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NUMERICAL SOLUTION OF VOLTERRA

INTEGRO-DIFFERENTIAL EQUATIONS OF FRACTIONAL

ORDER WITH INITIAL CONDITIONS USING COLLOCATION

APPROACH

O. O. ADUROJA, A. M. AJILEYE, G. AJILEYE, T. OYEDEPO

Abstract. In this paper, we developed and implemented a numerical method
for the solution of Volterra integro- differential equations of fractional order

using the collocation approach. We obtained the integral form of the problem,

which is transformed into a system of algebraic equations using the standard
collocation points. We then solve the algebraic equation using matrix inversion.

The analysis of the developed method was investigated, and the solution was
found to be continuous and convergent. The uniqueness of the solution was

also proven. Numerical examples were considered to test the consistency and

efficiency of the method.

1. Introduction

The applications of fractional differential and integral equations are widely used
in engineering, physics, chemistry, and mathematics. Ordinary and partial differen-
tial equations are examples of functional equations where real-world situations are
mathematically modeled. In order to investigate population growth processes, Vito
Volterra created a novel kind of equation known as Integro-differen- tial Equations
(IDEs) in the early 1900s. One or more derivatives of the unknown function can be
found under the integral sign in these equations. IDEs are found in many mathe-
matical formulations of physical events and are used in the modeling of various sci-
entific and engineering phenomena.[23]. In the open literature, many numerical ap-
proaches for solving integro-differential difference equations and integro-differential
equations have been proposed, including the Adomian decomposition method by
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[16], Collocation method by [3, 1, 5], Hybrid multistep method [14, 6, 17], Ho-
motopy analysis method [15], Bernoulli matrix method [11], Differential transform
method [13], Shifted Legendre polynomials [18], Bernstein Polynomials Method
[19], Differential transformation [12], Chebyshev polynomials[20], Weighted mean-
value theorem[8], Optimal Auxiliary Function Method (OAFM) [26], Laplace de-
composition method [15], Reproducing kernel method [14], Block pulse functions
operational matrices [22] and Spectral Homotopy Analysis Method [9]. [4] used
the standard collocation method to solve first-order Volterra integro-differential
equations. Assuming an approximation solution, the class of integro-differential
equations was restated in terms of the derived polynomial. After solving for the
unknown, we collocated the resultant equation at many points within the range
[0, 1], yielding a system of linear algebraic equations. [7] introduced a collocation
method for the computational solution of the integro-differential equations with
Fredholm-Volterra fractional order. They first obtained the problem in linear inte-
gral form, which they then converted into a set of linear algebraic equations using
standard collocation points.

This research paper consider the numerical solution of Volterra Integro-differential
equation fractional order of the form

c
0D

α
xy (x) = g (x) + h(x)y(x) +

∫ x

0

K(x, t)(y(t))vdt, 0 ≤ x, t ≤ 1, v ≥ 1 (1)

subject to initial condition

y(j)(0) = qj , j = 0, 1, ..., N (2)

where y(x) is the unknown function to be determine, Dα is the Caputo’s deriva-
tive, K(x, t) is the Volterra integral kernel function. g(x) and h(x) are the known
functions, aj and qj are known constants.

2. Basic definitions

In this section, we define some basic terms that would be encountered in this
research

Definition 2.1. A metric on a set M is a function d : M ×M −→ R with the
following properties. For all x, y ∈M [7]
(a) d(x, y) ≥ 0;
(b) d(x, y) = 0⇐⇒ x = y
(c) d(x, y) = d(y, x)
(d) d(x, y) ≤ d(x, z) + d(x, y)
If d is a metric on M, then the pair (M,d) is called a metric space.

Definition 2.2. Metric space [10] Let (X, d) be a metric space, A mapping
T : X −→ X is Lipschitzian if ∃ a constant L > 0 such that d(Tx, Ty) ≤
Ld(x, y) ∀ x, y ∈ X.

Definition 2.3. Left Caputo’s derivatives) [2] The left Caputo’s definition of frac-
tional derivative operator is given by

c
0D

α
t f (x) =

1

Γ(m− α)

∫ t

0

(x− t)m−α−1f (m)(t)dt (3)

where m− 1 ≤ α ≤ m,m ∈ N, x > 0.
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It has the following two basic properties:

(i): DαIαf (x) = f (x)

(ii): IαDαf (x) = f (x)−
m−1∑
k=0

f (k)(0+)x
k

k! , x > 0

Definition 2.4. (Riemann - Liouvile fractional integral) [10] The Riemann-Liouville
fractional integral of order α > 0 of a continuous function u : (0,∞)→ R is defined
by

0I
α
t u(t) =

1

Γ(α)

t∫
0

(t− s)α−1
u(s)ds. (4)

Definition 2.5. Integration of nth derivatives [10] For α > 0, let u (t) be a contin-
uous function, then

0I
α
t (cDu) (t) = u (t)−

α−1∑
k=0

ckt
k (5)

Definition 2.6. [4] Let (am) ,m ≥ 0 be a sequence of real numbers. The power
series in k with coefficients am is an expression.

y(w) =

M∑
m=0

amw
m = φ(w) A (6)

where φ(w) = [1 w w2 · · · wM ], A = [a0 a1 · · · aM ]
T

Theorem 2.1. (Banach’s fixed point theorem) [21]
Let (X, ‖.‖) be a complete norm space, then each contraction mapping T : X → X
has a unique fixed point x of T in X, such that T (x) = x.

3. Material and Method

This section considers the development of our method, which was achieved by
developing the integral form of the modeled equation (1) and obtaining the algebraic
equations using some lemmas.

3.1. Method of Solution. Lemma: Let y ∈ C ([a, b],R) be the solution to equa-
tion (1) and equation (2), K ∈ C ([a, b],R) then equation (1) and equation(2) is
equivalent to

y(x) = P (x) +
1

Γ(α)

∫ x

0

(x− s)α−1(h(x)y(x)ds

+
1

Γ(α)

∫ x

0

(x− s)α−1

(∫ x

0

K(x, t)(y(t))vdt

)
ds

where

P (x) =

N∑
k=0

y(k)(0)

k!
xk +

1

Γ(α)

∫ x

0

(x− s)α−1g(x)ds

Proof. Multiply equation (1) by 0I
β
x (.) gives

0I
α
x (c0D

α
xy(x)) = 0I

α
x (g (x)) + 0I

α
x (h(x)y(x)) + 0I

α
x

(∫ x

0

K(x, t)(y(t))vdt

)
using equation (5) on equation (1) gives
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y(x) =

N∑
k=0

y(k)(0)

k!
xk + 0I

α
x g(x)) +0 I

α
x (h(x)y(x)) +0 I

α
x

∫ x

0

K(x, t)(y(t))vdt (7)

applying equation (4) to equation (7) gives

y(x) =

N∑
k=0

y(k)(0)

k!
xk +

1

Γ(α)

∫ x

0

(x− s)α−1(h(x)y(x)ds

+
1

Γ(α)

∫ x

0

(x− s)α−1

(∫ x

0

K(x, t)(y(t))vdt

)
ds+

1

Γ(α)

∫ x

0

(x− s)α−1g(x)ds (8)

collocating at xi in equation (8) gives

y(xi) =

N∑
k=0

y(k)(0)

k!
xki +

1

Γ(α)

∫ xi

0

(xi − s)α−1(h(xi)y(xi)ds

+
1

Γ(α)

∫ xi

0

(xi − s)α−1

(∫ xi

0

K(xi, t)(y(t))vdt

)
ds+

1

Γ(α)

∫ xi

0

(xi − s)α−1g(xi)ds

(9)
using equation (10) gives

N∑
n=0

anx
n
i =

1

Γ(α)

∫ xi

0

(xi − s)α−1

(
h(x)

N∑
n=0

anx
n
i

)
ds

+
1

Γ(α)

∫ xi

0

(xi − s)α−1

(∫ xi

0

K(xi, t)

(
N∑
n=0

anx
n
i

)v
dt

)
ds+ P (xi) (10)

where

P (xi) = +
1

Γ(α)

∫ xi

0

(xi − s)α−1g(x)ds

factorise the values of a′s from equation (10) gives[
N∑
n=0

an
xni − 1

Γ(α)

∫ xi

0
(xi − s)α−1 (h(x)xni ) ds

− 1
Γ(α)

∫ xi

0
(xi − s)α−1

(∫ xi

0
K(xi, t) (xni )

v
dt
)
ds

]
= P (xi) (11)

equation (11) can be in the form

N∑
n=0

anL(xi)=P (xi) (12)

where

L(xi) = xni −
1

Γ(α)

∫ xi

0

(xi − s)α−1 (h(x)xni ) ds

− 1

Γ(α)

∫ xi

0

(xi − s)α−1

(∫ xi

0

K(xi, t) (xni )
v
dt

)
ds

�
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3.2. Consideration of Initial Condition. using the initial condition in equation
(2)

y(j)(0) = qj , j = 0, 1, ..., N (13)

hence, equation (13) becomes

dj

dxj

N∑
n=0

anx
n = qj

N∑
n=0

an

(
dj

dxj
xn
)

= qj (14)

adding equation (14) to equation (12) gives

N∑
n=0

anL
∗(xi)=P

∗(xi) (15)

equation (15) is the algebraic equation that we solve to obtain the values of a’s and
substitute into the approximate solution to give the numerical solution.

3.3. Uniqueness of the Method. In this section, we assumed that the solution
to equation (1) and equation (2) exist, we then establish the uniqueness of solution
and present solutions from the method of solution.
In order to prove the uniqueness theorem, we use the following hypothesis
H1 : Let T : X → X be a mapping for y1, y2 ∈ X,There exist a constant, L > 0.
such that

|yv1(t)− yv2(t)| ≤ L |y1(t)− y2(t)|
H2 : There exist a functionK∗ ∈ C ([0, 1]× [0, 1],R) , the set of all positive functions
such that

K∗ = max
x∈[0,1]

∫ x

0

|K(x, t)| dt <∞

H3 : The function h ∈ R is continuous such that

h∗ = max
x∈[0,1]

|h(x)|

Theorem 3.2. Assume the H1- H3 hold. If

(
h∗ + LK∗

Γ (α+ 1)

)
< 1 (16)

then there exist a unique solution y(x) ∈ T

Proof. Let y1(x), y2(x) ∈ X,then

(Ty1) (x) = P (x) +
1

Γ(α)

∫ x

0

(x− s)α−1(h(x)y1(x)ds+

1

Γ(α)

∫ x

0

(x− s)α−1

(∫ x

0

K(x, t)(y1(t))vdt

)
ds (17)

and

(Ty2) (x) = P (x) +
1

Γ(α)

∫ x

0

(x− s)α−1(h(x)y2(x)ds

+
1

Γ(α)

∫ x

0

(x− s)α−1

(∫ x

0

K(x, t)(y2(t))vdt

)
ds (18)
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substract equation (18) from equation (17) gives

(Ty1) (x)− (Ty2) (x) =
1

Γ(α)

∫ x

0

(x− s)α−1(h(x) [y1(x)− y2(x)] ds+

1

Γ(α)

∫ x

0

(x− s)α−1

(∫ x

0

K(x, t) [yv1(t)− yv2(t)] dt

)
ds

taking the absolute value gives

|(Ty1) (x)− (Ty2) (x)| ≤ 1

Γ(α)

∫ x

0

(x− s)α−1 |h(x)| |y1(x)− y2(x)| ds+

1

Γ(α)

∫ x

0

(x− s)α−1

(∫ x

0

|K(x, t)| |yv1(t)− yv2(t)| dt
)
ds

taking maximum of both sides and using H1 and H2

d (Ty1(x), T y2(x)) ≤
[
h∗ + LK∗

Γ(α+ 1)

]
d(y1, y2)

based on the inequality (16) we have

d (Ty1(x), T y2(x)) ≤ d(y1, y2)

By the Banach contraction principle, we can conclude that T has a unique fixed
point. �

4. Convergence of the method

Theorem 4.3. (Convergence of method) Let (X, d) be a metric space and T : X −→
X be a continuous mapping and yN (x), yN−1(x)εX are approximate solutions of
equation (7). Let ∆N (x) = |yN (x)− yN−1(x)| , if limN→0 (∆N (x)) → 0, then the

method converges to exact solution.

Proof. Let y1(x), y2(x) be approximated by yN (x) =
∑M
n=0 anx

n = φ(x) A and

yN−1 =
∑M
n=0 bnx

n = φ(x) B respectively. Substitute the approximate solution
into equation (8) gives

(TyN ) (x) = P (x) +
1

Γ(α)

∫ x

0

(x− s)α−1(h(x) ( φ(x)) Ads

+
1

Γ(α)

∫ x

0

(x− s)α−1

(∫ x

0

K(x, t) ( φ(t)v) dt

)
dsA

Similarly

(TyN−1) (x) = P (x) +
1

Γ(α)

∫ x

0

(x− s)α−1(h(x) ( φ(x)) Ads

+
1

Γ(α)

∫ x

0

(x− s)α−1

(∫ x

0

K(x, t) ( φ(t)v) dt

)
dsB

|TyN (x)− TyN−1(x)| = 1

Γ(α)

∫ x

0

(x−s)α−1

(
h(x) +

∫ x

0

K(x, t) (φ(t)v ) dt

)
|B−A| ds

Since xε [0, 1] and |B−A| 6= 0, hence limN→0 ∆N (x)→ 0

Therefore the method of solution converges. �
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4.1. Numerical Examples. Example 1: Considering linear fracrional Volterra
integro-differential equation

D0.75y (x) +
x2ex

5
y(x)−

∫ x

0

exty(t)dt = f(x) (19)

subject to initial condition

y(0) = 0

where

f (x) =
6x9/4

Γ(3.25)

Exact solution: y (x) = x3

The approximate solution of equation (19) at N = 3 gives

y3 = −7.941025615000× 10−11x+ 1.422222340000× 10−10x2 + 0.999999999999x3

Table 1: Exact, approximate and absolute error values for example 1
x Exact Our methodN=3 error3

0.2 0.008000000000 0.008000000000 0.00
0.4 0.064000000000 0.064000000000 0.00
0.6 0.216000000000 0.600000000000 0.00
0.8 0.800000000000 0.216000000000 0.00
1.0 1.000000000000 1.000000000000 0.00

Example 2: Considering nonlinear fractional Volterra integro-differential equa-
tion

D1.2y (x)−
∫ x

0

(x− t)2
(y(t))

3
dt = f(x) (20)

subject to initial condition

y(0) = 0, y
′
(0) = 0

where

f (x) =
5

2Γ(0.8)
x

4
5 − x9

252

Exact solution: y (x) = x2

The approximate solution of equation (20) at N = 5 gives

y5 =

(
4.163336342344× 10−16 + 8.326672684689× 10−17x+ 1.000000000000x2

+4.547473508865× 10−13x3 − 4.547473508865× 10−13x4 + 6.821210263297× 10−13x5

)
Table 2: Exact and approximate values for example 2

x Exact N = 5 error5

0.2 0.040000000000 0.040000000000 0.00
0.4 0.160000000000 0.160000000000 0.00
0.6 0.360000000000 0.360000000000 0.00
0.8 0.640000000000 0.640000000000 0.00
1.0 1.000000000000 1.000000000000 0.00

Example 3: Considering nonlinear fractional Volterra integro-differential equation

D1.6y (x)−
∫ x

0

(x+ t)
2

(y(t))
2
dt = f(x (21)

subject to initial condition

y(0) = 0, y
′
(0) = 0
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where

f (x) =
6

Γ(0.33)
x

1
3 − x2

7
− x

4
− 1

9

Exact solution: y (x) = x2

The approximate solution of equation (21) at N = 5 and 10 gives

y5 =

(
−0.79545696e− 4− 0.148975638e− 3x+ 0.926538952030x2

+0.200221882790x3 − 0.512476554541x4 + 0.287008050336x5

)

2.751660086000×10−16+1.000000000000x−1.097149038000×10−9x2+4.323889395000×10−9x3−

5.598697802000× 10−9x4 + 2.344192277000× 10−9x5

y10 =


−2.907896146098× 10−12 − 3.314681862321× 10−12x+ 1.051124559715x2

−0.344825714827x3 + 0.579640269279x4 − 1.121343612671x5

+1.666065216064x6 − 1.773351669312x7 + 1.265789985657x8

−0.511327743530x9 + 0.95399975777e− 1× x10


Table 3: Exact and approximate values for example 3
x Exact Our methodN=5 Our methodN=10 error5 error N=10

0.2 0.040000000000 0.037825872410 0.039941888810 2.174127590e-3 5.811119e-5
0.4 0.160000000000 0.152740859400 0.159091569800 9.2591406e-3 5.9084302e-5
0.6 0.360000000000 0.352533802800 0.396621880900 2.74661972e-3 2.33781191e-5
0.8 0.640000000000 0.569436208300 0.584976498200 6.05637917e-3 5.50235018e-4
1.0 1.000000000000 0.981063809800 0.997171266300 6.0563791700e-3 4.28287337e-4

5. Discussion of Results

In this section, we discussed the results obtained from the solved problems using
our developed method. We also established the uniqueness and convergence of the
solution.

From the result obtained for example 1, as shown in Table 1, the approximate so-
lution at N = 3 gives y3 = −7.941025615000×10−11x+1.422222340000×10−10x2 +
0.999999999999x3.
The numerical result converged to an exact solution.

The approximate solution obtained in example 2 at N = 5 gives y5 = 4.163336342344×
10−16 + 8.326672684689× 10−17x+ 1.000000000000x2 + 4.547473508865× 10−13x3

−4.547473508865× 10−13x4 + 6.821210263297× 10−13x5.The numerical result con-
verged to an exact solution as shown in Tables 2.

The numeical results of example 3 shows that the approximate solution at
N = 5 gives y5 = 0.79545696e − 4 − 0.148975638e − 3x + 0.926538952030x2 +
0.200221882790x3

−0.512476554541x4 + 0.287008050336x5. Solving for the value of N = 10, the nu-
merical results converge to an exact solution as the value of N increases as shown
in Table 3.

The numerical method is observed to be consistent and converges faster to the
exact solution, as shown in problems 1, 2, and 3. It is also observed that as N
increases, the solution gets better. Hence the stability of the method.
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6. Conclusion

This work investigates the collocation approach for solving fractional Volterra integro-
differential equations. This method is easy to compute, reliable, and efficient. All
of the computations in this paper were performed using Maple 18.
Conflicts of Interest: There are no competing interests.
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