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NULL CONTROLLABILITY OF FRACTIONAL DIFFERENTIAL

SYSTEM WITH NONLOCAL INITIAL CONDITION

DIBYAJYOTI HAZARIKA, JAYANTA BORAH, BHUPENDRA KUMAR SINGH

Abstract. In this paper, we examine the conditions of exact null controlla-
bility of fractional dynamical system with nonlocal initial condition in innite
dimensional setting. The fractional derivatives used in the system are in Ca-
puto sense and order of the derivatives are taken as r ∈ (0, 1). Schauder’s
xed point theorem is used to prove null controllability with the help of the
null controllability of the associated linear system.

1. Introduction

Fractional dierential systems (FDS’s) gain more and more importance in the
recent decades because of their ability to model real world problems in a more
ecient way in comparison to integer order systems. The controllability problem
of FDS’s are studied by many authors in numerous articles [5, 9, 15, 19, 17, 13, 12,
1, 8, 11]. There are dierent types of controllability, namely, exact controllability,
approximate controllability, null controllability, trajectory controllability etc. The
null controllability of a dynamical system means that the system can be steered to
zero state from an arbitrary initial state by means of some control inputs. Dauer et
al. [7] studied the null controllability of semilinear integer order systems in Hilbert
space. They studied the following integro-dierential system

x′(t) =Ax(t) +Bu(t) +

 t

0

f(τ, xτ )dτ, t ∈ [0, T ],

x0(µ) =ϕ(µ), µ ∈ [−k, 0]

Also in their paper [22] the authors derived conditions for null controllability of
the following nonlocal system of integer order

y′(t) =A(t)y(t) +Bv(t) + f(t, y(g(t))), t ∈ [0, T ],
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y(0) + h(t) = y0

In case of fractional systems, Ahmed [2] studied null controllability of stochas-
tic fractional system with Hilfer derivatives, Nirmala et al. [10] investigated null
controllability of fractional dynamical systems with constrained control in nite
dimensional case, while Sathiyaraj et al. [20, 21] studied Hilfer FDS with Brownian
motion and delayed FDS in nite dimension. For more articles regarding null con-
trollability of FDS in dierent settings we refer to [3, 4, 18, 23] and the references
therein.

Motivated by the above mentioned studies, we consider the following nonlocal
FDS for investigating null controllability

CDr
0+u(t) = Au(t) +Bv(t) + g(t, u(t)), t ∈ (0, a];

u(0) + h(u) = u0
(1)

Let J = [0, a] and CDr
0+ denotes the regularized Caputo derivative of order r

with 0 < r < 1. We take two Hilbert spaces U and V such that the state variable
u() ∈ U and the control function v() ∈ V. The corresponding norms in these
Hilbert spaces are taken to be the usual supremum norm. We take v ∈ L2(J ;V)
which ia a Banach space of admissible controls endowed with the norm ∥v∥ =  a

0
∥v(s)∥2ds

 1
2 . A generates a strongly continuous semigroup {Q(t)}0≤t≤a, B is

a bounded linear operator from V to U. g : J ×C(J ,U) → U and h : C(J ,U) → U
are two functions which will be specied later.

The main aim of our study is to extend the ideas presented in the articles [7]
and [22] into fractional framework with somewhat dierent set of conditions. The
fundamental dierence of this work is that we consider fractional dierential system
instead of integer order systems as done in the aforementioned papers. Further
nonlocal initial condition is taken into account in contrast with the local condition
in [7]. The assumption that g is strongly measurable as mentioned in [22] is replaced
by Lipschitz continuity in this work.

The rest of this paper is organized as follows: in Section 2 we list some important
results and denitions of fractional calculus and semigroup theory, main theoretical
results are discussed in the Section 3, an example is provided in Section 4 and
conclusion can be found in Section 5.

2. Preliminaries

Here we state some denitions with few relevant results of fractional calculus.

Dnition 2.1. [14] For the function ψ : [0,∞) → R, the fractional Riemann-
Liouville (R-L) integral of order r > 0, with lower limit 0 is dened as

Ir0+ψ(ζ) =
1

Γ(r)

 ζ

0

(ζ − ϑ)r−1ψ(ϑ)dϑ,

assuming the right hand side of the equation is dened on the interval [0,∞) point
wise.

Dnition 2.2. [14] The fractional R-L derivative of the function ψ : [0,∞) → R
of order r > 0, with lower limit 0 is dened as

RLDr
0+ψ(ζ) =

1

Γ(k − r)

 d

dζ

k  ζ

0

(ζ − ϑ)k−r−1ψ(ϑ)dϑ,
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where k − 1 < r ≤ k, with k ∈ N.

Dnition 2.3. [14] The fractional Caputo derivative of the function ψ : [0,∞) →
R of order r > 0 is dened by

CDr
0+ψ(ζ) =

1

Γ(k − r)

 ζ

0

(ζ − ϑ)k−r−1ψ(k)(ϑ)dϑ,

where k − 1 < r ≤ k, k ∈ N.

Let {Q}t≥0 be the semigroup associated with the operator A. Then the following
operators are dened to present the mild solution of (1)

Sr(t)u =

 t

0

ϕr(µ)Q(trµ)udµ,

Pr(t)u = r

 t

0

µϕr(µ)Q(trµ)udµ

Here ϕr(µ) =
1
rµ

−1− 1
rψr(µ

− 1
r ) is called probability density function which sat-

ises ϕr(µ) ≥ 0 and
∞
0

ϕr(µ)dµ = 1 Also the function ψ is dened as

ψr(µ) =
1

π

∞

n=1

(−1)n−1µ−nr−1Γ(nr + 1)

n!
sin(nπr), µ ∈ (0,∞)

Let ∥Q(t)∥ ≤ M for all t ≥ 0. Then we have the following Lemma

Lmma 2.1. [16, 25]

(i) For xed t ≥ 0, Sr(t) and Pr(t) are linear bounded operators on U and
∥Sr(t)∥ ≤ M , ∥Pr(t)∥ ≤ M

Γ(r) 

(ii) If Q(t) is compact in U, then Sr(t) and Pr(t) are also compact for t > 0
(iii) Sr(t) and Pr(t) are continuous for t > 0

On the basis of Lemma 4.21 of [24] we dene the mild solution of (1) as

Dnition 2.4. A function u ∈ C(J ,U) is said to be a mild solution of the problem
(1) if it satises the following integral equation:

u(t) = Sr(t)

u0−h(u)


+

 t

0

(t−τ)r−1Pr(t−τ)

Bv(τ)+g(τ, u(τ))


dτ, t ∈ J  (2)

Dnition 2.5 (Null controllability). The system (1) is said to be null controllable
if there exists a control v ∈ L2(J ,V) such that with this control we have u(a) = 0

Lmma 2.2 (Schauder Fixed Point Theorem). Let W be a closed bounded and
convex subset of a Banach space U and Y : W → W be completely continuous, then
Y has at least one xed point in W .

3. Main results

We take the following assumptions

A1: The semigroup {Q(t)} is compact.
A2: g : J × C(J ,U) → U is continuous and there exists functions α() ∈

L1(J ,R+) and β() ∈ L1(C(J ,U),R+) such that

∥g(t, u(t))∥ ≤ α(t)β(u), ∀(t, u) ∈ J × C(J ,U)
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A3: The function h : C(J ,U) → U is continuous and there exists a constant
Lh > 0 such that ∥h(u)∥ ≤ Lh ∥u∥ 

A4: The associated linear system

CDr
0+u(t) = Au(t) +Bv(t) + g(t), t ∈ (0, a];

u(0) = u0,
(3)

where g ∈ L2(J ,U) is exactly null controllable on J in U.
Now dene the following operators

(i) La
0 : L2(J ,V) → U such that

La
0(v) =

 a

0

(a− τ)r−1Pr(a− τ)Bv(τ)dτ and,

L0 is the restriction of La
0 to [kerLa

0 ]
⊥

(ii) N a
0 : U× L2(J ,V) → U such that

N a
0 (x, f) = Sr(a)x+

 a

0

(a− τ)r−1Pr(a− τ)f(τ)dτ

The following Lemmas are useful for our main results.

Lmma 3.3. [6, 22] The linear system (3) is exactly null controllable on J if

Im L0 ⊃ Im N a
0 

Lmma 3.4. [6, 22] The linear system (3) is exactly null controllable in J if and
only if there exists a positive integer γ such that

∥(La
0)

∗u∥ ≥ γ ∥(N a
0 )

∗u∥ , ∀u ∈ U,

where ∗ denotes the transpose.

Lmma 3.5. Let the system (3) be exactly null controllable in J , then the linear
operator (L0)

−1(N a
0 ) : U× L2(J ,U) → L2(J ,V) is bounded. Further the control

v(t) = −(L0)
−1(N a

0 (u0, g))(t)

= −(L0)
−1


Sr(a)u0 +

 a

0

(a− τ)r−1Pr(a− τ)g(τ)dτ


transfer the system from u0 to 0.

Proof. Let us rst symbolize H : U× L2(J ,U) → L2(J ,V) by

H(x, f) = (L0)
−1N a

0 (x, f)

From the denition, we see that La
0 is a bounded linear operator. The null space

of La
0 is dened by kerLa

0 = {u ∈ L2(J ,U) : La
0 = 0} and and its orthogonal

compliment by [kerLa
0 ]

⊥.
Observe that the operator N a

0 (x, f) is bounded by virtue of the boundedness of
Sr(t), Pr(t) and f in nite time. Since L0 : [kerLa

0 ]
⊥ → Im La

0 , so L−1
0 is bijective

and by inverse mapping theorem it is bounded if both [kerLa
0 ]

⊥ and Im La
0 are

Banach spaces.
Obviously [kerLa

0 ]
⊥ is closed and hence a Banach space but the same can’t be

said about Im La
0 . Consider the sequence < xn, fn > in U × L2(J ,U) such that
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limn→∞ < xn, fn >→< x, f >  Also let H(xn, fn) converges in V and −v =
limn→∞ H(xn, fn) The closeness of [kerLa

0 ]
⊥ implies that v ∈ [kerLa

0 ]
⊥. Now

La
0(v) +N a

0 (x, f) = lim
n→∞


− La

0H(xn, fn) +N a
0 (xn, fn)


= 0,

by the continuity of La
0 and N a

0 . So −v = −L−1
0 N a

0 (x, f) = −H(x, f) and so H is
closed. By closed graph theorem, we see that H is bounded.

For the other part, we can directly compute v(t) into the mild solution of the
linear system (3) to get u(a) = 0 □

Thorm 3.1. Assume that the conditions A1−A4 are satised, then the nonlocal
system (1) is exactly null controllable in J provided

MLh +
M

Γ(r)
∥B∥

ar
r

 1
2 ∥H∥∥u0∥Lh < 1

Proof. For any u ∈ U, we choose the control as

v(t) = −(L0)
−1


N a

0 (u0 − h(u), g)

(t)

= −(L0)
−1


Sr(a)(u0 − h(u)) +

 a

0

(a− τ)r−1Pr(a− τ)g(τ, u(τ))dτ

(t)

= −H(u0 − h(u), g)(t)

(4)

Obviously v(t) is well dened as u0 − h(u) ∈ U and g(t, u(t)) ∈ L2(J ,U) To show
that this control steers the system (1) from u0−h(u) to 0 at time t = a we compute
directly the value of v(t) into the mild solution as given in (2).

u(a) =Sr(a)[u0 − h(u)]−
 a

0

(t− τ)r−1Pr(t− τ)BH(u0 − h(u), g)(τ)dτ

+

 a

0

(t− τ)r−1Pr(t− τ)g(τ, u(τ))dτ

=Sr(a)[u0 − h(u)]−
 a

0

(t− τ)r−1Pr(t− τ)B(L0)
−1


Sr(a)[u0 − h(u)]

+

 a

0

(t− τ)r−1Pr(t− τ)g(τ, u(τ))dτ

dτ

+

 a

0

(t− τ)r−1Pr(t− τ)g(τ, u(τ))dτ

=0

Consider the set

Wk = {u ∈ U : u(0) = u0 − h(u), ∥u∥ ≤ k}
Obviously Wk is convex, closed and bounded.

The control dened by (4) is bounded, as we see for u ∈ Wk,

∥v∥ =
 a

0

∥H(u0 − h(u), g)(s)∥2 ds
 1

2

≤∥H∥

∥u0∥+ ∥h(u)∥+

 a

0

 s

0

∥g(τ, u(τ))∥ dτ
2

ds

 1
2
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≤∥H∥

∥u0∥+ Lhk +

M

Γ(r)

 a

0

 s

0

α(τ)β(u)
2

ds

 1
2


≤∥H∥

∥u0∥+ Lhk +

M

Γ(r)

ar
r

 1
2 ∥α∥ψ(k)



=Mv (say)

Now our job is to prove that the solution of (1) with respect to the control given by
(4) exists in J . For any arbitrary u() and t ∈ J dene the operator Y on C(J ,U)
by

(Yu)(t) = Sr(t)[u0−h(u)]+

 t

0

(t−τ)r−1Pr(t−τ)

BH(u0−h(u), g)(τ)+g(τ, u(τ))


dτ

We will show that Y has a xed point in J by using Schauder xed point theorem,
which implies the existence of the mild solution of (1) with the control dened by
(4). We split the proof into several steps.

Step 1: We claim that there exists k ∈ R+ such that Y(Wk) ⊂ Wk. Let this be
not true, then for each k ∈ R+, ∃ uk() ∈ Wk with the condition that Y(uk) ∈ Wk,
which implies that ∥Yuk(t)∥ > k for some t ∈ J . Here t is dependent on k.

Now

k < ∥Y(uk)(t)∥

≤∥Sr(t)[u0 − h(u)]∥+
 t

0

(t− τ)r−1Pr(t− τ)


×
 BH


u0 − h(u), g


(τ) + g(τ, u(τ))


dτ



≤M ∥u0 − h(u)∥+ M

Γ(r)

 a

0

(t− τ)r−1

∥B∥ ∥H(u0 − h(u), g)(τ)∥

+ ∥g(τ, u(τ))∥

dτ

≤M∥u0∥+MLh∥u∥+
M

Γ(r)
∥B∥

 a

0


(t− τ)r−1 ∥H(u0 − h(u), g)(τ)∥

2

dτ

 1
2

+
M

Γ(r)

 t

0

 τ

0

(t− τ)r−1 ∥g(s, u(s))∥ dsdτ

≤M∥u0∥+MLhk +
M

Γ(r)
∥B∥

ar
r

 1
2

∥H∥∥u0∥Lhk +

ar
r

 1
2


+
M

Γ(r)
∥α∥ψ(k)


+

M

Γ(r)

ar
r

 1
2 ∥α∥ψ(k)

Dividing both sides by k and letting k → ∞ we have

1 ≤ MLh +
M

Γ(r)
∥B∥

ar
r

 1
2 ∥H∥∥u0∥Lh,

which contradicts the assumption of the theorem. So Y maps Wk into itself.
Step 2: Y maps Wk into equicontinuous sets of C(J ,U)
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Let 0 < t1 < t2 ≤ a and u ∈ Wk be any arbitrary element. Then

Y(u)(t1)− Y(u)(t2) =

Sr(t1)− Sr(t2)


[u0 − h(u)]

−
 t2

t1

(t2 − τ)r−1Pr(t2 − τ)×BH(u0 − h(u), g)(τ)dτ

+

 t1

0


(t1 − τ)r−1Pr(t1 − τ)− (t2 − τ)r−1Pr(t2 − τ)



×BH(u0 − h(u), g)(τ)dτ

−
 t2

t1

(t2 − τ)r−1Pr(t2 − τ)

 τ

0

g(s, u(s))dsdτ

+

 t1

0


(t1 − τ)r−1Pr(t1 − τ)− (t2 − τ)r−1Pr(t2 − τ)



×
 τ

0

g(s, u(s))dsdτ

Taking norm on both sides

∥Y(u)(t1)− Y(u)(t2)∥ ≤∥Sr(t1)− Sr(t2)∥

∥u0∥+ ∥h(u)∥



+ ∥B∥ M

Γ(r)

ar

r



t1

t2 ∥H(u0 − h(u), g)(τ)∥ dτ

+ ∥B∥
 t1

0

(t1 − τ)r−1Pr(t1 − τ)− (t2 − τ)r−1Pr(t2 − τ)


× ∥H(u0 − h(u), g)(τ)∥ dτ +
M

Γ(r)

ar

r

 t2+ϵ

t1+ϵ

 τ

0

α(s)β(u)dsdτ

+

 t1

0

(t1 − τ)r−1Pr(t1 − τ)− (t2 − τ)r−1Pr(t2 − τ)


×
 τ

0

α(τ)β(u)dsdτ

≤∥Sr(t1)− Sr(t2)∥

∥u0∥+ ∥h(u)∥



+ ∥B∥ M

Γ(r)

ar

r

 t2

t1

∥H(u0 − h(u), g)(τ)∥ dτ

+ ∥B∥
 t1

0

(t1 − τ)r−1Pr(t1 − τ)− (t2 − τ)r−1Pr(t2 − τ)


× ∥H(u0 − h(u), g)(τ)∥ dτ +
M

Γ(r)

ar

r

 t2

t1

 τ

0

α(s)dsdτψ(k)

+

 t1

0

(t1 − τ)r−1Pr(t1 − τ)− (t2 − τ)r−1Pr(t2 − τ)


×
 τ

0

α(s)dsdτψ(k)

=E1 + E2 + E3 + E4 + E5

Clearly E1 and E3 → 0 as t1 → t2, by the property of compactness of Sr and
Pr and by Lebasgues dominated convergence theorem. E2 → 0 and E4 → 0 as
t1 → t2 is obvious. By compactness of Pr we see that ∥Pr(t1 − τ)− Pr(t2 − τ)∥ →
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0, so by Lebesgue’s dominated convergence theorem E5 → 0. This means that
∥Y(u)(t1)− Y(u)(t2)∥ → 0 so Y is equicontinuous.

Step 3: For any t ∈ J construct the set

E(t) = {(Y(u))(t) : u() ∈ Wk}
We show that E is relatively compact.

For t = 0, E = {u0 − h(u)} and as h(u) is bounded in U, so it is true for t = 0
Dene for 0 < ϵ < t

Eϵ(t) = {uϵ(t) : u() ∈ Wk}
such that

uϵ(t) = Sr(t)[u0−h(u)]+

 t−ϵ

0

(t−τ)r−1Pr(t−τ)

BH(u0−h(u), g)(τ)+g(τ, u(τ))


dτ

As we know Sr(t) and Pr(t) are compact operators, so the set Eϵ(t) is relatively
compact in U for any ϵ with 0 < ϵ < t. Now for any u() ∈ Wk

∥Y(u)(t)− uϵ(t)∥ ≤

 ϵ

0

(t− τ)r−1Pr(t− τ)

BH(u0 − h(u), g)(τ) + g(τ, u(τ))


dτ



≤ M

Γ(r)

ϵr
r

 1
2

Mv +

ϵr
r

 1
2 ∥α∥ψ(k)



→ 0 as ϵ → 0+

So the set Eϵ(t) is arbitrarily close to E(t). Hence for each t ∈ J , E(t) is relatively
compact in U.

Step 4: Y is continuous.
Consider the sequence {un} with un ∈ U be such that un → ū as n → ∞ Now

∥Y(un)(t)− Y(ū)(t)∥ ≤
Sr(t)


h(un)− h(ū)

+

 t

0

(t− τ)r−1Pr(t− τ)

× ∥BH(u0 − h(un), g(un))(τ)−BH(u0 − h(ū), g(ū))(τ)∥ dτ

+

 t

0

(t− τ)r−1Pr(t− τ) ∥g(τ, un(τ))− g(τ, ū(τ))∥ dτ

From the property that g and h are continuous, g(un) → g(ū) and h(un) → h(ū)
as n → ∞. So the right hand side of the above expression tends to 0 as n → ∞,
implying that Y is continuous. So by Ascoli-Arzela theorem of innite dimensional
version, Y is a completely continuous operator on C(J ,U)

Thus, all the requisites of Schauder xed point theorem are satised, hence Y
has at least one xed point which is a mild solution of (1).

□

4. Application

Consider the following fractional dierential equation

CDr
0+y(t, z) = yzz(t, z) + by(

t

4
, z) +Bv(t, z), t ∈ J = [0, 1];

y(t, 0) = y(t,π) = 0, t ∈ J ,

y(0, z) +

p

j=1

cjy(tj , z) = y0,

(5)
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where tj ∈ (0, 1), j = 1, 2,    , p
We take the both spaces U = V = L2[0,π], and dene u(t) = y(t, z) Now denote

the operator A as Au = u′′ with its domain is dened as

D(A) = {u ∈ U : u, u′ are absolutely continuous and u′′ ∈ U, u(0) = u(π) = 0}
Then A has eigenvalues −n2, ∀n ∈ N and has a discrete spectrum. If we let

µn = n2π2 and φn(z) =


2
π sin(nπz) for each n ∈ N, then {−µn;φn}∞n=1 is the

eigensystem of A and the set {φn}∞n=0 forms an orthogonal basis of U.
Now

Az =

∞

n=1

n2 < z,φn > φn, and

Q(t)z =

∞

n=0

e−n2t < z,φn > φn

Which shows that A generates a strongly continuous semigroup {Q}t≥0 which
can be easily veried to be compact, self-adjoint and analytic. So the assumption
A1 is satised.

Moreover, ∥Q(t)∥ ≤ e−t ≤ 1 = M Let us take g(t, u(t)) = by(t4, z) and the set
Wk = {u ∈ U : ∥u∥ ≤ k}, then for t ∈ J , u ∈ Wk, we have

∥g(t, u(t))∥ = ∥by(t4, z)∥ ≤ b

 1

0

∥u(τ)∥2dτ = α(t)β(u),

for t ∈ J and u ∈ Wk ∈ U satisfying assumption A2.
Taking h(u) =

p
j=1 cjy(t, z), u0 = y0, we see that ∥h(u)∥ ≤ Lh∥u∥ where

Lh = max
1≤j≤p

cj , thereby satisfying assumption A3

To see that the assumption A4 is satised, we have to show that the associated
linear system of (5) is exactly null controllable. By virtue of the Lemma 3, we must
nd some γ > 0 such that

∥(La
0)

∗u∥ ≥ γ ∥(N a
0 )

∗u∥ , ∀u ∈ U

Or equivalently
 1

0

(1− τ)r−1B∗P ∗
r (1− τ)

2 dτ ≥ γ

∥S∗

r (1)∥2 +
 1

0

(1− τ)r−1P ∗
r (1− τ)

2 dτ



Following the method applied in [6], we can nd that γ = 1
2 and hence A4 is

satised. For the inequality mentioned in the Theorem 3.1, it can be achieved by
suitable choice of cj . Hence all the requisites of Theorem 3.1 are satised and hence
the system (5) is null controllable.

5. Conclusion

In this article we dealt with a nonlocal fractional dynamical system with Caputo
derivative of order 0 < r < 1. The conditions of null controllability of this system
are established using the conditions of null controllability of the corresponding linear
system. By use of fractional calculus, semigroup theory and xed point theorem
we achieved the results. Finally with the help of an example the theoretical results
are illustrated.
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Our future work will include investigation of exact null controllability of nite
and innite dimensional fractional system with multiple delays in control and state
variable.
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