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RELATIONSHIP BETWEEN B-FUNCTION, K-B FUNCTION,

AND EXTENDED K-B FUNCTION OF MATRIX ARGUMENTS

ABDULLAH AKHTAR, AMIT MATHUR, VINEET SRIVASTAVA

Abstract. This paper focuses on the interrelationship between beta, k-beta,

and extended k-beta function of the matrix argument. The study highlights

these function’s mathematical properties, functional relations, integral for-

mula, integral representation, and interrelationships highlighting their appli-

cations and importance in the context of matrix argument. Additionally, we

aim to create a stronger relation that enables the derivation of further results

applicable in fractional calculus. Here in this paper, we applied some basic

properties of beta and gamma functions to obtain new identities and relation-

ships. We also used Laplace transform and the Legendre-duplication formulas

to get new relations of beta, k-beta, and extended k-beta functions of matrix

arguments. Of particular interest is the use of this transformation to produce

identities that oer improved solutions to challenging issues about the beta

function. We hope that this article will be helpful to the new researchers for

their further research work and applications of fractional calculus.

1. Introduction

In the eld of mathematics fractional calculus and its applications have gained
excellent popularity over time. Special functions like beta, gamma, k-beta, and
k-gamma and their extended form are being used to investigate and resolve chal-
lenging issues in the eld of engineering, research, and statistics. These special
functions are strong mathematical assets to deal with a variety of problems in dif-
ferent domains. Applications of k-beta and k-gamma functions and their extended
forms are the main subject or research in pure statistics and mathematical analysis.
Researchers are looking into the characteristics and possible potential applications
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of these special functions to improve our understanding and maximize their usage
in resolving mathematical issues. Researchers aim to push the limits of mathe-
matical study and open the door of opportunity for practical applications by the
use of these special functions to insights into and solve complicated problems of
science, engineering, and statistics. In fact, the special function of matrix argu-
ment is crucial in many branches of mathematics and theoretical physics. With the
help of these functions various applications can be made in the area of statistics,
group theory, number theory, and theoretical physics (see [8],[11],[20], [21] ). In the
study of spherical function on specic symmetrical spaces and multivariate analysis
in statistics, James A.T. [14] examined the special functions of matrix argument.
Here in this paper, we investigated and applied certain properties of the beta and
gamma functions of matrix argument (see [3],[4],[7],[11],[15],[18]). We introduced,
investigated, and applied the applications of special functions like k-beta, extended
k-beta k-gamma, and extended gamma function of matrix argument that may open
new possibilities in mathematical research for new researchers (see [1],[13],[16],[17])

2. Beta Function

The beta function is a special function introduced by Leonhard Euler and Adrien-
Marie Legendre. It is denoted by B(z1, z2) and dened as

B(z1, z2) =

 1

0

tz1−1(1− t)z2−1 dt, (1)

Where z1 and z2 are any complex number inputs such that Re(z1) > 0,Re(z2) >
0.

The beta function is symmetric in nature, that is

B(z1, z2) = B(z2, z1)

for all inputs z1 and z2.

The beta and gamma functions are related through the following relationship:

B(z1, z2) =
Γ(z1)Γ(z2)

Γ(z1 + z2)
(2)

Where Γ(z) denotes the gamma function. The beta function B(z1, z2) has an
important role in various mathematical elds. Its role extends to integral calculus,
special functions, and probability theory. Generally, it is used to compute various
integrals and probability distributions.

The beta function is also closely related to binomial coecients. When z1, (or z2,
by symmetry) is a positive integer, then from the denition of the gamma function:

B(z1, z2) =
(z1 − 1)!(z2 − 1)!

(z1 + z2 − 1)!
(3)
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Furthermore, let C and D be the two square matrices in Cm×m satisfying (11).
Then the beta function (C,D), of matrix argument([13],[15]) is dened by

B(C,D) =

 1

0

tC−I(1− t)D−I dt (4)

If C and D are diagonalizable matrices in Cm×m, and CD = DC [19], then

B(C,D) = Γ(C)Γ(D)Γ−1(C +D) (5)

3. Gamma Function

The gamma function [15] is a mathematical function that extends the factorial
function to complex and real numbers. It is denoted by the Greek letter gamma
(Γ) and is dened by convergent improper integral as

Γ(n) =

 ∞

0

e−ttn−1 dt for Re(n) > 0 (6)

where n is the complex or real number for which the gamma function is being
evaluated. Additionally, it holds that:

Γ(n) = (n− 1)! for all positive integers n.

Some Properties of Beta and Gamma Function [8]

(i) B(z1, z2) = B(z2, z1)

(ii) B(z1, z2) =
Γ(z1)Γ(z2)
Γ(z1+z2)

(iii) B(z1, z2) = 2
 π

2

0
sin2z1−1 θ cos2z2−1 θ dθ, Re(z1) > 0, Re(z2) > 0.

(iv) Γ(z + 1) = zΓ(z)

(v) Γ(1− z1)Γ(z1) =
π

sin(πz1)
, z1 ̸∈ Z. (Euler’s reection formula.)

(vi) Γ(n)Γ

n+ 1

2


=

√
π

22n−1Γ(2n), n > 0. (Legendre Duplication formula.) [23]

(vii) Γ(1− z1)Γ(z1) = B(z1, 1− z1) =
 1

0


t

1−t

z1−1
dt
1−t

where the integral converges for 0 < Re(z) < 1.

(viii) Γ0(C) = Γ(C), Γk,0(C) = Γk(C), Γ1,b(C) = Γb(C),

(ix) B0(C,D) = B(C,D), Bk,0(C,D) = Bk(C,D), B1,r(C,D) = Br(C,D).

where C and D are matrices in Cm×m satisfying (11), and r ∈ R+
0 , k ∈ R+.
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4. The Laplace Transform:

The Laplace transform [10],[9] is a mathematical operation that converts a func-
tion from the time domain to the frequency (or complex) domain. It is used in
solving dierential equations and analyzing systems with varying inputs or initial
conditions.

The Laplace transform Lf(t) of a continuous-time function f(t), dened on
an interval [0,∞), is given by:

L[f(t)] = F(s) =

 ∞

0

e−stf(t) dt (7)

provided the integral exists for the complex parameter s, which can be real or
complex, and f(t) = L−1[F(s)] is called the inverse Laplace transform of F(s).

Additionally, s = σ + iω is a Laplace parameter or complex frequency domain
parameter where σ,ω ∈ R. The inverse Laplace transform takes a function in the
s-domain back into the time domain.

The Laplace transform possesses various properties that make it useful for the
solution of linear ordinary and partial dierential equations, such as superposition,
dierentiation, integration, and the convolution theorem. Additionally, the Laplace
transform provides insights about system stability and transfer functions in control
theory.

Properties of Laplace Transformation:

i.If s > 0, then

L[tn] = Γ(n+ 1)

sn+1

ii.

L−1


1

sn


=

tn−1

Γ(n)

Convolution Theorem: The Laplace convolution [10] of two functions f(t)
and g(t) is dened on [0,∞) as follows:

If

L[f(t)] = F(s) and L[g(t)] = G(s).

L−1[F(s)] = f(t) and L−1[G(s)] = g(t).

Then,

L[F(s) ∗ G(s)] =
 t

0

f(x)g(t− x) dx = f(t) ∗ g(t),

 t

0

f(x)g(t− x) dx = L−1[LF(s) · LG(s)]. (8)
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5. An Extension of the Beta and Gamma Functions of Matrix
Arguments

In their research, Chaudhary and Zubir ([2],[6]) introduced the Gamma function
as follows,

Γb(x) =

 ∞

0

tx−1e−t−bt−1

dt where (Re(x) > 0, Re(b) ≥ 0) (9)

Chaudhry et al. [5] have extended the beta function as follows,

Bb(x, y) =

 1

0

tx−1(1− t)y−1 exp


− b

t(1− t)


dt (10)

where Re(x) > 0,Re(y) > 0.Re(b) ≥ 0).

On the basis of the above denitions (9) and (10), we dene the extension of
beta function, the extended k-Beta function, the extension of gamma function, and
the extension of k-Gamma functions.

Drawing inspiration from the denitions and concepts outlined by Ghazi and
Praveen in their research ([11],[13],[16]) we consider the following:

For n ∈ N, let Cm×m represent the set of all square matrices of order m with
entries in complex numbers C. Suppose ρ(S) represents the set of all eigenvalues
of S ∈ Cn×n.([11],[13]) For S ∈ Cn×n, let

α(S) = maxRe(z)  z ∈ ρ(S) and β(S) = minRe(z)  z ∈ ρ(S).
Let S be the matrix in Cm×m such that Re(z) > 0 for z ∈ ρ(S) (11)

Here we are providing some basic concepts of beta, gamma, k-beta, and k-gamma
functions and their extensions.

The Extended Gamma function: Let’s assume C be a matrix such that
C ∈ Cm×m satisfying (11), then the extension ([13],[16]) of the Gamma function of
matrix argument can be dened as,

Γr(C) =
 ∞

0

tC−Ie(−t−rt−1) dt (12)

where Re(C) > 0, Re(r) ≥ 0.

The Extended Beta function: Let’s assume C and D be the matrices such
that C,D ∈ Cm×m satisfying (11), then the extension [11] of the beta function of
matrix argument can be dened as,

Br(C,D) =

 1

0

tC−I(1− t)D−I exp


− r

t(1− t)


dt (13)

where r ∈ R+
0 .

The Extended k-Gamma function: Let’s assume C be a matrix such that
C ∈ Cm×m satisfying (11), then we can dene the extension [16] of the k-Gamma
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function of matrix argument as,

Γk,r(C) =
 ∞

0

tC−I exp


− tk

k
− rk

ktk


dt (14)

where k ∈ R+, r ∈ R+
0 .

The Extended k-Beta function: Let’s assume C and D be the matrices such
that C,D ∈ Cm×m satisfying (11), then we can dene the extension [13] of the beta
function of matrix argument as,

Bk,r(C,D) =
1

k

 1

0

tC/k−I(1− t)D/k−I exp


− rk

kt(1− t)


dt (15)

where r ∈ R+
0 , k ∈ R+.

6. Characteristic of Matrix Argument’s Extended k-Gamma Function

Here we introduce some characteristics belonging to the matrix argument’s ex-
tended k-Gamma function.

Theorem 1: Let r ∈ R+
0 and C and D are matrices belonging to Cm×m satisfying

the condition (11).([13],[16]) Then,

Γk,r(C) · Γk,r(D) =
1

k

 ∞

0

y
C+D

k −Ie−
y
kB(k, r

k√y
)(C,D) dy. (16)

Proof: By the denition of the matrix argument’s extended k-Gamma function,
we have

Γk,r(C) =
 ∞

0

tC−I exp


− tk

k
− rk

ktk


dt, k ∈ R+, r ∈ R+

0 .

Then,

Γk,r(C)Γk,r(D) =

 ∞

0

 ∞

0

uC−IvD−I exp


−uk

k
− vk

k
− rk

kuk
− rk

kvk


du dv.

Let, x = uk

uk+vk and y = uk + vk, the Jacobian is given by

J (x, y) =


∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

 .

J (x, y) =
1

k2
.x

1
k−1(1− x)

1
k−1y

2
k−1.

Then,

Γk,r(C)Γk,r(D) =

 ∞

0

 ∞

0

uC−IvD−I exp


−y

k
− rk

kx


1

k
x

1
k−1(1− x)

1
k−1y

2
k−1dy dx.

After integration, we get the desired result as,

Γk,r(C)Γk,r(D) =
1

k

 ∞

0

y
C+D

k −Ie−
y
kB(k, r

k√y
)(C,D) dy.
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Corollary 1.1: If we put r = 0 in the above, we get,

Γk(C)Γk(D) = Γk(C +D)Bk(C,D) (17)

Corollary 1.2: If we take C = D, then the above theorem reduces to,

Γk,r(C)Γk,r(C) =
1

k

 ∞

0

y
C+C
k −Ie−

y
kB(k, r

k√y
)(C,D)dy.

[Γk,r(C)]2 =
1

k

 ∞

0

y
2C
k −Ie−

y
kB(k, r

k√y
)(C,D) dy.

Also, by applying the Legendre-Duplication formula [23], we have

B(k, r
k√y

)(C, C) =
√
nΓk(C)

2(2C−1)Γk


C + 1

2

 , n > 0.

Thus,

[Γk,b(C)]2 =
1

k

√
nΓk(C)

2(2C−1)Γk


C + 1

2


 ∞

0

y
2C
k −Ie−

y
k dy. (18)

Corollary 1.3: If we take r = 0 and C = D in Corollary 1.2, we get,

Γk(C)Γk(C) = Γk(C + C)Bk(C, C).
Γk(C)]2 = Γk(2C)Bk(C, C).

Also,

Bk(C, C) =
√
nΓk(C)

2(2C−1)Γk


C + 1

2

 , n > 0.

Then,

[Γk(C)]2 = Γk(2C) ·
√
nΓk(C)

2(2C−1)Γk


C + 1

2



Consequently,

Γk(C)Γk


C +

1

2


=

√
nΓk(2C)
2(2C−1)

(19)

Theorem 2: Let’s assume r ∈ R+
0 , and also let C and D be the matrices in

Cm×m satisfying the condition (11). Then,

Γk,r(C +D) · Γk,r(C −D) =
2

k

 ∞

0

p
4C
k −Ie−

p2

k B(k, r
k
√

p2
) (C +D, C −D) dp. (20)

Proof: The matrix argument’s k-gamma function [13] has been dened as,

Γk,r(C) =
 ∞

0

tC−I exp


− tk

k
− rk

ktk


dt, k ∈ R+, r ∈ R+

0 .

Then,

Γk,r(C +D) =

 ∞

0

t(C+D)−I exp


− tk

k
− rk

ktk


dt
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Put t = u2, in the above equation we have dt = 2u du, and the limits t = 0 and
t = ∞ change to u = 0 and u = ∞ respectively.

Then, we write:

Γk,r(C+D)·Γk,r(C−D) = 4

 ∞

0

 ∞

0

u2(C+D)−2Iv2(C−D)−2I exp


−u2k

k
− v2k

k
− rk

ku2k
− rk

kv2k


u v du dv.

Γk,r(C+D)·Γk,r(C−D) = 4

 ∞

0

 ∞

0

u2(C+D)−Iv2(C−D)−I exp


−u2k

k
− v2k

k
− rk

ku2k
− rk

kv2k


du dv.

Let u = (p · cos θ) 1
k and v = (p · sin θ) 1

k , then the Jacobian J is given by,

J =
p

2
k−1(sin θ cos θ)

1
k−1

k2
(21)

Here we have

Γk,r(C +D) · Γk,r(C −D) =
4

k2

 ∞

0

p
2(C+D)−I

k · p 2(C−D)−I
k · p 2

k−Ie−
p2

k dp

·
 π

2

0

(cos θ)
2(C+D)−I

k (sin θ)
2(C−D)−I

k e


−rk

kp2(sin θ cos θ)2



· (sin θ cos θ) 1
k−1 dθ.

.

=
4

k2

 ∞

0

p
(2(C+D)−I)+2(C−D)−I+2I−k

k e−
p2

k dp

·
 π

2

0

(cos θ)
2(C+D)−I

k (sin θ)
2(C−D)−I

k e


−rk

kp2(sin θ cos θ)2



· (sin θ cos θ) 1
k−1 dθ

= 2 · 1
k

 ∞

0

p
4C−2I+2I

k −Ie−
p2

k dp·

2 · 1
k

 π
2

0

(cos θ)
2(C+D)

k −I(sin θ)
2(C−D)

k −Ie


−rk

kp2(sin θ cos θ)2



dθ

= 2 · 1
k

 ∞

0

p
4C
k −Ie−

p2

k dp·

2 · 1
k

 π
2

0

(cos θ)
2(C+D)

k −I(sin θ)
2(C−D)

k −Ie


−rk

kp2(sin θ cos θ)2



dθ

= 2 · 1
k

 ∞

0

p
4C
k −Ie−

p2

k dp·

2 · 1
k

 π
2

0

(cos θ)
2(C+D)

k −I(sin θ)
2(C−D)

k −Ie


−ak

k(sin θ cos θ)2



dθ

Where,

ak =
rk

(p2/k)
k



JFCA-2025/16(1) RELATIONSHIP BETWEEN B-FUNCTION 9

or
a =

r

k


p2

Γk,r(C +D)Γk,r(C −D) =
2

k

 ∞

0

p
4C
k −Ie−

p2

k B(k, r
k
√

p2
) (C +D, C −D) dp.

Proved.

7. Characteristic of Matrix Argument’s Extended k-Beta Function:

Here we introduce some characteristics of the matrix argument’s beta function,
extended beta, and extended k-beta function.

Theorem 3: Let k ∈ R+, r ∈ R+
0 , and let C and D be matrices in Cm×m

satisfying the condition (11). Then, the matrix argument’s beta function can be
expressed as:

Bk(C,D) =
1

k

 t

0

t
C
k−I(1− t)

D
k −Idt. (k ∈ R+)

Then prove that

Bk(C,D) =
1

k
B

C
k
,
D
k


(22)

Proof: The matrix argument’s k-beta function has been expended as, [13]

Bk(C,D) =
1

k

 t

0

t
C
k−I(1− t)

D
k −Idt. (k ∈ R+)

Let t = y
n , then dt = dy

n . When t = 0, y = 0 and when t = 1, y = n.

Thus,

Bk(C,D) =
1

k

 n

0

 y

n

 C
k−I

(1− y

n
)

D
k −I dy

n

Bk(C,D) =
1

k

1

n
C+D

k −2I+I

 n

0

(y)
C
k−I

(n− y)
D
k −Idy

By the Laplace convolution theorem [9],

Bk(C,D) =
1

k

1

n
C+D

k −I
L−1


L

n(

C
k−I)


∗ L


n(

D
k −I)



Bk(C,D) =
1

k

1

n
C+D

k −I
L−1


Γ(Ck − I + I)Γ(Dk − I + I)

s
C
k −I+Is

D
k −I+I



Bk(C,D) =
1

k

1

n
C+D

k −I
· Γ(C

k
) · Γ(D

k
)L−1


1

s
C+D

k


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Bk(C,D) =
1

k

1

n
C+D

k −I
· Γ(C

k
) · Γ(D

k
) · n

C+D
k −I

Γ (C+D)
k

Bk(C,D) =
1

k
Γ(

C

k
) · Γ(D

k
) · 1

Γ (C+D)
k

Bk(C,D) =
1

k
B

C
k
,
D
k



Proved.

Theorem 4: Let r ∈ R+
0 and let C and D be the matrices in Cm×m satisfying

the condition (11), then

Br(C,D) = 2

 π
2

0

sin θ2C−Icos θ2D−I exp


− r

(sin θ cos θ)2


dθ. (23)

And

Γr(C)Γr(D) = 2

 ∞

0

x2(C+D)−Ie−x2

Br/x(C,D) dx. (24)

Proof: The matrix argument’s beta function has been expended as [19],

Br(C,D) =
 1

0
tC−I (1− t)D−Iexp


− r

t(1−t) ] dt , where r ∈ R+
0 .

Replacing t = sin2 θ, then dt = 2 sin θ cos θ dθ. Also, when t = 0, θ = 0 and when
t = 1, θ = π

2 , we have:

Br(C,D) =

 π
2

0

(sin2 θ)
(C−I)

(1− sin2 θ)
(D−I)

exp


− r

sin2 θ(1− sin2 θ)


2 sin θ cos θ dθ.

Br(C,D) = 2

 π
2

0

(sin2 θ)
(C−I)

(1− sin2 θ)
(D−I)

sin θ cos θ exp


− r

sin2 θ(1− sin2 θ)


dθ.

Br(C,D) = 2

 π
2

0

sin θ2C−Icos θ2D−I exp


− r

(sin θ cos θ)2


dθ.

Now, we know that the extended gamma function [2], Γr(C) is given by

Γr(C) =
 ∞

0

tC−I e−t−bt−1

dt

where r ∈ R+
0 .

Putting t = u2 in the above equation, we have dt = 2u du. When t = 0, u = 0
and when t = ∞, u = ∞. Thus,

Γr(C) =
 ∞

0

u2C−2Ie−u2− r
u2 2u du

Γr(C) = 2

 ∞

0

u2C−Ie−u2− r
u2 du
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Similarly, for Γr(D):

Γr(D) = 2

 ∞

0

v2D−Ie−v2− r
v2 dv.

Then, we have

Γr(C)Γr(D) = 4

 ∞

0

 ∞

0

u2C−Iv2D−I e−u2− r
u2 e−v2− r

v2 du dv.

Γr(C)Γr(D) = 4

 ∞

0

 ∞

0

u2C−Iv2D−I e−u2−v2− r
u2 − r

v2 du dv. (25)

Let u = x · cos θ and v = x · sin θ. Then, we have:

∂u

∂x
= cos θ and

∂v

∂x
= sin θ.

∂u

∂θ
= −x · sin θ and

∂v

∂θ
= x · cos θ.

The value of the Jacobian J is given by:

J =


∂u
∂x

∂v
∂x

∂u
∂θ

∂v
∂θ

 =


cos θ sin θ
−x · sin θ x · cos θ

 = x. (26)

Now, we have:

Γr(C)Γr(D) = 4

 ∞

0

 π
2

0

x2C−I cos θ2C−I x2D−I sin θ2D−I exp


−x2 − r

x2 cos2 θ
− r

x2 sin2 θ


x dx dθ.

Γr(C)Γr(D) = 2

 ∞

0

x2(C+D)−Ie−x2

dx·2
 π

2

0

cos θ2C−I sin θ2D−I exp


− r

x2(cos θ sin θ)2


dθ.

Therefore, we have:

Γr(C)Γr(D) = 2

 ∞

0

x2(C+D)−Ie−x2

Br/x(D, C) dx.

and since B(m,n) = B(n,m),

Γr(C)Γr(D) = 2

 ∞

0

x2(C+D)−Ie−x2

Br/x(C,D) dx.

proved.

Corollary 4.1: If C = D then,

Γr(C)Γr(C) = 2

 ∞

0

x2(C+C)−Ie−x2 ·Br/x(C, C) dx,

[Γr(C)]2 = 2

 ∞

0

x4C−Ie−x2 ·Br/x(C, C) dx. (27)
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By the Legendre-Duplication formula [23] we have:

Br/x(C, C) =
√
nΓ(C)

22C−1 Γ

C + 1

2

 , n > 0. (28)

Thus,

[Γr(C)]2 =

√
nΓ(C)

22C−2 Γ

C + 1

2


 ∞

0

x4C−Ie−x2

dx. (29)

Corollary 4.2: Also, we have the extension of the k-beta function as [16]
If k ∈ R+, r ∈ R+

0 , Let C and D are matrices in Cm×m satisfying the condition
(11), then

Bk,r(C,D) =
2

k

 π
2

0

sin θ
2C
k −I cos θ

2D
k −I exp


− rk

k(sin θ cos θ)2


dθ.

Putting r = 0 in the above equation, we get:

Bk,0(C,D) =
2

k

 π
2

0

sin θ
2C
k −I cos θ

2D
k −I dθ.

Bk,0(C,D) =
2

k
· Γ


2C
2k


Γ

2D
2k



2Γ

2C+2D

2k

 .

Therefore,

BkC,D) =
1

k
B

C
k
,
D
k


. (30)

Since

Bk,0(C,D) = Bk(C,D)

This (30) is the desired relation between the beta and extended beta functions.

Theorem 5: Let r ∈ R+
0 . Also, let C and D be the matrices in Cm×m such that

C,D, C +D, and C −D satisfy the condition (11) then,

Br(C,D + I) +Br(C + I,D) = Br(C,D). (31)

Proof: The matrix argument’s beta function has been expanded as follows:

Br(C,D) =

 1

0

tC−I(1− t)D−I exp


− r

t(1− t)


dt.

where r ∈ R+
0 .

Then,

Br(C,D + I) =

 1

0

tC−I(1− t)D+I−I exp


− r

t(1− t)


dt,
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and

Br(C + I,D) =

 1

0

tC+I−I(1− t)D−I exp


− r

t(1− t)


dt.

Then,

Br(C,D+I)+Br(C+I,D) =

 1

0


tC−I(1− t)D + tC(1− t)D−I


exp


− r

t(1− t)


dt.

Br(C,D+I)+Br(C+I,D) =

 1

0


tC−I(1− t)D−I(1− t) + tC−I(1− t)D−It


exp


− r

t(1− t)


dt.

Br(C,D + I) +Br(C + I,D) =

 1

0

tC−I(1− t)D−I1− t+ t exp

− r

t(1− t)


dt.

Thus, we have:

Br(C,D + I) +Br(C + I,D) =

 1

0

tC−I(1− t)D−I exp


− r

t(1− t)


dt,

Br(C,D + I) +Br(C + I,D) = Br(C,D).

Proved.

Corollary 5.1: If C = D, then the above theorem reduces to

Br(C, C + I) +Br(C + I, C) = Br(C, C).
Also, by the property of the beta function [12], B(m,n) = B(n,m), we have

2Br(C, C + I) = Br(C, C) (32)

By the Legendre duplication formula [23],

Br(C, C) =
√
nΓr(C)

22C−IΓr


C + 1

2

 , n > 0,

Then,

2Br(C + I, C) =
√
nΓr(C)

22C−IΓr


C + 1

2

 , n > 0, (33)

Also, by the property of the beta function, B(m,n) = B(n,m), we have

Br(C + I, C) = 1

2
·

√
nΓr(C)

22C−IΓr


C + 1

2

 , n > 0,

Br(C + I, C) =
√
nΓr(C)

22CΓr


C + 1

2

 , n > 0, (34)

Theorem 6: Let r ∈ R+
0 , and let C and D be matrices in Cm×m such that

C,D, C + D, and C − D satisfy the condition (11), and I is the identity matrix in
Cm×m. Then the extended beta function of matrix arguments is given by

Br(C,D) =

∞

n=0

Br(C + nI,D + I). (35)



14 ABDULLA AKHTAR, JFCA-2025/16(1)

Proof: From the denition of the extended beta function, we have

Br(C,D) =

 1

0

tC−I(1− t)D−I exp


− r

t(1− t)


dt,

where r ∈ R+
0 .

Br(C,D) =

 1

0

tC−I(1− t)D(1− t)−1 exp


− r

t(1− t)


dt,

Using the matrix identity (1− t)−I =
∞

n=0 t
nI for t < 1, then

Br(C,D) =

 1

0

tC−I(1− t)D
∞

n=0

tnI exp


− r

t(1− t)


dt.

By interchanging the order of integration and summation, we obtain:

Br(C,D) =

∞

n=0

 1

0

tC+nI−I(1− t)D+I−I exp


− r

t(1− t)


dt.

Then

Br(C,D) =

∞

n=0

Br(C + nI,D + I).

Proved.

Theorem 7: Let k ∈ R+ and r ∈ R+
0 . Also, let C and D be matrices in Cm×m

such that C,D, C + I,D + I satisfy the condition (11), and let I be the identity
matrix in Cm×m. Then the extended k-beta function is given by

Bk,r(C,D) =

∞

n=0

Bk,r (C + nkI,D + kI) . (36)

Proof: According to the denition of the extended k-beta function, we have

Bk,r(C,D) =
1

k

 1

0

t
C
k −I(1− t)

D
k −I exp


− rk

kt(1− t)


dt,

where r ∈ R+
0 and k ∈ R+.

Bk,r(C,D) =
1

k

 1

0

t
C
k −I(1− t)

D
k (1− t)−I exp


− rk

kt(1− t)


dt.

Using the identity (1− t)−I =
∞

n=0 t
nI (valid for t < 1), we have:

Bk,r(C,D) =
1

k

 1

0

t
C
k −I(1− t)

D
k

∞

n=0

tnI exp


− rk

kt(1− t)


dt.



JFCA-2025/16(1) RELATIONSHIP BETWEEN B-FUNCTION 15

Through the manipulation of the sequences of integration, summation, and term
rearrangement, we get:

Bk,r(C,D) =

∞

n=0

1

k

 1

0

t
C
k +nI−I(1− t)

D
k +I−I exp


− rk

kt(1− t)


dt.

Thus, we conclude:

Bk,r(C,D) =

∞

n=0

Bk,r(C + nkI,D + kI).

Proved.

Theorem 8: Let r ∈ R+
0 . Also, let C and D be the matrices in Cm×m such that

C,D, and I − D satisfy the condition (11), and I is the identity matrix in Cm×m.
Then,

Br(C, I −D) =

∞

n=0

(D)n
n!

Br(C, I) (37)

Proof: By the denition of the extended beta function by Ghazi et al. [13], the
k-beta function of matrix argument can be dened as follows:

Br(C,D) =

∞

n=0

 1

0

tC−I(1− t)D−I exp


− r

t(1− t)


dt. (r ∈ R+

0 ).

Then,

Br(C, I −D) =

∞

n=0

 1

0

tC−I(1− t)I−D−I exp


− r

t(1− t)


dt.

Br(C, I −D) =

 1

0

tC−I(1− t)−D exp


− r

t(1− t)


dt.

Now, by using the matrix identity,

(1− t)−D =

∞

n=0

(D)n
n!

,

we have,

Br(C, I −D) =

 1

0

tC−I
∞

n=0

(D)n
n!

exp


− r

t(1− t)


dt.

Through the manipulation of the sequences of integration, summation, and term
rearrangement, we obtain

Br(C, I −D) =

∞

n=0

(D)n
n!

 1

0

tC−I(1− t)I−I exp


− r

t(1− t)


dt.

Thus,
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Br(C, I −D) =

∞

n=0

(D)n

n!
Br(C, I)

Proved.

8. Conclusion

: In conclusion, this paper extensively explores the various expressions of beta
and gamma functions of matrix arguments. By applying multiple properties of
these functions, we have discovered and proven numerous results that have consid-
erable value in addressing novel problems and paving the way for future researchers.
Our investigation also encompasses important properties of these extended func-
tions, including integral relationships, transforms, and representations. We have
successfully established a fresh connection between the beta and gamma functions
by leveraging the Laplace transformation and convolution formula. We hope these
ndings will nd practical utility across diverse domains such as statistics, number
theory, and more. Through these eorts, we oer valuable insights and contribute
to further expanding the eld of study in this area.

9. Suggestion

We believe that these new results can now be used as a way of proving various
useful results in a more general context.
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