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NULL CONTROLLABILITY OF FRACTIONAL DIFFERENTIAL

SYSTEM WITH NONLOCAL INITIAL CONDITION

DIBYAJYOTI HAZARIKA, JAYANTA BORAH, BHUPENDRA KUMAR SINGH

Abstract. In this paper, we examine the conditions of exact null controlla-
bility of fractional dynamical system with nonlocal initial condition in innite
dimensional setting. The fractional derivatives used in the system are in Ca-
puto sense and order of the derivatives are taken as r ∈ (0, 1). Schauder’s
xed point theorem is used to prove null controllability with the help of the
null controllability of the associated linear system.

1. Introduction

Fractional dierential systems (FDS’s) gain more and more importance in the
recent decades because of their ability to model real world problems in a more
ecient way in comparison to integer order systems. The controllability problem
of FDS’s are studied by many authors in numerous articles [5, 9, 15, 19, 17, 13, 12,
1, 8, 11]. There are dierent types of controllability, namely, exact controllability,
approximate controllability, null controllability, trajectory controllability etc. The
null controllability of a dynamical system means that the system can be steered to
zero state from an arbitrary initial state by means of some control inputs. Dauer et
al. [7] studied the null controllability of semilinear integer order systems in Hilbert
space. They studied the following integro-dierential system

x′(t) =Ax(t) +Bu(t) +

 t

0

f(τ, xτ )dτ, t ∈ [0, T ],

x0(µ) =ϕ(µ), µ ∈ [−k, 0]

Also in their paper [22] the authors derived conditions for null controllability of
the following nonlocal system of integer order

y′(t) =A(t)y(t) +Bv(t) + f(t, y(g(t))), t ∈ [0, T ],
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y(0) + h(t) = y0

In case of fractional systems, Ahmed [2] studied null controllability of stochas-
tic fractional system with Hilfer derivatives, Nirmala et al. [10] investigated null
controllability of fractional dynamical systems with constrained control in nite
dimensional case, while Sathiyaraj et al. [20, 21] studied Hilfer FDS with Brownian
motion and delayed FDS in nite dimension. For more articles regarding null con-
trollability of FDS in dierent settings we refer to [3, 4, 18, 23] and the references
therein.

Motivated by the above mentioned studies, we consider the following nonlocal
FDS for investigating null controllability

CDr
0+u(t) = Au(t) +Bv(t) + g(t, u(t)), t ∈ (0, a];

u(0) + h(u) = u0
(1)

Let J = [0, a] and CDr
0+ denotes the regularized Caputo derivative of order r

with 0 < r < 1. We take two Hilbert spaces U and V such that the state variable
u() ∈ U and the control function v() ∈ V. The corresponding norms in these
Hilbert spaces are taken to be the usual supremum norm. We take v ∈ L2(J ;V)
which ia a Banach space of admissible controls endowed with the norm ∥v∥ =  a

0
∥v(s)∥2ds

 1
2 . A generates a strongly continuous semigroup {Q(t)}0≤t≤a, B is

a bounded linear operator from V to U. g : J ×C(J ,U) → U and h : C(J ,U) → U
are two functions which will be specied later.

The main aim of our study is to extend the ideas presented in the articles [7]
and [22] into fractional framework with somewhat dierent set of conditions. The
fundamental dierence of this work is that we consider fractional dierential system
instead of integer order systems as done in the aforementioned papers. Further
nonlocal initial condition is taken into account in contrast with the local condition
in [7]. The assumption that g is strongly measurable as mentioned in [22] is replaced
by Lipschitz continuity in this work.

The rest of this paper is organized as follows: in Section 2 we list some important
results and denitions of fractional calculus and semigroup theory, main theoretical
results are discussed in the Section 3, an example is provided in Section 4 and
conclusion can be found in Section 5.

2. Preliminaries

Here we state some denitions with few relevant results of fractional calculus.

Dnition 2.1. [14] For the function ψ : [0,∞) → R, the fractional Riemann-
Liouville (R-L) integral of order r > 0, with lower limit 0 is dened as

Ir0+ψ(ζ) =
1

Γ(r)

 ζ

0

(ζ − ϑ)r−1ψ(ϑ)dϑ,

assuming the right hand side of the equation is dened on the interval [0,∞) point
wise.

Dnition 2.2. [14] The fractional R-L derivative of the function ψ : [0,∞) → R
of order r > 0, with lower limit 0 is dened as

RLDr
0+ψ(ζ) =

1

Γ(k − r)

 d

dζ

k  ζ

0

(ζ − ϑ)k−r−1ψ(ϑ)dϑ,
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where k − 1 < r ≤ k, with k ∈ N.

Dnition 2.3. [14] The fractional Caputo derivative of the function ψ : [0,∞) →
R of order r > 0 is dened by

CDr
0+ψ(ζ) =

1

Γ(k − r)

 ζ

0

(ζ − ϑ)k−r−1ψ(k)(ϑ)dϑ,

where k − 1 < r ≤ k, k ∈ N.

Let {Q}t≥0 be the semigroup associated with the operator A. Then the following
operators are dened to present the mild solution of (1)

Sr(t)u =

 t

0

ϕr(µ)Q(trµ)udµ,

Pr(t)u = r

 t

0

µϕr(µ)Q(trµ)udµ

Here ϕr(µ) =
1
rµ

−1− 1
rψr(µ

− 1
r ) is called probability density function which sat-

ises ϕr(µ) ≥ 0 and
∞
0

ϕr(µ)dµ = 1 Also the function ψ is dened as

ψr(µ) =
1

π

∞

n=1

(−1)n−1µ−nr−1Γ(nr + 1)

n!
sin(nπr), µ ∈ (0,∞)

Let ∥Q(t)∥ ≤ M for all t ≥ 0. Then we have the following Lemma

Lmma 2.1. [16, 25]

(i) For xed t ≥ 0, Sr(t) and Pr(t) are linear bounded operators on U and
∥Sr(t)∥ ≤ M , ∥Pr(t)∥ ≤ M

Γ(r) 

(ii) If Q(t) is compact in U, then Sr(t) and Pr(t) are also compact for t > 0
(iii) Sr(t) and Pr(t) are continuous for t > 0

On the basis of Lemma 4.21 of [24] we dene the mild solution of (1) as

Dnition 2.4. A function u ∈ C(J ,U) is said to be a mild solution of the problem
(1) if it satises the following integral equation:

u(t) = Sr(t)

u0−h(u)


+

 t

0

(t−τ)r−1Pr(t−τ)

Bv(τ)+g(τ, u(τ))


dτ, t ∈ J  (2)

Dnition 2.5 (Null controllability). The system (1) is said to be null controllable
if there exists a control v ∈ L2(J ,V) such that with this control we have u(a) = 0

Lmma 2.2 (Schauder Fixed Point Theorem). Let W be a closed bounded and
convex subset of a Banach space U and Y : W → W be completely continuous, then
Y has at least one xed point in W .

3. Main results

We take the following assumptions

A1: The semigroup {Q(t)} is compact.
A2: g : J × C(J ,U) → U is continuous and there exists functions α() ∈

L1(J ,R+) and β() ∈ L1(C(J ,U),R+) such that

∥g(t, u(t))∥ ≤ α(t)β(u), ∀(t, u) ∈ J × C(J ,U)
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A3: The function h : C(J ,U) → U is continuous and there exists a constant
Lh > 0 such that ∥h(u)∥ ≤ Lh ∥u∥ 

A4: The associated linear system

CDr
0+u(t) = Au(t) +Bv(t) + g(t), t ∈ (0, a];

u(0) = u0,
(3)

where g ∈ L2(J ,U) is exactly null controllable on J in U.
Now dene the following operators

(i) La
0 : L2(J ,V) → U such that

La
0(v) =

 a

0

(a− τ)r−1Pr(a− τ)Bv(τ)dτ and,

L0 is the restriction of La
0 to [kerLa

0 ]
⊥

(ii) N a
0 : U× L2(J ,V) → U such that

N a
0 (x, f) = Sr(a)x+

 a

0

(a− τ)r−1Pr(a− τ)f(τ)dτ

The following Lemmas are useful for our main results.

Lmma 3.3. [6, 22] The linear system (3) is exactly null controllable on J if

Im L0 ⊃ Im N a
0 

Lmma 3.4. [6, 22] The linear system (3) is exactly null controllable in J if and
only if there exists a positive integer γ such that

∥(La
0)

∗u∥ ≥ γ ∥(N a
0 )

∗u∥ , ∀u ∈ U,

where ∗ denotes the transpose.

Lmma 3.5. Let the system (3) be exactly null controllable in J , then the linear
operator (L0)

−1(N a
0 ) : U× L2(J ,U) → L2(J ,V) is bounded. Further the control

v(t) = −(L0)
−1(N a

0 (u0, g))(t)

= −(L0)
−1


Sr(a)u0 +

 a

0

(a− τ)r−1Pr(a− τ)g(τ)dτ


transfer the system from u0 to 0.

Proof. Let us rst symbolize H : U× L2(J ,U) → L2(J ,V) by

H(x, f) = (L0)
−1N a

0 (x, f)

From the denition, we see that La
0 is a bounded linear operator. The null space

of La
0 is dened by kerLa

0 = {u ∈ L2(J ,U) : La
0 = 0} and and its orthogonal

compliment by [kerLa
0 ]

⊥.
Observe that the operator N a

0 (x, f) is bounded by virtue of the boundedness of
Sr(t), Pr(t) and f in nite time. Since L0 : [kerLa

0 ]
⊥ → Im La

0 , so L−1
0 is bijective

and by inverse mapping theorem it is bounded if both [kerLa
0 ]

⊥ and Im La
0 are

Banach spaces.
Obviously [kerLa

0 ]
⊥ is closed and hence a Banach space but the same can’t be

said about Im La
0 . Consider the sequence < xn, fn > in U × L2(J ,U) such that
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limn→∞ < xn, fn >→< x, f >  Also let H(xn, fn) converges in V and −v =
limn→∞ H(xn, fn) The closeness of [kerLa

0 ]
⊥ implies that v ∈ [kerLa

0 ]
⊥. Now

La
0(v) +N a

0 (x, f) = lim
n→∞


− La

0H(xn, fn) +N a
0 (xn, fn)


= 0,

by the continuity of La
0 and N a

0 . So −v = −L−1
0 N a

0 (x, f) = −H(x, f) and so H is
closed. By closed graph theorem, we see that H is bounded.

For the other part, we can directly compute v(t) into the mild solution of the
linear system (3) to get u(a) = 0 □

Thorm 3.1. Assume that the conditions A1−A4 are satised, then the nonlocal
system (1) is exactly null controllable in J provided

MLh +
M

Γ(r)
∥B∥

ar
r

 1
2 ∥H∥∥u0∥Lh < 1

Proof. For any u ∈ U, we choose the control as

v(t) = −(L0)
−1


N a

0 (u0 − h(u), g)

(t)

= −(L0)
−1


Sr(a)(u0 − h(u)) +

 a

0

(a− τ)r−1Pr(a− τ)g(τ, u(τ))dτ

(t)

= −H(u0 − h(u), g)(t)

(4)

Obviously v(t) is well dened as u0 − h(u) ∈ U and g(t, u(t)) ∈ L2(J ,U) To show
that this control steers the system (1) from u0−h(u) to 0 at time t = a we compute
directly the value of v(t) into the mild solution as given in (2).

u(a) =Sr(a)[u0 − h(u)]−
 a

0

(t− τ)r−1Pr(t− τ)BH(u0 − h(u), g)(τ)dτ

+

 a

0

(t− τ)r−1Pr(t− τ)g(τ, u(τ))dτ

=Sr(a)[u0 − h(u)]−
 a

0

(t− τ)r−1Pr(t− τ)B(L0)
−1


Sr(a)[u0 − h(u)]

+

 a

0

(t− τ)r−1Pr(t− τ)g(τ, u(τ))dτ

dτ

+

 a

0

(t− τ)r−1Pr(t− τ)g(τ, u(τ))dτ

=0

Consider the set

Wk = {u ∈ U : u(0) = u0 − h(u), ∥u∥ ≤ k}
Obviously Wk is convex, closed and bounded.

The control dened by (4) is bounded, as we see for u ∈ Wk,

∥v∥ =
 a

0

∥H(u0 − h(u), g)(s)∥2 ds
 1

2

≤∥H∥

∥u0∥+ ∥h(u)∥+

 a

0

 s

0

∥g(τ, u(τ))∥ dτ
2

ds

 1
2

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≤∥H∥

∥u0∥+ Lhk +

M

Γ(r)

 a

0

 s

0

α(τ)β(u)
2

ds

 1
2


≤∥H∥

∥u0∥+ Lhk +

M

Γ(r)

ar
r

 1
2 ∥α∥ψ(k)



=Mv (say)

Now our job is to prove that the solution of (1) with respect to the control given by
(4) exists in J . For any arbitrary u() and t ∈ J dene the operator Y on C(J ,U)
by

(Yu)(t) = Sr(t)[u0−h(u)]+

 t

0

(t−τ)r−1Pr(t−τ)

BH(u0−h(u), g)(τ)+g(τ, u(τ))


dτ

We will show that Y has a xed point in J by using Schauder xed point theorem,
which implies the existence of the mild solution of (1) with the control dened by
(4). We split the proof into several steps.

Step 1: We claim that there exists k ∈ R+ such that Y(Wk) ⊂ Wk. Let this be
not true, then for each k ∈ R+, ∃ uk() ∈ Wk with the condition that Y(uk) ∈ Wk,
which implies that ∥Yuk(t)∥ > k for some t ∈ J . Here t is dependent on k.

Now

k < ∥Y(uk)(t)∥

≤∥Sr(t)[u0 − h(u)]∥+
 t

0

(t− τ)r−1Pr(t− τ)


×
 BH


u0 − h(u), g


(τ) + g(τ, u(τ))


dτ



≤M ∥u0 − h(u)∥+ M

Γ(r)

 a

0

(t− τ)r−1

∥B∥ ∥H(u0 − h(u), g)(τ)∥

+ ∥g(τ, u(τ))∥

dτ

≤M∥u0∥+MLh∥u∥+
M

Γ(r)
∥B∥

 a

0


(t− τ)r−1 ∥H(u0 − h(u), g)(τ)∥

2

dτ

 1
2

+
M

Γ(r)

 t

0

 τ

0

(t− τ)r−1 ∥g(s, u(s))∥ dsdτ

≤M∥u0∥+MLhk +
M

Γ(r)
∥B∥

ar
r

 1
2

∥H∥∥u0∥Lhk +

ar
r

 1
2


+
M

Γ(r)
∥α∥ψ(k)


+

M

Γ(r)

ar
r

 1
2 ∥α∥ψ(k)

Dividing both sides by k and letting k → ∞ we have

1 ≤ MLh +
M

Γ(r)
∥B∥

ar
r

 1
2 ∥H∥∥u0∥Lh,

which contradicts the assumption of the theorem. So Y maps Wk into itself.
Step 2: Y maps Wk into equicontinuous sets of C(J ,U)
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Let 0 < t1 < t2 ≤ a and u ∈ Wk be any arbitrary element. Then

Y(u)(t1)− Y(u)(t2) =

Sr(t1)− Sr(t2)


[u0 − h(u)]

−
 t2

t1

(t2 − τ)r−1Pr(t2 − τ)×BH(u0 − h(u), g)(τ)dτ

+

 t1

0


(t1 − τ)r−1Pr(t1 − τ)− (t2 − τ)r−1Pr(t2 − τ)



×BH(u0 − h(u), g)(τ)dτ

−
 t2

t1

(t2 − τ)r−1Pr(t2 − τ)

 τ

0

g(s, u(s))dsdτ

+

 t1

0


(t1 − τ)r−1Pr(t1 − τ)− (t2 − τ)r−1Pr(t2 − τ)



×
 τ

0

g(s, u(s))dsdτ

Taking norm on both sides

∥Y(u)(t1)− Y(u)(t2)∥ ≤∥Sr(t1)− Sr(t2)∥

∥u0∥+ ∥h(u)∥



+ ∥B∥ M

Γ(r)

ar

r



t1

t2 ∥H(u0 − h(u), g)(τ)∥ dτ

+ ∥B∥
 t1

0

(t1 − τ)r−1Pr(t1 − τ)− (t2 − τ)r−1Pr(t2 − τ)


× ∥H(u0 − h(u), g)(τ)∥ dτ +
M

Γ(r)

ar

r

 t2+ϵ

t1+ϵ

 τ

0

α(s)β(u)dsdτ

+

 t1

0

(t1 − τ)r−1Pr(t1 − τ)− (t2 − τ)r−1Pr(t2 − τ)


×
 τ

0

α(τ)β(u)dsdτ

≤∥Sr(t1)− Sr(t2)∥

∥u0∥+ ∥h(u)∥



+ ∥B∥ M

Γ(r)

ar

r

 t2

t1

∥H(u0 − h(u), g)(τ)∥ dτ

+ ∥B∥
 t1

0

(t1 − τ)r−1Pr(t1 − τ)− (t2 − τ)r−1Pr(t2 − τ)


× ∥H(u0 − h(u), g)(τ)∥ dτ +
M

Γ(r)

ar

r

 t2

t1

 τ

0

α(s)dsdτψ(k)

+

 t1

0

(t1 − τ)r−1Pr(t1 − τ)− (t2 − τ)r−1Pr(t2 − τ)


×
 τ

0

α(s)dsdτψ(k)

=E1 + E2 + E3 + E4 + E5

Clearly E1 and E3 → 0 as t1 → t2, by the property of compactness of Sr and
Pr and by Lebasgues dominated convergence theorem. E2 → 0 and E4 → 0 as
t1 → t2 is obvious. By compactness of Pr we see that ∥Pr(t1 − τ)− Pr(t2 − τ)∥ →
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0, so by Lebesgue’s dominated convergence theorem E5 → 0. This means that
∥Y(u)(t1)− Y(u)(t2)∥ → 0 so Y is equicontinuous.

Step 3: For any t ∈ J construct the set

E(t) = {(Y(u))(t) : u() ∈ Wk}
We show that E is relatively compact.

For t = 0, E = {u0 − h(u)} and as h(u) is bounded in U, so it is true for t = 0
Dene for 0 < ϵ < t

Eϵ(t) = {uϵ(t) : u() ∈ Wk}
such that

uϵ(t) = Sr(t)[u0−h(u)]+

 t−ϵ

0

(t−τ)r−1Pr(t−τ)

BH(u0−h(u), g)(τ)+g(τ, u(τ))


dτ

As we know Sr(t) and Pr(t) are compact operators, so the set Eϵ(t) is relatively
compact in U for any ϵ with 0 < ϵ < t. Now for any u() ∈ Wk

∥Y(u)(t)− uϵ(t)∥ ≤

 ϵ

0

(t− τ)r−1Pr(t− τ)

BH(u0 − h(u), g)(τ) + g(τ, u(τ))


dτ



≤ M

Γ(r)

ϵr
r

 1
2

Mv +

ϵr
r

 1
2 ∥α∥ψ(k)



→ 0 as ϵ → 0+

So the set Eϵ(t) is arbitrarily close to E(t). Hence for each t ∈ J , E(t) is relatively
compact in U.

Step 4: Y is continuous.
Consider the sequence {un} with un ∈ U be such that un → ū as n → ∞ Now

∥Y(un)(t)− Y(ū)(t)∥ ≤
Sr(t)


h(un)− h(ū)

+

 t

0

(t− τ)r−1Pr(t− τ)

× ∥BH(u0 − h(un), g(un))(τ)−BH(u0 − h(ū), g(ū))(τ)∥ dτ

+

 t

0

(t− τ)r−1Pr(t− τ) ∥g(τ, un(τ))− g(τ, ū(τ))∥ dτ

From the property that g and h are continuous, g(un) → g(ū) and h(un) → h(ū)
as n → ∞. So the right hand side of the above expression tends to 0 as n → ∞,
implying that Y is continuous. So by Ascoli-Arzela theorem of innite dimensional
version, Y is a completely continuous operator on C(J ,U)

Thus, all the requisites of Schauder xed point theorem are satised, hence Y
has at least one xed point which is a mild solution of (1).

□

4. Application

Consider the following fractional dierential equation

CDr
0+y(t, z) = yzz(t, z) + by(

t

4
, z) +Bv(t, z), t ∈ J = [0, 1];

y(t, 0) = y(t,π) = 0, t ∈ J ,

y(0, z) +

p

j=1

cjy(tj , z) = y0,

(5)
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where tj ∈ (0, 1), j = 1, 2,    , p
We take the both spaces U = V = L2[0,π], and dene u(t) = y(t, z) Now denote

the operator A as Au = u′′ with its domain is dened as

D(A) = {u ∈ U : u, u′ are absolutely continuous and u′′ ∈ U, u(0) = u(π) = 0}
Then A has eigenvalues −n2, ∀n ∈ N and has a discrete spectrum. If we let

µn = n2π2 and φn(z) =


2
π sin(nπz) for each n ∈ N, then {−µn;φn}∞n=1 is the

eigensystem of A and the set {φn}∞n=0 forms an orthogonal basis of U.
Now

Az =

∞

n=1

n2 < z,φn > φn, and

Q(t)z =

∞

n=0

e−n2t < z,φn > φn

Which shows that A generates a strongly continuous semigroup {Q}t≥0 which
can be easily veried to be compact, self-adjoint and analytic. So the assumption
A1 is satised.

Moreover, ∥Q(t)∥ ≤ e−t ≤ 1 = M Let us take g(t, u(t)) = by(t4, z) and the set
Wk = {u ∈ U : ∥u∥ ≤ k}, then for t ∈ J , u ∈ Wk, we have

∥g(t, u(t))∥ = ∥by(t4, z)∥ ≤ b

 1

0

∥u(τ)∥2dτ = α(t)β(u),

for t ∈ J and u ∈ Wk ∈ U satisfying assumption A2.
Taking h(u) =

p
j=1 cjy(t, z), u0 = y0, we see that ∥h(u)∥ ≤ Lh∥u∥ where

Lh = max
1≤j≤p

cj , thereby satisfying assumption A3

To see that the assumption A4 is satised, we have to show that the associated
linear system of (5) is exactly null controllable. By virtue of the Lemma 3, we must
nd some γ > 0 such that

∥(La
0)

∗u∥ ≥ γ ∥(N a
0 )

∗u∥ , ∀u ∈ U

Or equivalently
 1

0

(1− τ)r−1B∗P ∗
r (1− τ)

2 dτ ≥ γ

∥S∗

r (1)∥2 +
 1

0

(1− τ)r−1P ∗
r (1− τ)

2 dτ



Following the method applied in [6], we can nd that γ = 1
2 and hence A4 is

satised. For the inequality mentioned in the Theorem 3.1, it can be achieved by
suitable choice of cj . Hence all the requisites of Theorem 3.1 are satised and hence
the system (5) is null controllable.

5. Conclusion

In this article we dealt with a nonlocal fractional dynamical system with Caputo
derivative of order 0 < r < 1. The conditions of null controllability of this system
are established using the conditions of null controllability of the corresponding linear
system. By use of fractional calculus, semigroup theory and xed point theorem
we achieved the results. Finally with the help of an example the theoretical results
are illustrated.
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Our future work will include investigation of exact null controllability of nite
and innite dimensional fractional system with multiple delays in control and state
variable.
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