

(1 + ℏ)ℵa,c
ϑ (2)

z

∣∣∣∣p dθ, (p > 0).

By applying Littlewood’s subordination theorem (Lemma 4),
it would be sufficient to show that

1−
∞∑

n=2

|an|zn−1 ≺ 1− 1− ℓ

[1 + ℏ(n− 1)]ℵa,c
ϑ (2)

z (13)

Setting

1−
∞∑

n=2

|an|zn−1 ≺ 1− 1− ℓ

[1 + ℏ(n− 1)]ℵa,c
ϑ (2)

ω(z).

We have ω(z) =
[1+ℏ(n−1)]ℵa,c

ϑ (n)

1−ℓ

∞∑
n=2

anz
n−1 and and ω(z) is analytic in U with

ω(0) = 0. Moreover it suffices to prove that ω(z) satisfies |ω(z)| < 1, z ∈ U. Now

|ω(z)| =

∣∣∣∣∣
∞∑

n=2

[(1 + ℏ(n− 1)ℵa,c
ϑ (n)

1− ℓ
anz

n−1

∣∣∣∣∣
≤ |z|

∞∑
n=2

[1 + ℏ(n− 1)]ℵa,c
ϑ (n)

1− ℓ
|an| (14)

≤ |z| < 1.

Thus is view of the inequality (14) the subordination (13) follows, which proves the
Theorem.

5. Subordination Results

Definition 4 (Subordination factor sequence ) A sequence

{
bn

}∞

n=2

of complex

numbers is said to be a subordinating sequence if, whenever v(z) =
∞∑

n=2
anz

n, a1 = 1

is regular, univalent and convex in U, we have
∞∑

n=1
bnanz

n ≺ v(z), z ∈ U.

Theorem 5[32] The sequence

{
bn

}∞

n=2

is a subordinating factor sequence if and

only if

Re

{
1 + 2

∞∑
n=1

bnz
n

}
> 0, z ∈ U.

Theorem 6 Let v ∈ Ia,cϑ v(z) and g(z) any function in the usual class of convex
function C. Then

(1 + ℏ)ℵa,c
ϑ (n)

2(1− ℓ) + (1 + ℏ)ℵa,c
ϑ (n)

(v ∗ g)(z) ≺ g(z) (15)

where ℏ ≥ 0, 0 ≤ ℓ < 1 with ℵa,c
ϑ (n) is given by (7)

Re{v(z)} > −
(1− ℓ) + (1 + ℏ)ℵa,c

ϑ (n)

(1 + ℏ)ℵa,c
ϑ (n)

, z ∈ E. (16)
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The constant
(1+ℏ)ℵa,c

ϑ (n)

2(1−ℓ)+(1+ℏ)ℵa,c
ϑ (n)

is the best estimate.

Proof Let v ∈ Ia,cϑ v(z) and g(z) = z +
∞∑

n=2
cnz

n ∈ C.

Then

(1 + ℏ)ℵa,c
ϑ (n)

2(1− ℓ) + (1 + ℏ)ℵa,c
ϑ (n)

(v∗g)(z) =
(1 + ℏ)ℵa,c

ϑ (n)2(1− ℓ) + (1 + ℏ)ℵa,c
ϑ (n)

(
z +

∞∑
n=2

cnanz
n

)
.

Then by Definition 5.1, the subordination result holds true if
{

(1+ℏ)ℵa,c
ϑ (n)

2(1−ℓ)+(1+ℏ)ℵa,c
ϑ (n)

}∞

n=1
is a subordinating factor sequence with a1 = 1.
In view of Theorem 5, this is equivalent to the following inequality.

Re

{
1 +

∞∑
n=1

(1 + ℏ)ℵa,c
ϑ (n)

(1− ℓ) + (1 + ℏ)ℵa,c
ϑ (n)

anz
n

}
> 0, z ∈ U. (17)

Now for |z| = r < 1, we have

Re

{
1 +

∞∑
n=1

(1 + ℏ)ℵa,c
ϑ (n)

2(1− ℓ) + (1 + ℏ)ℵa,c
ϑ (n)

anz
n

}

= Re

1 +
(1 + ℏ)ℵa,c

ϑ (n)

(1− ℓ) + (1 + ℏ)ℵa,c
ϑ (n)

z +

∞∑
n=2

(1 + ℏ)ℵa,c
ϑ (n)anz

n

(1− ℓ) + (1 + ℏ)ℵa,c
ϑ (n)


≥ 1−

(1 + ℏ)ℵa,c
ϑ (n)

(1− ℓ) + (1 + ℏ)ℵa,c
ϑ (n)

r −

∞∑
n=2

(1 + ℏ)ℵa,c
ϑ (n)anr

n

(1− ℓ) + (1 + ℏ)ℵa,c
ϑ (n)

≥ 1−
(1 + ℏ)ℵa,c

ϑ (n)

(1− ℓ) + (1 + ℏ)ℵa,c
ϑ (n)

r − 1− ℓ

(1− ℓ) + (1 + ℏ)ℵa,c
ϑ (n)

r

> 0.

Using (11) and the fact that [1 + ℏ(n− 1)]ℵa,c
ϑ (n) is increasing function for n ≥ 2.

This proves the inequality (17) and hence also the subordination result (15) asserted
by Theorem 5.
The inequality (16) follows from (15) by taking

g(z) =
z

1− z
= z +

∞∑
n=2

zn ∈ C.

Now we consider the function v(z) = z − 1−ℓ
(1+ℏ)ℵa,c

ϑ (n)
z2, where ℏ ≥ 0, 0 ≤ ℓ < 1.

Clearly F ∈ Ia,cϑ v(z). For the function (15) becomes

(1 + ℏ)ℵa,c
ϑ (n)

2(1− ℓ) + (1 + ℏ)ℵa,c
ϑ (n)

v(z) ≺ z

1− z
.

It is easily verified that

minRe

{
(1 + ℏ)ℵa,c

ϑ (n)

2(1− ℓ) + (1 + ℏ)ℵa,c
ϑ (n)

v(z)

}
=

−1

2
, z ∈ U.

This shows that the constant
(1+ℏ)ℵa,c

ϑ (n)

2(1−ℓ)+(1+ℏ)ℵa,c
ϑ (n)

v(z) ≺ z
1−z is best possible.
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