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TWO DIMENSIONAL THERMOELASTICITY PROBLEMS IN AN

INHOMOGENEOUS STRIP WITH APPLICATION OF DIRECT

INTEGRATION METHOD.

S. D. NIRDE, K. P. GHADLE

Abstract. This paper employ an analytical approach for solving the two-

dimensional problems of elasticity and thermo-elasticity in terms of stresses
in an inhomogeneous strip which is infinite. We consider application of di-

rect integration method in a plane steady state heat conduction problem for

a semi plane. Application of this method are depend on the direct integration
of equilibrium equation for efficient analysis of inhomogeneous solids. With

the application of direct integration method for differential and compatibility

equation for isotropic material, we are reducing desired equation to integro-
differential equation. We have solved these dominant equations by applying

simple iteration method.The results for displacement and stresses are com-

puted numerically. One can find the displacement in terms of strains by the
integration of Cauchy relations. Using Simple iteration method to find thermal

stresses in terms of Volterra- integro differential equations.The calculation to

construct the solution can be also useful to solve some optimization problem
as well as inverse thermoelasticity problems in terms of stresses.

1. Introduction

Direct integration method plays an important role to solve the boundary value prob-
lems. The useful segment for elastic and thermoelastic responses in composite materials
exhibit anisotropic features which are depends on the accuracy by considering disparity
of material modulie with contract in spatial directions. Hence the method for analysis
of isotropic solid will be largly fail when attempted for anisotropic solid. For example, if
we consider eigen function method to justify local effects in semi-infinite elastic compos-
ites then the convenient solution decomposes when it moves away from the corresponding
loaded area. This change disturbs the type with character of corresponding eigenfunc-
tions and involve them by assuring their fade behavior at different points. The another
disadvantages restrict the relevance of such type of solutions for the whole spectra of prac-
tical anisotropic moduli. The required equilibrium equations can be expressed as in terms
of stresses. These do not depend on the material properties as well as on the physical
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stress strain relation. In [2] Hamoud et al. studied some numerical techniques to solve
integro-differential equations. [3] Kalynyak et al. studied direct and inverse problems of
thermomechanics to concern the optimization with identification of the thermal stressed
state for deformed solids. [7] Tokovyy and Chien-Ching studied an explict form solution
to the plane elasticity and thermoelasticity problems for anisotropic and inhomogeneous
solids. Yasinskyy and Ierokhova studied optimization of nonstationary thermal displace-
ments in a given cross section of a half space in the plane strain state [11]. Tokovyy
and Chien-Ching provides analytical solutions to the 2D elasticity and thermoelastic-
ity problems for inhomogeneous planes and half-planes [8]. Rychahivskyy and Tokovyy
has given correct analytical solutions to the thermoelasticity problems in a semiplane
[4]. Rychahivskyy, Tokovyy gives analytic solution of the plane problem of the theory of
elasticity for a nonuniform strip [9]. Ghadle and Adhe studied steady state temperature
analysis to 2D elasticity and thermoelasticity problems for inhomogeneous solids in half
plane with reduction of given heat conduction problem to voltera type integral equations
[1].
. In this paper we extend the technique to avoid latter complications to represents solu-
tion for an elastic isiotropic material. This method was established by Vigak [10]. This
method was already applied to solve some direct and inverse boundary value problems [6].
After integrating the differential equilibrium equations, we can determine the relationship
between the stress tensor componennt. With this technique the governing equations are
reduced to integro-differential equation for stress tensor component. With application of
simple iteration method, derived integral equations has been solved for constructing the
solution in explict form expression with interdependance of elastic material modulie.

2. Preliminary

In this section, we collect some basic definitions that will be important to us in the
sequel.

2.1. Definition. A Fourier transform of function f(x) is defined as: F (ω) =
∫ +∞
−∞ f(x)exp(−iωx)dx

3. Formulation of problem

Consider a plane quasi-static thermoelasticity problem in a rectangular domain D =
{(x, y) ∈ (−∞,∞) × [0,∞)} with the absences of body forces for an isotropic material.
The problem is governed by the equilibrium equation [6],

∂σxx

∂x
+

∂σxy

∂y
= 0,

∂σxy

∂x
+

∂σyy

∂y
= 0, (x, y) ∈ D (1)

and compatibility equation in terms of strains [5]

∂2exx
∂y2

+
∂2eyy
∂x2

=
∂2exy
∂x∂y

(2)

and physical relation with plane strains

2Gexx = (1− ν)σ − σyy + 2αG(1 + ν)T
2Geyy = −νσ + σyy + 2αG(1 + ν)T
exy =

σxy

G

 (3)

where σxx, σyy, σxy, exx, eyy, exy are stress and strain tensor components and G, E, ν
are shear modulus, modulus of elasticity and Poission’s ratio respectively.
We impose tractions at the boundary,

σyy

∣∣∣
y=0

= −p1(x), σxy

∣∣∣
y=0

= q1(x), (4)
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Assume that, as |x|→ ∞ the stresses are tending to 0.
From the third relation of (3.3) and the equilibrium equation (3.2) representating (3.1) as
follows,

∂2

∂y2

(1− ν

2G
σ + α(1 + ν)T

)
+
(1− ν

2G

)∂2σ

∂x2
+ α(1 + ν)

∂2T

∂x2
=

σy

2

d2

dy2

( 1

G

)
(5)

To compute the total stress σ=σxx+σyy in terms of σyy. We use the relation,

∆σyy =
∂2σ

∂x2
(6)

To find out solution for problem (3.1) to (3.6), selecting one key stress out of three stress
component. To find out the two dimensional stressed state, the equation of continuity
for these regions, written for the normal stresses σyy. Integrating equation (3.1) as in [5],
express the stresses σxy in terms of σxx, σyy.

4σxy = q1 −
∫ ∞

−∞

∂σyy

∂y
sign(x− η)dη −

∫ ∞

0

∂σxx

∂x
sign(y − ζ)dζ (7)

sign(x) =


−1, x < 0
0, x = 0
1, x > 0

4. Construction of Solution

To find out the key stresses, using integral Fourier transform [8] for (3.4) - (3.6) to
achieve the following equations,

d2

dy2

(1− ν

2G
σ̄ + α(1 + ν)T̄

)
− ω2

(1− ν

2G
σ̄ + α(1 + ν)T̄

)
=

σ̄yy

2

d2

dy2

( 1

G

)
(8)

d2σ̄yy

dy2
− ω2σ̄yy = −ω2σ̄ (9)

σ̄yy

∣∣∣
y=0

= −p̄1, σ̄xy

∣∣∣
y=0

= −q̄1,

This key stress σyy should satisfy the boundary condition

∂σyy

∂y

∣∣∣∣∣
y=0

= −iωq̄1, (10)

Here, ω deontes integral transform parameter, i=
√
−1

Solving (4.1)-(4.2), we obtain the expression for σ̄yy as,

σ̄yy =− p̄1cosh(ω(1 + y))− iq̄1sinh(ω(1 + y))

+
|ω|
2

∫ y

0

σ̄sinh(ω(y − ζ))dζ
(11)

with two integral conditions∫ ∞

0

σ̄sinh(ωζ)dζ = (q̄1)
isinhω

(ω)
− (p̄1)

cosh(ω)

ω
, (12)∫ ∞

0

σ̄cosh(ωζ)dζ = (−q̄1)
icoshω

ω
− (p̄1)

sinh(ω)

ω

From eq. (4.4), eq. (4.1) can be written as,

σ̄ =
2G

1− ν

{
Acosh(ωy) +Bsinh(ωy) + P1p̄1 +Q1q̄1 − α(1 + ν)T̄

}
−

1

2

∫ y

0

d2

dζ2

(
1

G(ζ)

)
sinh(ω(y − ζ))

∫ ζ

0

σ̄(η̄)sinh(ω(ζ − η))dηdζ

(13)
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where,

P1 = − 1

2ω

∫ y

0

d2

dζ2
( 1

G(ζ)

)
cosh

(
ω(1 + ζ)

)
sinh

(
ω(y − ζ)

)
dζ

Q1 = − i

2ω

∫ y

0

d2

dζ2
( 1

G(ζ)

)
sinh

(
ω(1 + ζ)

)
sinh

(
ω(y − ζ)

)
dζ

From (4.5), we can determine the constants A and B. eq. (4.6) yields the following integral
equation,

σ̄ =
2G

1− ν

{
Acosh(ωy) +Bsinh(ωy) + P1p̄1 +Q1q̄1 − α(1 + ν)T̄

}
− 1

2

∫ y

0

σ̄(ζ)K(ζ, η, y)dζ,
(14)

where

K(ζ, η, y) =

∫ y

ζ

d2

dζ2
( 1

G(ζ)

)
sinh

(
ω(y − ζ)

)
sinh

(
ω(ζ − η)

)
dζ

We can solve (4.7), by simple iteration method [5] as follows

σ̄n =
2G

1− ν

{
Ancosh(ωy) +Bnsinh(ωy) + P1p̄1 +Q1q̄1

− α(1 + ν)T̄
}
− 1

2

∫ y

0

σ̄n(ζ)K(ζ, η, y)dζ,
(15)

After σ̄ we can find σ̄y from (4.4). The constantA1, B1 can be determined by using σ̄0 = 0.
Applying the inverse Fourier transform [6] we can determine σ, σyy and from (3.7) we can
determine the shear stress σxy. If

1
G

is linear in y then we can find exact solution for Eq.
(4.8)

σ̄ =
2G

1− ν

{
Acosh(ωy) +Bsinh(ωy)− α(1 + ν)T̄

}
(16)

σ̄yy = −p̄1cosh(ω(1 + y))− iq̄1sinh(ω(1 + y))− 2Aω

∫ y

0

G(ζ)cosh(ωζ)sinh(ω(y − ζ))

1− ν
dζ

− 2Bω

∫ y

0

G(ζ)sinh(ωζ)sinh(ω(y − ζ))

1− ν
dζ

− ω

∫ y

0

α(ζ)E(ζ)T̄ (ζ)−G(ζ)H(ζ))

1− ν(ζ)
sinh(ω(y − ζ))dζ

where

A =
I2ϕ1 − I1ϕ2

I3I2 − I21
, B =

I3ϕ2 − I1ϕ1

I3I2 − I21
, I1 =

∫ ∞

0

G(ζ)

1− ν(ζ)
sinh(ωζ)cosh(ωζ)dζ,

I2 =

∫ ∞

0

G(ζ)

1− ν(ζ)
sinh2(ωζ)dω, I3 =

∫ ∞

0

G(ζ)

1− ν(ζ)
cosh2(ωζ)dω

ϕ1 =
1

2

∫ ∞

0

(
σ̄cosh(ωζ)− G(ζ)H(ζ)

1− ν(ζ)
cosh(ωζ) +

αET̄

2(1− ν(ζ))
cosh(ωζ)

)
dζ

ϕ2 =
1

2

∫ ∞

0

(
σ̄sinh(ωζ)− G(ζ)H(ζ)

1− ν(ζ)
sinh(ωζ) +

αET̄

2(1− ν(ζ))
sinh(ωζ)

)
dζ

If E, G, ν are constants then from eq. (4.9) gives the similar equation for σ and σyy.
Reducing (4.7) to obtain the following expression,

σ̄ = E
{
Acosh(ωy) +Bsinh(ωy) + P1p̄1 +Q1q̄1 − α(1 + ν)T̄

}
− 1

2

∫ y

0

σ̄(ζ)K(ζ, η, y)dζ.
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Figure 1. Distribution of σyy for 0, 0.5, 1

5. NUMERICAL RESULTS

EXAMPLE 5.1
Consider an inhomogeneous strip D which is infinite. Let

p1 =
exp(−x4)

2
, q1 = 0, ν =

2

3− by
G = a = const and b = const.

From (4.9)

σ̄ =
2a

1− ν

{
Acosh(ωy) +Bsinh(ωy)− α(1 + ν)T̄

}
,

σ̄yy =− p̄1cosh(ω(1 + y))− iq̄1sinh(ω(1 + y))

− 2Aω

∫ y

0

G(ζ)cosh(ωζ)sinh(ω(y − ζ))

1− ν
dζ

− 2Bω

∫ y

0

G(ζ)sinh(ωζ)sinh(ω(y − ζ))

1− ν
dζ

where A and B can be determined as follows,

A = − 1

2ω

[
i(−p̄1)cosh(ω)

]∫ y

0

sinh(ωζ)cosh(ωζ)

1− ν
dζ

+ (p̄1)sinh(ω)

∫ y

0

sinh2(ω)

1− ν
dζ

B = − 1

2ω

[
i(−p̄1)sinh(ω)

]∫ y

0

sinh(ωζ)cosh(ωζ)

1− ν
dζ

− (p̄1)cosh(ω)

∫ y

0

cosh2(ω)

1− ν
dζ

EXAMPLE 5.2
Consider example to find distribution of the normal stress σyy and σ.

E = b1f(y), f(y) =


1

1+y

1
2
, y > 1

d

b1 = const, 0 < d = const
Assume Possion’s ratioν=0.2
We can represent relation between Young and Shear modulus in the form G = G0f(y)

where G0=
b1

1−ν

To obtain the relative stress, consider the 1-d temperature field T (x) = x3.The normal
stress computed from the formulae(4.7) and (4.9) fory = 2, 3, 4 as shown in figure-3.
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Figure 2. Distribution of σ for 0, 0.5, 1

Figure 3. Distribution of
σyy

σ at y= 2, 3, 4

Here, FIGURE-1 indicates the distribution of normal stess σyy at b=0, 0.5, 1. FIGURE-2
indicates the distribution of normal stress σ at b=0, o.5, 1 and FIGURE-3 indicates the
relationship between the stresses σyy and σ.
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7. Conclusion

This paper construct an analytical approach to solve the two dimensional problems
of elasticity and thermoelasticity in terms of stresses for isotropic material in an inho-
mogeneous strip which is infinite. This approach is placed on the direct integration of
differential equilibrium equations. This technique permits to construct analytical solution
for intederpendance between the elastic modulie of an isotropic material. We reduce the
governing integro-differential equations with variable coefficients in accordance with com-
patibility and equilibrium equations. The calculation for constructing the solution can be
also applied to solve optimization problems, comparable inverse thermoelasticity problems
in terms of stresses. In this method we can easily calculate the stressed state in an infinite
strip, as compare to solving such problem in terms of displacement. With the help of
simple iteration method, we have solved these governing equations. This method gives
exact analytical solutions if the shear modulus is reciprocal of linear function in catresian
coordinate system for corresponding problems. Direct integration method is very useful
technique to solve the boundary value problems. Since, application of this method depend
on the direct integration of the equilibrium equations for effiicient analysis of inhomoge-
neous solids.
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