
Journal of Fractional Calculus and Applications
Vol. 15(2) July 2024, No.15.
ISSN: 2090-5858.
ISSN 2090-584X (print)
http://jfca.journals.ekb.eg/

SOME NEW GENERAL SUMMATION FORMULAS

CONTIGUOUS TO THE KUMMER’S FIRST SUMMATION

THEOREM

M. I. QURESHI, A.H. BHAT, J. MAJID

Abstract. Due to the great success of hypergeometric functions of one vari-

able, a number of hypergeometric functions of two or more variables have been

introduced and explored. The aim of this paper is to provide the extensions
and generalizations of Kümmer’s rst summation theorem for the higher-order

hypergeometric series, where numeratorial and denominatorial parameters dif-

fer by positive integers, in the form of

r+2Fr+1[a, b, {nr + ζr} ; 1 + a− b+m, {ζr} ; −1],

with suitable convergence conditions. Where ζr is set of complex or real num-
bers, {nr} is set of positive integers and suitable restrictions on the value of m.

1. Introduction

The enormous popularity and broad usefulness of the hypergeometric function 2F1 and
the generalized hypergeometric functions pFq (p, q ∈ N0) of one variable have inspired
and stimulated a large number of researchers to introduce and investigate hypergeometric
functions of two or more variables (see, e.g., [3, 16, 7, 23]). A serious, signicant, and
systematic study of the hypergeometric functions of two variables was initiated by Appell
[2], who oered the so-called Appell functions F1, F2, F3, and F4 which are generalizations
of the Gauss hypergeometric function. The conuent forms of the Appell functions were
studied by Humbert [9]. A complete list of these functions can be seen in the standard
literature. Later, the four Appell functions and their conuent forms were further gen-
eralized by Kampé de Fériet, who introduced more general hypergeometric functions of
two variables. The notation dened and introduced by Kampé de Fériet for his double-
hypergeometric functions of superior order was subsequently abbreviated by Burchnall
and Chaundy [4].
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A natural generalization of the Gaussian hypergeometric series 2F1[α, β; γ; z] is accom-
plished by introducing any arbitrary number of numerator and denominator parameters.
Thus, the resulting series

pFq




(αp);
z

(βq);


 = pFq




α1,α2, . . . ,αp;
z

β1,β2, . . . ,βq;


 =

∞

n=0

p
j=1(αj)nq
j=1(βj)n

zn

n!
, (1)

where (α)p is the Pochhammer symbol dened for (α, p ∈ C) (see, [24, p.2 and p.5])

(α)p =
Γ(α+ p)

Γ(α)

=


1


p = 0 ; α ∈ C\Z−

0


,

α(α+ 1) · · · (α+ n− 1) (p = n ∈ N ; α ∈ C) ,

(2)

it being understood that (0)0 = 1 (see, e.g., [21, 25]) and assumed tacitly that the Gamma
quotient exists. Here an empty product is interpreted as 1, and it is assumed that the
variable z, the numerator parameters α1, . . . , αp, and the denominator parameters β1,
. . . , βq take on complex values, provided that

(βj ∈ C\Z−
0 ; j = 1, . . . , q). (3)

For p = q + 1, it has a branch cut discontinuity in the complex z-plane running from 1
to ∞. If p ≤ q the series (1) converges for each z ∈ C. For some recent results on this
subject, especially on transformations, summations and some applications, see [14, 17].

Here and elsewhere, C, R, N, Z, R+ and R− denote the sets of complex numbers, real
numbers, natural numbers, integers, positive and negative real numbers, respectively.

For more details of pFq including its convergence, its various special and limiting cases,
and its further diverse generalizations, one may be referred, for example see [3].
Kummer’s First summation theorem [7, p. 852, Eq.(1.3) ], see also [12, p. 134]:

2F1




a, b;
−1

1 + a− b;


 =

Γ(1 + a− b)Γ

1 + (a

2
)


Γ

1 + (a

2
)− b


Γ(1 + a)

, (4)

where 1 + a− b ∈ C\Z−
0 , and R(b) < 1.

Contiguous Kummer’s summation theorems[16]

2F1




a, b;
−1

a− b;


 =

Γ( 1
2
)Γ(a− b)

2a


1

Γ(a
2
)Γ( a

2
− b+ 1

2
)
+

1

Γ(a
2
+ 1

2
)Γ( a

2
− b)


, (5)

2F1




a, b;
−1

a− b− 1;


 =

Γ( 1
2
)Γ(a− b− 1)

2a

×


(a− b− 1)

Γ(a
2
− b)Γ( a

2
+ 1

2
)
+

2

Γ(a
2
− b− 1

2
)Γ( a

2
)


. (6)

Extension of Gauss’ summation theorem[11, 16]

3F2




a, b, d+ 1;
1

c+ 1, d;


 =

Γ(c+ 1)Γ(c− a− b)

Γ(c− a+ 1)Γ(c− b+ 1)


(c− a− b) +

ab

d


, (7)

provided R(c− a− b) > 0 and d ̸= 0,−1,−2, ...
Extension of Kummer’s summation theorem[11]

3F2




a, b, d+ 1;
−1

2 + a− b, d;


 =

Γ( 1
2
)Γ(2 + a− b)

2a(1− b)


( 1+a−b

d
− 1)

Γ(a
2
)Γ( a

2
− b+ 3

2
)
+

(1− a
d
)

Γ(a
2
+ 1

2
)Γ( a

2
− b+ 1)


,

(8)
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Summation formula given by Choi-Rathie-Malani[6, p. 1523, Eq.(2.2) ], see also [22, p.
828, Th.(3) ]

2F1




α, β;
−1

1 + α− β + j;


 =

Γ(1 + α− β + j)

2Γ(α)(1− β)j

j

r=0


j
r


(−1)rΓ


r+α
2



Γ

r+α
2

+ 1− β



(9)

where R(β) <

2+j
2


α, 1− β, 1 + α− β + j ∈ C\Z−

0 , j ∈ N0.

Motivated by the work of Andrews [1], Bailey[3], Carlson[5], Choi[6], Erdélyi et al. [8],
Kim et al.[10], Miller et al. [13], Minton [15], Prudnikov et al.[16], Qureshi[18, 19, 20],
Rakha-Rathie [22], Slatter [23], Srivastava[24, 25] and Vidunas [27], we mention some
summation theorems for 6F5[−1] and 5F4[−1] in Section 2. In Section 3, we have given
the summation theorems for 4F3[−1]. In Section 4, we have given the summation theorems
for 3F2[−1]. The proof of summation theorems can be derived by using the formula
given by Choi-Rathie-Malani (9), series rearrangement technique and Pochhammer symbol
identities.

Any values of numerator and denominator parameters in sections 2,3 and 4, leading to
the results which do not make sense are tacitly excluded.

2. Summation Theorems for 6F5[−1] and 5F4[−1]

Theorem 2.1. The following theorem holds true

6F5




a, b, c+ 1, d+ 1, g + 1, h+ 1;
−1

1 + a− b+m, c, d, g, h;


 =

Γ(1 + a− b+m)

2Γ(a)(1− b)m


m

r=0


m
r


(−1)rΓ


r+a
2



Γ

r+a+2−2b

2

 +

+
(1 + cdg + cdh+ cgh+ dgh+ cd+ cg + ch+ dg + dh+ gh+ c+ g + h+ d)

cdgh

m+1

r=0


m+ 1

r


×

× (−1)rΓ

r+a+1

2



Γ

r+a+1−2b

2

 +
(7 + cd+ cg + ch+ dg + dh+ gh+ 3c+ 3d+ 3g + 3h)

cdgh

m+2

r=0


m+ 2

r


×

× (−1)rΓ

r+a+2

2



Γ

r+a−2b

2

 +
(6 + c+ d+ g + h)

cdgh

m+3

r=0


m+ 3

r


(−1)rΓ


r+a+3

2



Γ

r+a−1−2b

2

 +

+
1

cdgh

m+4

r=0


m+ 4

r


(−1)rΓ


r+a+4

2



Γ

r+a−2−2b

2



, (10)

where R(b) <
−2+m

2


; a, b, c, d, g, h, 1 + a− b+m ∈ C\Z−

0 , and m ∈ N0.
The proof of the Theorem 2.1 can be obtained by using formula (9) with the aid of following
Pochhammer symbol identity. The involved details are omitted.

(c+ 1)r(d+ 1)r(g + 1)r(h+ 1)r
(c)r(d)r(g)r(h)r

=


1 +

(1 + cdg + cdh+ cgh+ dgh+ cd+ cg + ch+ dg + dh+ gh+ c+ d+ g + h)r

cdgh
+

+
(7 + cd+ cg + ch+ dg + dh+ gh+ 3c+ 3d+ 3g + 3h)r(r − 1)

cdgh
+

+
(6 + c+ d+ g + h)r(r − 1)(r − 2)

cdgh
+

r(r − 1)(r − 2)(r − 3)

cdgh


(11)
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Theorem 2.2. The following theorem holds true

5F4




a, b, c+ 1, d+ 1, g + 1;
−1

1 + a− b+m, c, d, g;


 =

Γ(1 + a− b+m)

2Γ(a)(1− b)m


m

r=0


m
r


(−1)rΓ


r+a
2



Γ

r+a+2−2b

2

 +

+
(1 + c+ g + d+ cd+ cg + dg)

cdg

m+1

r=0


m+ 1

r


(−1)rΓ


r+a+1

2



Γ

r+a+1−2b

2

 +
(c+ d+ g + 3)

cdg
×

×
m+2

r=0


m+ 2

r


(−1)rΓ


r+a+2

2



Γ

r+a−2b

2

 +
1

cdg

m+3

r=0


m+ 3

r


(−1)rΓ


r+a+3

2



Γ

r+a−1−2b

2



, (12)

where R(b) <
−1+m

2


; a, b, c, d, g, 1 + a− b+m ∈ C\Z−

0 , and m ∈ N0.

Proof of the Theorem 2.2:
Using the denition of Pochhammer symbol

(α)p =
Γ(α+ p)

Γ(α)
,

we can see that

(c+ 1)r(d+ 1)r(g + 1)r
(c)r(d)r(g)r

=


1 +

(1 + c+ d+ g + cd+ cg + dg)r

cdg
+

(c+ d+ g + 3)r(r − 1)

cdg
+

r(r − 1)(r − 2)

cdg


,

(13)
Using the equation (13) in the Theorem 2.2, after some simplication, we come to

5F4




a, b, c+ 1, d+ 1, g + 1;
−1

1 + a− b+m, c, d, g;




= 2F1




a, b ;
−1

1 + a− b+m ;


+(1 + c+ d+ g + cd+ cg + dg)

cdg

∞

r=1

(a)r(b)r(−1)r

(1 + a− b+m)r(r − 1)!
+

+
(c+ d+ g + 3)

cdg

∞

r=2

(a)r(b)r(−1)r

(1 + a− b+m)r(r − 2)!
+

1

cdg

∞

r=3

(a)r(b)r(−1)r

(1 + a− b+m)r(r − 3)!
. (14)

Replacing r by r + 1 in the second term, r by r + 2 in the third term and r by r + 3 in
the fourth term on the right hand side of the equation (14), we get

5F4




a, b, c+ 1, d+ 1, g + 1;
−1

1 + a− b+m, c, d, g;




= 2F1




a, b ;
−1

1 + a− b+m ;


−ab(1 + c+ d+ g + cd+ cg + dg)

cdg(1 + a− b+m)
2F1




a+ 1, b+ 1 ;
−1

2 + a− b+m ;




+
(c+ d+ g + 3)a(a+ 1)b(b+ 1)

cdg(1 + a− b+m)(2 + a− b+m)
2F1




a+ 2, b+ 2 ;
−1

3 + a− b+m ;




− a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)

cdg(1 + a− b+m)(2 + a− b+m)(3 + a− b+m)
2F1




a+ 3, b+ 3 ;
−1

4 + a− b+m ;


 .

(15)
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Finally applying the summation formula given by Choi-Rathie-Malani (9) on the right
hand side of the equation (15), we arrive at the result (12).

Theorem 2.3. The following theorem holds true

5F4




a, b, c+ 1, d+ 1, g + 2;
−1

1 + a− b+m, c, d, g;


 =

Γ(1 + a− b+m)

2Γ(a)(1− b)m


m

r=0


m
r


(−1)rΓ


r+a
2



Γ

r+a+2−2b

2

 +

+
(dg + cg + 2cd+ 2c+ 2d+ g + 2)

cdg

m+1

r=0


m+ 1

r


(−1)rΓ


r+a+1

2



Γ

r+a+1−2b

2

 +
(10 + cd+ 2dg + 2cg+

cdg
×

×+g2 + 4c+ 4d+ 7g)

(g + 1)

m+2

r=0


m+ 2

r


(−1)rΓ


r+a+2

2



Γ

r+a−2b

2

 +
(7 + c+ d+ 2g)

cdg(g + 1)

m+3

r=0


m+ 3

r


×

× (−1)rΓ

r+a+3

2



Γ

r+a−1−2b

2

 +
1

cdg(g + 1)

m+4

r=0


m+ 4

r


(−1)rΓ


r+a+4

2



Γ

r+a−2−2b

2



, (16)

where R(b) <
−2+m

2


; a, b, c, d, g, 1 + a− b+m ∈ C\Z−

0 , and m ∈ N0.

The proof of the Theorem 2.3 can be derived by using the following pochhammer
symbol identity and generalized hypergeometric function of one variable.

(c+ 1)r(d+ 1)r(g + 2)r
(c)r(d)r(g)r

=


1 +

(dg + cg + 2cd+ 2c+ 2d+ g + 2)r

cdg
+

(10 + cd+ 2dg + 2cg+

cdg

+g2 + 4c+ 4d+ 7g)r(r − 1)

(g + 1)
+

(7 + c+ d+ 2g)r(r − 1)(r − 2)

cdg(g + 1)
+

r(r − 1)(r − 2)(r − 3)

cdg(g + 1)


,

(17)

3. Summation Theorems for 4F3[−1]

Theorem 3.4. The following theorem holds true

4F3




a, b, c+ 1, d+ 1;
−1

1 + a− b+m, c, d;


 =

Γ(1 + a− b+m)

2Γ(a)(1− b)m


m

r=0


m
r


(−1)rΓ


r+a
2



Γ

r+a+2−2b

2

 +

+
(c+ d+ 1)

cd

m+1

r=0


m+ 1

r


(−1)rΓ


r+a+1

2



Γ

r+a+1−2b

2

 +
1

cd

m+2

r=0


m+ 2

r


(−1)rΓ


r+a+2

2



Γ

r+a−2b

2



,

(18)

where R(b) <

m
2


; a, b, c, d, 1 + a− b+m ∈ C\Z−

0 , and m ∈ N0.

The proof of the Theorem 3.4 can be obtained by using the following identity and some
series rearrangement techniques.

(c+ 1)r(d+ 1)r
(c)r(d)r

=


1 +

(c+ d+ 1)r

cd
+

r(r − 1)

cd


, (19)

Theorem 3.5. The following theorem holds true

4F3




a, b, c+ 1, d+ 2;
−1

1 + a− b+m, c, d;


 =

Γ(1 + a− b+m)

2Γ(a)(1− b)m


m

r=0


m
r


(−1)rΓ


r+a
2



Γ

r+a+2−2b

2

 +
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+
(2c+ d+ 2)

cd

m+1

r=0


m+ 1

r


(−1)rΓ


r+a+1

2



Γ

r+a+1−2b

2

 +
(c+ 2d+ 4)

cd(d+ 1)

m+2

r=0


m+ 2

r


(−1)rΓ


r+a+2

2



Γ

r+a−2b

2

 +

+
1

cd(d+ 1)

m+3

r=0


m+ 3

r


(−1)rΓ


r+a+3

2



Γ

r+a−1−2b

2



, (20)

where R(b) <
−1+m

2


; a, b, c, d, 1 + a− b+m ∈ C\Z−

0 , and m ∈ N0.

The proof of Theorem 3.5 can be accomplished by following the lines of that of Theorem
3.4. The details are omitted.

Theorem 3.6. The following theorem holds true

4F3




a, b, c+ 2, d+ 2;
−1

1 + a− b+m, c, d;


 =

Γ(1 + a− b+m)

2Γ(a)(1− b)m


m

r=0


m
r


(−1)rΓ


r+a
2



Γ

r+a+2−2b

2

 +

+
(4 + 2c+ 2d)

cd

m+1

r=0


m+ 1

r


(−1)rΓ


r+a+1

2



Γ

r+a+1−2b

2

 +
(14 + c2 + d2 + 4cd+ 9c+ 9d)

cd(c+ 1)(d+ 1)
×

m+2

r=0


m+ 2

r


(−1)rΓ


r+a+2

2



Γ

r+a−2b

2

 +
(8 + 2c+ 2d)

cd(c+ 1)(d+ 1)

m+3

r=0


m+ 3

r


(−1)rΓ


r+a+3

2



Γ

r+a−1−2b

2

 +

+
1

cd(c+ 1)(d+ 1)

m+4

r=0


m+ 4

r


(−1)rΓ


r+a+4

2



Γ

r+a−2−2b

2



, (21)

where R(b) <
−2+m

2


; a, b, c, d, 1 + a− b+m ∈ C\Z−

0 , and m ∈ N0.

The proof of the Theorem 3.6 can be obtained by using the identity (22 ) and generalized
hypergeometric function of one variable.

(c+ 2)r(d+ 2)r
(c)r(d)r

=


1 +

(4 + 2c+ 2d)r

cd
+

(14 + c2 + d2 + 4cd+ 9c+ 9d)r(r − 1)

cd(c+ 1)(d+ 1)

+
(8 + 2c+ 2d)r(r − 1)(r − 2)

cd(c+ 1)(d+ 1)
+

r(r − 1)(r − 2)(r − 3)

cd(c+ 1)(d+ 1)


, (22)

Theorem 3.7. The following theorem holds true

4F3




a, b, c+ 1, d+ 3;
−1

1 + a− b+m, c, d;


 =

Γ(1 + a− b+m)

2Γ(a)(1− b)m


m

r=0


m
r


(−1)rΓ


r+a
2



Γ

r+a+2−2b

2

 +

+
(3 + 3c+ d)

cd

m+1

r=0


m+ 1

r


(−1)rΓ


r+a+1

2



Γ

r+a+1−2b

2

 +
(9 + 3c+ 3d)

cd(d+ 1)

m+2

r=0


m+ 2

r


×

× (−1)rΓ

r+a+2

2



Γ

r+a−2b

2

 +
(9 + c+ 3d)

cd(d+ 1)(d+ 2)

m+3

r=0


m+ 3

r


(−1)rΓ


r+a+3

2



Γ

r+a−1−2b

2

 +

+
1

cd(d+ 1)(d+ 2)

m+4

r=0


m+ 4

r


(−1)rΓ


r+a+4

2



Γ

r+a−2−2b

2



, (23)

where R(b) <
−2+m

2


; a, b, c, d, 1 + a− b+m ∈ C\Z−

0 , and m ∈ N0.

The proof of the Theorem 3.7 can be obtained by using the identity (24 ) and summation
formula given by Choi-Rathie-Malani (9) . The involved details are omitted.

(c+ 1)r(d+ 3)r
(c)r(d)r

=


1 +

(3 + 3c+ d)r

cd
+

(9 + 3c+ 3d)r(r − 1)

cd(d+ 1)
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+
(9 + c+ 3d)r(r − 1)(r − 2)

cd(d+ 1)(d+ 2)
+

r(r − 1)(r − 2)(r − 3)

cd(d+ 1)(d+ 2)


. (24)

4. Summation Theorems for 3F2[−1]

Theorem 4.8. The following theorem holds true

3F2




a, b, c+ 1;
−1

1 + a− b+m, c;


 =

Γ(1 + a− b+m)

2Γ(a)(1− b)m


m

r=0


m
r


(−1)rΓ


r+a
2



Γ

r+a+2−2b

2

 +

+
1

c

m+1

r=0


m+ 1

r


(−1)rΓ


r+a+1

2



Γ

r+a+1−2b

2



, (25)

where R(b) <

1+m

2


; a, b, c, 1 + a− b+m ∈ C\Z−

0 , and m ∈ N0.

The proof of Theorem 4.8 would ow along the lines of that of Theorem 3.7 with the help
of formula (9).

Theorem 4.9. The following theorem holds true

3F2




a, b, c+ 2;
−1

1 + a− b+m, c;


 =

Γ(1 + a− b+m)

2Γ(a)(1− b)m


m

r=0


m
r


(−1)rΓ


r+a
2



Γ

r+a+2−2b

2

 +

+
2

c

m+1

r=0


m+ 1

r


(−1)rΓ


r+a+1

2



Γ

r+a+1−2b

2

 +
1

c(c+ 1)

m+2

r=0


m+ 2

r


(−1)rΓ


r+a+2

2



Γ

r+a−2b

2



,

(26)

where R(b) <

m
2


; a, b, c, 1 + a− b+m ∈ C\Z−

0 , and m ∈ N0.

Theorem 4.10. The following theorem holds true

3F2




a, b, c+ 3;
−1

1 + a− b+m, c;


 =

Γ(1 + a− b+m)

2Γ(a)(1− b)m


m

r=0


m
r


(−1)rΓ


r+a
2



Γ

r+a+2−2b

2

 +

+
3

c

m+1

r=0


m+ 1

r


(−1)rΓ


r+a+1

2



Γ

r+a+1−2b

2

 +
3

c(c+ 1)

m+2

r=0


m+ 2

r


(−1)rΓ


r+a+2

2



Γ

r+a−2b

2

 +

+
1

c(c+ 1)(c+ 2)

m+3

r=0


m+ 3

r


(−1)rΓ


r+a+3

2



Γ

r+a−1−2b

2



, (27)

where R(b) <
−1+m

2


; a, b, c, 1 + a− b+m ∈ C\Z−

0 , and m ∈ N0.

Theorem 4.11. The following theorem holds true

3F2




a, b, c+ 4;
−1

1 + a− b+m, c;


 =

Γ(1 + a− b+m)

2Γ(a)(1− b)m


m

r=0


m
r


(−1)rΓ


r+a
2



Γ

r+a+2−2b

2

 +

+
4

c

m+1

r=0


m+ 1

r


(−1)rΓ


r+a+1

2



Γ

r+a+1−2b

2

 +
6

c(c+ 1)

m+2

r=0


m+ 2

r


(−1)rΓ


r+a+2

2



Γ

r+a−2b

2

 +

+
4

c(c+ 1)(c+ 2)

m+3

r=0


m+ 3

r


(−1)rΓ


r+a+3

2



Γ

r+a−1−2b

2

 +

+
1

c(c+ 1)(c+ 2)(c+ 3)

m+4

r=0


m+ 4

r


(−1)rΓ


r+a+4

2



Γ

r+a−2−2b

2



, (28)
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where R(b) <
−2+m

2


; a, b, c, 1 + a− b+m ∈ C\Z−

0 , and m ∈ N0.

The proof of Theorem 4.9, Theorem 4.10 and Theorem 4.11 can be derived by using
the following Pochhammer symbol identities respectively

(c+ 2)r
(c)r

=


1 +

2r

c
+

r(r − 1)

c(c+ 1)


. (29)

(c+ 3)r
(c)r

=


1 +

3r

c
+

3r(r − 1)

c(c+ 1)
+

r(r − 1)(r − 2)

c(c+ 1)(c+ 2)


. (30)

(c+ 4)r
(c)r

=


1 +

4r

c
+

6r(r − 1)

c(c+ 1)
+

4r(r − 1)(r − 2)

c(c+ 1)(c+ 2)
+

r(r − 1)(r − 2)(r − 3)

c(c+ 1)(c+ 2)(c+ 3)


. (31)

5. Conclusion

The vast popularity and immense usefulness of the hypergeometric function and the
generalized hypergeometric functions of one variable have inspired and stimulated a large
number of researchers to introduce and investigate hypergeometric functions.

In the present paper we have derived some extensions and generalizations of Kümmer’s
rst classical summation theorem (4) for 6F5[−1], 5F4[−1], 4F3[−1] and 3F2[−1], where
certain numerator and denominator parameters dier by a positive integer as claimed in
the above theorems. We wish to point out that all the formulas developed in this paper
have been tested numerically with the aid of Mathematica, a general system of doing math-
ematics through computer. We conclude this paper with the note that these summation
formulas will be of interest and will help in advance research in this important area of
classical Special functions.

Conicts of interests: The authors declare that there are no conicts of interests.
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identities, Taiwanese journal of Math., 11(5) (2007), 1521-1527.

[7] Choi, J., Rathie, A.K. and Srivastava, H. M.; A Generalization of a Formula
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mation theorem for the series 2F1, Bull. Korean Math. Soc., 46(6) (2009),
1201-1211.

[11] Kim, Y. S., Rakha, M. A. and Rathie, A. K.; Extensions of certain classical
summation theorems for the series2F1, 3F2 and 4F3 with applications in Ra-
manujan’s summations, Int. J. Math. Math. Sci. (2010), Article ID 309503, 26
pp.
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