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NULL CONTROLLABILITY OF FRACTIONAL DIFFERENTIAL
SYSTEM WITH NONLOCAL INITIAL CONDITION

DIBYAJYOTI HAZARIKA, JAYANTA BORAH, BHUPENDRA KUMAR SINGH

ABSTRACT. In this paper, we examine the conditions of exact null controlla-
bility of fractional dynamical system with nonlocal initial condition in infinite
dimensional setting. The fractional derivatives used in the system are in Ca-
puto sense and order of the derivatives are taken as r € (0,1). Schauder’s
fixed point theorem is used to prove null controllability with the help of the
null controllability of the associated linear system.

1. INTRODUCTION

Fractional differential systems (FDS’s) gain more and more importance in the
recent decades because of their ability to model real world problems in a more
efficient way in comparison to integer order systems. The controllability problem
of FDS’s are studied by many authors in numerous articles [5, 9, 15, 19, 17, 13, 12,
1, 8, 11]. There are different types of controllability, namely, exact controllability,
approximate controllability, null controllability, trajectory controllability etc. The
null controllability of a dynamical system means that the system can be steered to
zero state from an arbitrary initial state by means of some control inputs. Dauer et
al. [7] studied the null controllability of semilinear integer order systems in Hilbert
space. They studied the following integro-differential system

(1) =Ax(t) + Bu(t) + /O f(ra2)dr, t€0,T),

Also in their paper [22] the authors derived conditions for null controllability of
the following nonlocal system of integer order

y'(t) =A®)y(t) + Bu(t) + f(t,y(9(t)), t€[0,T],
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y(0) + h(t) = yo.

In case of fractional systems, Ahmed [2] studied null controllability of stochas-
tic fractional system with Hilfer derivatives, Nirmala et al. [10] investigated null
controllability of fractional dynamical systems with constrained control in finite
dimensional case, while Sathiyaraj et al. [20, 21] studied Hilfer FDS with Brownian
motion and delayed FDS in finite dimension. For more articles regarding null con-
trollability of FDS in different settings we refer to [3, 4, 18, 23] and the references
therein.

Motivated by the above mentioned studies, we consider the following nonlocal
FDS for investigating null controllability

“Dg,u(t) = Au(t) + Bu(t) + g(t,u(t)), t € (0,al;

u(0) + h(u) = up.
Let J = [0,a] and ¢ D} . denotes the regularized Caputo derivative of order r
with 0 < r < 1. We take two Hilbert spaces U and V such that the state variable
u(.) € U and the control function v(.) € V. The corresponding norms in these

Hilbert spaces are taken to be the usual supremum norm. We take v € L?(7;V)
which ia a Banach space of admissible controls endowed with the norm |[jv]| =

(1)

(Jy ||v(s)||2ds)%. A generates a strongly continuous semigroup {Q(t)}o<i<a, B is
a bounded linear operator from Vto U. g: J xC(J,U) - Uand h: C(J,U) - U
are two functions which will be specified later.

The main aim of our study is to extend the ideas presented in the articles [7]
and [22] into fractional framework with somewhat different set of conditions. The
fundamental difference of this work is that we consider fractional differential system
instead of integer order systems as done in the aforementioned papers. Further
nonlocal initial condition is taken into account in contrast with the local condition
in [7]. The assumption that g is strongly measurable as mentioned in [22] is replaced
by Lipschitz continuity in this work.

The rest of this paper is organized as follows: in Section 2 we list some important
results and definitions of fractional calculus and semigroup theory, main theoretical
results are discussed in the Section 3, an example is provided in Section 4 and
conclusion can be found in Section 5.

2. PRELIMINARIES

Here we state some definitions with few relevant results of fractional calculus.

Definition 2.1. [14] For the function ¢ : [0,00) — R, the fractional Riemann-
Liouwville (R-L) integral of order r > 0, with lower limit 0 is defined as

1 ¢ r—1
0 /O (¢ — 0y 1 p(9) a0,

assuming the right hand side of the equation is defined on the interval [0, 00) point
wise.

I&MC) =

Definition 2.2. [14] The fractional R-L derivative of the function ¢ : [0,00) = R
of order r > 0, with lower limit O is defined as

¢
"Dy () = ey ()| (€= e,
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where k — 1 <r <k, with k € N.

Definition 2.3. [14] The fractional Caputo derivative of the function ¢ : [0, 00) —
R of order r > 0 is defined by

D () = / "= g ()0
ot Lk —r) Jo

where k —1 <r <k, keN.

Let {Q}:>0 be the semigroup associated with the operator A. Then the following
operators are defined to present the mild solution of (1)

tu = / 6, (1) Qt" ) udp,

P (tyu=r /O pipr (1) Q(E" p)udp.

Here ¢,.(u) = ’1*lwr( *%) is called probability density function which sat-
isfies ¢, () >0 and fo or(1)dp = 1. Also the function ¢ is defined as

' sin(nzr), w € (0,00).
n!

>1

li n 1 —nr 1F(nr—|—1)

Let ||Q(t)|]| < M for all ¢ > 0. Then we have the following Lemma

Lemma 2.1. [16, 25]
(i) For fized t > 0, Sp(t) and P.(t) are linear bounded operators on U and
IS ()1l < M, PO < w55
(il) If Q(t) is compact in U, then S,(t) and P.(t) are also compact for t > 0.
(iii) Sr(t) and P.(t) are continuous fort > 0.
On the basis of Lemma 4.21 of [24] we define the mild solution of (1) as

Definition 2.4. A function u € C(J,U) is said to be a mild solution of the problem
(1) if it satisfies the following integral equation:

t

) = 50 [wo— b))+ [ (e=r) " Bule—) [Bulr) +o(rulr)] i, 1€ T )
0

Definition 2.5 (Null controllability). The system (1) is said to be null controllable

if there exists a control v € L*(J,V) such that with this control we have u(a) = 0.

Lemma 2.2 (Schauder Fixed Point Theorem). Let W be a closed bounded and
convez subset of a Banach space U and Y : W — W be completely continuous, then
Y has at least one fixed point in W.

3. MAIN RESULTS

We take the following assumptions

A1: The semigroup {Q(t)} is compact.
A2: g : J x C(J,U) — U is continuous and there exists functions «(.) €
Ll(j,R+) and 3(.) € L'(C(J,U),R") such that
)

lg(t, u(@®))]| < a(®)B(w), Y(t,u) € T x C(T,1).
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A3: The function h : C(J,U) — U is continuous and there exists a constant
Ly, > 0 such that ||h(u)|| < Ly ||ul| .
A4: The associated linear system

Dy u(t) = Au(t) + Bo(t) + g(t), t € (0,al;
u(0) = uyg,
where g € L?(7,U) is exactly null controllable on J in U.

Now define the following operators
(i) £&:L*(J,V) — U such that

Li(w) = /Oa(a —7)""'P.(a — 7)Bu(r)dr and,

Ly is the restriction of £§ to [ker £&]*.
(i) N§: U x L?(J,V) — U such that

Nt f) = S,(@a+ [ (=) tPa =) f(r)ar,
0
The following Lemmas are useful for our main results.

Lemma 3.3. [6, 22] The linear system (3) is exactly null controllable on J if
Im Ly D Im ./\/;31

Lemma 3.4. [6, 22] The linear system (3) is exactly null controllable in J if and
only if there exists a positive integer v such that

10£5) ull = v [[NVG) ull, Vuel,
where x denotes the transpose.

Lemma 3.5. Let the system (8) be exactly null controllable in J, then the linear
operator (Lo) L (NG) : U x L3(J,U) — L*(J,V) is bounded. Further the control

v(t) = —(Lo) ™ (NG (uo, 9)(t)

— — (L) [ Sr(a)uo + /Oa(a — ) P - T)g(r)dr |
transfer the system from ug to 0.
Proof. Let us first symbolize # : U x L2(J,U) — L3(J,V) by
Hw, f) = (Lo) NG (@, /).

From the definition, we see that L£§ is a bounded linear operator. The null space
of £& is defined by ker £& = {u € L?(J,U) : L& = 0} and and its orthogonal
compliment by [ker £&]+.

Observe that the operator N§(z, f) is bounded by virtue of the boundedness of
S,(t), P.(t) and f in finite time. Since Ly : [ker £&]* — Im L&, so L, is bijective
and by inverse mapping theorem it is bounded if both [ker £&]*+ and Im L& are
Banach spaces.

Obviously [ker £3]1 is closed and hence a Banach space but the same can’t be
said about Im £¢. Consider the sequence < z,,, f, > in U x L?(J,U) such that
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limy, oo < Tp, fro >—=< z,f > . Also let H(z,, fn) converges in V and —v =
lim,, o0 H(Zn, fn). The closeness of [ker £&]1 implies that v € [ker £3]+. Now

[:8(1})+/\/’61($,f):nh_>ﬂolo _‘CSH('rnvfn)+N(;z(xnvfn) =0,

by the continuity of £& and N§. So —v = —Ly'N§(z, f) = —H(x, f) and so H is
closed. By closed graph theorem, we see that H is bounded.

For the other part, we can directly compute v(t) into the mild solution of the
linear system (3) to get u(a) = 0. O

Theorem 3.1. Assume that the conditions A1 — A4 are satisfied, then the nonlocal
system (1) is exactly null controllable in J provided

M a’™\ %
ML —B(—) L, <1
o B () 1ol <

Proof. For any u € U, we choose the control as
o(t) = —(L0) M [N (w0 — h(u). 9)| (1)
=—(Lo)! [Sr(a)(uo — h(u)) + /a(a —7)"'P.(a— T)g(T,u(T))dT] (t) (4)
0

= —H(uo — h(u),g)(t).

Obviously v(t) is well defined as ug — h(u) € U and g(¢,u(t)) € L*(J,U). To show
that this control steers the system (1) from ug — h(u) to 0 at time ¢ = a we compute
directly the value of v(¢) into the mild solution as given in (2).

@) =S, (@luo — h(w)] = [ (6= 1Pt = 7)o ~ ). ()i
+ /Oa(t — 1) P (t — T)g(T,u(T))dr
=S, (@l —h(w)] ~ [ (=)= B [ (0)ua — ()]
+ /Oa(t — 1) P (t — 1)g(7,u(r))dr |dr

+ /a(t — 1) Pt — 7)g(7,u(r))dr
=0. ’
Consider the set
Wi = {u € U u(0) = uo — h(w), |[u]] < k}.

Obviously W is convex, closed and bounded.
The control defined by (4) is bounded, as we see for u € W,

ot =( [ 174000~ b, 6017 d5)

<M [nua + )|+ ( L ([ 1struto d7)2d8> ]
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<l [uua e < (] Sa(T)ﬁ(u))st>§]

I
S [nua + Lnk + ](”)(“T)E o ek >]
=M, (Sa‘y)'

Now our job is to prove that the solution of (1) with respect to the control given by
(4) exists in J. For any arbitrary u(.) and ¢ € J define the operator Y on C(J,U)
by

Q)0 = S, Olso=h(w]+ [ (17~ P=r) [BH(0—h(u). 0)(7)+a(r.u(r))] .

We will show that ) has a fixed point in J by using Schauder fixed point theorem,
which implies the existence of the mild solution of (1) with the control defined by
(4). We split the proof into several steps.

Step 1: We claim that there exists k € RT such that V(W) C Wy. Let this be
not true, then for each k € R, 3 ux(.) € Wy, with the condition that Y(uy) ¢ W,
which implies that ||Yug(t)|| > k for some ¢t € J. Here ¢ is dependent on k.

Now

k< Y0l
<Ie 0o — ]l + [ ¢ =7 pte =)
< ||| BH (o = h(w), g)(7) + g(r. u(r)) a7 |
<M o = ) + gy (€= (1B (00 = b, )7

+ llg(r, u(r)Il | dr

[N

<M||ugl| + M Lp|ju| + = ( ] ||B|| (/a ((t — 1) [ H (uo — h(u), g)(T)|| )2d7>

M ' ! r—1
o) / / (t—7)" lg(s, u(s))|| dsdr

<Mluo|| + MLyk + ()HBII (%) (1ntiuol Lk + (%))
+ sl + o ()l

Dividing both sides by k and letting £ — co we have
M a’\ s
1< ML, +——|B (_) Ln,
< MLy + 55181 () 17l ol L

which contradicts the assumption of the theorem. So Y maps W into itself.
Step 2: Y maps Wy into equicontinuous sets of C(J,U).
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Let 0 < t; < ts < a and u € Wy be any arbitrary element. Then

P(w)(t1) = V() (t2) =(S(t1) = Sy (t2) ) [to — h(w)]
— /t 2(152 —7)" Lp.(t (ta — ) x BH(uo — h(u), g)(7)dr
+ /0/1 [(h —7)" T P (ty —7) = (ta — T)" T P (ty — 7-)}
x BH(uo — h(u), g)(7)dr
— - — )yt -7 Tsus sdr

[ =y pa =) [t utsasd

—l—/o 1 [(t1 —7) T P (ty —7) = (ta — T)" T P (ty — 7-)}
X /OTg(sm(s))dsdT

Taking norm on both sides

1P () (t1) = Y(w)(t2) | < [1Sr(t2) = Sr(t2)]| ([luoll + 2 (w)]])

1Bl s [ 2 10 = b)) ()

L B| / (b — 7" Bty —7) — (2 — 1) Polts — )|
M a" [tTe

 [[H(uo — h(w), 6)(7)| dr + o /+/ w)dsdr

i / [t =7y Pty —7) — (02— 1) Pty — 1)

></O a(7)B(u)dsdr
<118 (t1) = Sr(t2)] (Iluoll + 1A(w)])

1Bl T [ 1 = hw.6)(r)] dr

+ 1Bl / s =7 P = 7) = (2 — ) Pt — 7|
0
X || H(ug — h(u),g)(7)| dr + ——/ / s)dsdri(k
! —7)rt —7) = (tg—1)" ! 2—T
+ [Tl =R =) = (= Pt =)

X / a(s)dsdry(k)
0
—FE, + Ey+ Es + E, + Es.

Clearly F4 and E3 — 0 as t; — t2, by the property of compactness of .S, and
P, and by Lebasgues dominated convergence theorem. Ey — 0 and E4 — 0 as
t; — to is obvious. By compactness of P, we see that ||P.(t;1 —7) — P.(ta — 7)|| —
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0, so by Lebesgue’s dominated convergence theorem Fs — 0. This means that
IV (u)(t1) — Y(u)(t2)]] — 0 so Y is equicontinuous.

Step 3: For any t € J construct the set

E(t) ={V(w)(t) : u(.) € Wi}

We show that £ is relatively compact.

For t =0, £ = {ug — h(uw)} and as h(u) is bounded in U, so it is true for t = 0.

Define for 0 < e <t

Ec(t) = {uc(t) s u(.) € Wi}

such that

ue(t) = Sy (0)uo—h(w)] + / (=) Pt [BH(uo—h(w). 0) (7) g (. u(r) | dr.

As we know S,(t) and P.(t) are compact operators, so the set & (t) is relatively
compact in U for any € with 0 < € < ¢. Now for any u(.) € Wy

19(u)(t) — ue(t)] < ‘

[ = R ) [BH 0 — 1w, 6)(7) + gl u(r)

0

<A () e+ () o]

—0 as e —> 0T,

So the set E.(t) is arbitrarily close to £(t). Hence for each ¢t € J, £(t) is relatively
compact in U.

Step 4: ) is continuous.

Consider the sequence {u,} with u,, € U be such that u,, — @ as n — oo. Now

1V (un) () = V(@) (@) < || (#) [2(un) = h(@)]|| + /0 (t=7) " Pt =)
X ||BH(uo = h(un), g(un)) () — BH(uo — h(w), g(u))(7)|| dr

+ / (t = 1) 7 Pt = 1) llg (T un (7)) = g(7,a(7))ll dr
0

From the property that g and h are continuous, g(u,) — ¢g(@) and h(u,) — h(a)
as n — o0o. So the right hand side of the above expression tends to 0 as n — oo,
implying that ) is continuous. So by Ascoli-Arzela theorem of infinite dimensional
version, ) is a completely continuous operator on C(7,U).

Thus, all the requisites of Schauder fixed point theorem are satisfied, hence )
has at least one fixed point which is a mild solution of (1).

O
4. APPLICATION
Consider the following fractional differential equation
CDGay(t2) = yaa(t,2) + by(5,2) + But,2), 1€ T =[0,1]
y(t,0) =y(t,m) =0, te J, (5)

p
y(O,Z) + chy(tjv Z) = Yo,
J=1
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where t; € (0,1),5 =1,2,...,p.
We take the both spaces U =V = L2[0, 7], and define u(t) = y(t, z). Now denote
the operator A as Au = v/ with its domain is defined as

D(A) = {u € U : u,u are absolutely continuous and v € U, u(0) = u(m) = 0}.

Then A has eigenvalues —n?, Vn € N and has a discrete spectrum. If we let

pn = n?n? and @, (z) = \/gsin(mrz) for each n € N, then {—py,; @, 152, is the
eigensystem of A and the set {¢,}32, forms an orthogonal basis of U.
Now

o0
Az:Zn2 < Z,¢n > Yn, and

n=1

(oo}
Q)2 = et < 2,00 > g
n=0

Which shows that A generates a strongly continuous semigroup {Q};>o which
can be easily verified to be compact, self-adjoint and analytic. So the assumption
Al is satisfied.

Moreover, ||Q(t)|| < e ! < 1= M. Let us take g(t,u(t)) = by(t/4,z) and the set
Wi ={u € U: |lu|]| <k}, then for t € J,u € Wy, we have

lg(t; w(@®)]l = lloy(t/4, 2)[| < b/o lu(r)|*dr = a(t)B(u),

for t € J and u € Wy, € U satisfying assumption A2.
Taking h(u) = >2%_, cjy(t,2), uo = yo, we see that ||h(u)|| < Lyllu| where
L, = max c;, thereby satisfying assumption A3.
J<p

To see that the assumption A4 is satisfied, we have to show that the associated
linear system of (5) is exactly null controllable. By virtue of the Lemma 3, we must
find some 7 > 0 such that

10£6) ull = v |(NVG) ull, VueU.
Or equivalently

/ H(l —7) " 'B*P*(1 - 7')H2d7' > ’y[HS;‘f(l)H2 +/ H(l —7) Pl — T)H2 dT].
0 0

Following the method applied in [6], we can find that v = % and hence A4 is
satisfied. For the inequality mentioned in the Theorem 3.1, it can be achieved by
suitable choice of ¢;. Hence all the requisites of Theorem 3.1 are satisfied and hence
the system (5) is null controllable.

5. CONCLUSION

In this article we dealt with a nonlocal fractional dynamical system with Caputo
derivative of order 0 < r < 1. The conditions of null controllability of this system
are established using the conditions of null controllability of the corresponding linear
system. By use of fractional calculus, semigroup theory and fixed point theorem
we achieved the results. Finally with the help of an example the theoretical results
are illustrated.
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Our future work will include investigation of exact null controllability of finite

and infinite dimensional fractional system with multiple delays in control and state
variable.
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