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MAXIMUM TERM ORIENTED GROWTH ANALYSIS OF

COMPOSITE ENTIRE FUNCTIONS FROM THE VIEW POINT

OF (α,β, γ)-ORDER

TANMAY BISWAS, CHINMAY BISWAS, SARMILA BHATTACHARYYA

Abstract. The Fundamental Theorem of Classical Algebra- If f(z) is a poly-
nomial of degree n with real or complex coecients, then the equation f(z) = 0
has at least one root is the most renowned value distribution theorem, and

consequently every such given polynomial can take any certain value, real or

complex. In the value distribution theory, one study how an entire function
assumes some values and, on the other hand, what is the inuence of taking

certain values on a function in some exact approach. Furthermore it deals

with various sides of the behavior of entire functions, one of which is the
study of their comparative growth. Accordingly, study of comparative growth

properties of composite entire functions in terms of their maximum terms are
very well known area of research which we attempt in this paper. Here, in
this paper, we have discussed maximum terms based some growth properties

of composite entire functions with respect to their left or right factor using
(α,β, γ)-order and (α,β, γ)-lower order.

1. Introduction

We denote by C the set of all nite complex numbers. Let f (z) =
+∞∑
n=0

anz
n

be an entire function dened on C. The maximum modulus function M(r, f) of
f (z) on z = r is dened as M(r, f) = max

|z|=r
f (z) and the maximum term denoted

as µ(r, f) is dened as µ(r, f) = max
n≥0

(an rn). The ratios M(r,f)
M(r,g) and µ(r,f)

µ(r,g) as r 
+∞, are respectively called the comparative growth of entire function f (z) with
respect to entire function g (z) in form of the maximummoduli and maximum terms.
Order and lower order are classical growth indicators of entire and meromorphic
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functions in complex analysis. Several authors have made the close investigations
on the growth properties of entire and meromorphic functions in dierent directions
using the concepts of order, iterated p-order ([5] or [6]), (p, q)-th order [3, 4], (p, q)-
ϕ order [8] and achieved many valuable results. We use the standard notations
and denitions of the theory of entire functions which are available in [9, 10] and
therefore we do not explain those in details. To start our paper, we just recall the
following denition:

Denition 1.1. The order ρf and the lower order λf of an entire function f (z)
are dened as

ρf = lim sup
r→+∞

log logM(r, f)

log r
and λf = lim inf

r→+∞
log logM(r, f)

log r
.

Let L be a class of continuous non-negative on (−∞,+∞) functions α such
that α(x) = α(x0) ≥ 0 for x ≤ x0 with α(x)  +∞ as x0 ≤ x  +∞. We say
that α ∈ L1, if α ∈ L and α(a + b) ≤ α(a) + α(b) + c for all a, b ≥ R0 and xed
c ∈ (0,+∞). Further we say that α ∈ L2, if α ∈ L and α(x+O(1)) = (1+o(1))α(x)
as x  +∞. Finally, α ∈ L3, if α ∈ L and α(a+ b) ≤ α(a) + α(b) for all a, b ≥ R0,
i.e., α is subadditive. Clearly L3 ⊂ L1.

Particularly, when α ∈ L3, then one can easily verify that α(mr) ≤ mα(r),
m (≥ 2) is an integer. Up to a normalization, subadditivity is implied by concavity.
Indeed, if α(r) is concave on [0,+∞) and satises α(0) ≥ 0, then for t ∈ [0, 1],

α(tx) = α(tx+ (1− t) · 0)
≥ tα(x) + (1− t)α(0) ≥ tα(x),

so that by choosing t = a
a+b or t = b

a+b ,

α(a+ b) =
a

a+ b
α(a+ b) +

b

a+ b
α(a+ b)

≤ α

(
a

a+ b
(a+ b)

)
+ α

(
b

a+ b
(a+ b)

)

= α(a) + α(b), a, b ≥ 0.

As a non-decreasing, subadditive and unbounded function, α(r) satises

α(r) ≤ α(r +R0) ≤ α(r) + α(R0)

for any R0 ≥ 0. This yields that α(r) ∼ α(r+R0) as r  +∞. Throughout the
present paper, we take α, α1, α2, α3 ∈ L1, β ∈ L2, γ ∈ L3.

However, Heittokangas et al. [2] have introduced a new concept of ϕ-order of
entire function considering ϕ as subadditive function. For details, one may see [2].
Later on Beläıdi et al. [1] have extended this concept and have introduced the
denitions of (α,β, γ)-order and (α,β, γ)-lower order of an entire function f (z) in
terms of maximum moduli in the following way:
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Denition 1.2. [1] The (α,β, γ)-order denoted by ρ(α,β,γ)[f ] and (α,β, γ)-lower
order denoted by λ(α,β,γ)[f ] of an entire function f (z) are dened as:

ρ(α,β,γ)[f ] = lim sup
r→+∞

α(log[2](M(r, f)))

β (log(γ(r)))

and λ(α,β,γ)[f ] = lim inf
r→+∞

α(log[2](M(r, f)))

β (log(γ(r)))
.

Remark 1. Let α(r) = log[p] r (p ≥ 0), β(r) = log[q] r (q ≥ 0) and γ(r) = r, where

log[k] r = log(log[k−1] r) (k ≥ 1), with convention that log[0] r = r. If p = 0 and
q = 0, i.e., α(r) = β(r) = r, the Denition 1.2 coincides with Denition 1.1, when

α(r) = log[p−1] r, (p ≥ 1), β(r) = r, we obtain the iterated p-order and iterated

lower p-order (see [6]), moreover when α(r) = log[p−1] r and β(r) = log[q−1] r,
(p ≥ q ≥ 1), we get the (p, q)-order and lower (p, q)-order (see [3, 4]).

The Denition 1.2 can be alternatively written using maximum term, which
is shown in the following proposition:

Proposition 1. The (α,β, γ)-order and (α,β, γ)-lower order of an entire function
f(z), having maximum term µ(r, f), are dened as:

ρ(α,β,γ)[f ] = lim sup
r→+∞

α(log[2](µ(r, f)))

β (log(γ(r)))

and λ(α,β,γ)[f ] = lim inf
r→+∞

α(log[2](µ(r, f)))

β (log(γ(r)))
.

Proof. By Cauchy’s inequality, it is well known that

µ(r, f) ≤ M(r, f) cf. [7],
i.e., log[2] µ(r, f) ≤ log[2] M(r, f),

i.e., α(log[2] µ(r, f)) ≤ α(log[2] M(r, f)),

i.e.,
α(log[2] µ(r, f))

β (log(γ(r)))
≤ α(log[2] M(r, f))

β (log(γ(r)))
,

i.e., lim sup
r→+∞

α(log[2] µ(r, f))

β (log(γ(r)))
≤ lim sup

r→+∞

α(log[2] M(r, f))

β (log(γ(r)))
,

i.e., lim sup
r→+∞

α(log[2] µ(r, f))

β (log(γ(r)))
≤ ρ(α,β,γ)[f ]. (1)

Also for 0 ≤ r < R,

M(r, f) ≤ R

R− r
µ(R, f) cf. [7].

Taking R = 2r, we get

M(r, f) ≤ 2µ(2r, f),

i.e., log[2] M(r, f) ≤ log[2] µ(2r, f) +O(1),

i.e., α(log[2] M(r, f)) ≤ α(log[2] µ(2r, f)) +O(1),
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Since γ(2r) ≤ 2γ(r), so from above it follows that

lim sup
r→+∞

α(log[2] M(r, f))

β (log(γ(r)))
≤ lim sup

r→+∞

α(log[2] µ(2r, f)) +O(1)

β

log( 12γ(2r))



= lim sup
r→+∞

α(log[2] µ(2r, f)) +O(1)

(1 + o(1))β (log(γ(2r)))

= lim sup
r→+∞

α(log[2] µ(r, f))

β (log(γ(r)))
,

i.e., ρ(α,β,γ)[f ] ≤ lim sup
r→+∞

α(log[2] µ(r, f))

β (log(γ(r)))
. (2)

From (1) and (2), we have

ρ(α,β,γ)[f ] = lim sup
r→+∞

α(log[2] µ(r, f))

β (log(γ(r)))
.

Using similar technique one can easily prove that

λ(α,β,γ)[f ] = lim inf
r→+∞

α(log[2](µ(r, f)))

β (log(γ(r)))
.



In this paper, we study some growth properties of the composite entire func-
tions on the basis of (α,β, γ)-order and (α,β, γ)-lower order relating to maximum
term.

2. Main results

In this section, the main results of the paper are presented.

Theorem 2.1. Let f (z) and g (z) be two entire functions such that 0 < λ(α,β,γ)[f ] ≤
ρ(α,β,γ)[f ] < +∞ and λ(α,β,γ)[f ◦ g] = +∞. Then

lim
r→+∞

α(log[2](µ(r, f ◦ g)))
α(log[2](µ(r, f)))

= +∞.

Proof. If possible, let the conclusion of the theorem does not hold. Then we can
nd a constant ∆ > 0 such that for a sequence of values of r tending to innity

α(log[2](µ(r, f ◦ g))) ≤ ∆ · α(log[2](µ(r, f))). (3)

Again from the rst part of Proposition 1, it follows for all suciently large values
of r that

α(log[2](µ(r, f))) ≤ (ρ(α,β,γ)[f ] + )β(log(γ(r))). (4)

From (3) and (4), for a sequence of values of r tending to +∞, we have

α(log[2](µ(r, f ◦ g))) ≤ ∆(ρ(α,β,γ)[f ] + )β(log(γ(r))),

i.e.,
α(log[2](µ(r, f ◦ g)))

β(log(γ(r)))
≤ ∆(ρ(α,β,γ)[f ] + ),

i.e., lim inf
r→+∞

α(log[2](µ(r, f ◦ g)))
β(log(γ(r)))

< +∞.
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Using the second part of Proposition 1, we have

λ(α,β,γ)[f ◦ g] < +∞.

This is a contradiction.
Thus the theorem follows. 

Remark 2. If we take 0 < λ(α,β,γ)[g] ≤ ρ(α,β,γ)[g] < +∞ instead of 0 <
λ(α,β,γ)[f ] ≤ ρ(α,β,γ)[f ] < +∞ and other conditions remain same, the conclusion

of Theorem 2.1 remains true with α(log[2](µ(r, g))) in place of α(log[2](µ(r, f)))
in the denominator.

Remark 3. Theorem 2.1 and Remark 2 are also valid with limit superior instead
of limit if λ(α,β,γ)[f ◦ g] = +∞ is replaced by ρ(α,β,γ)[f ◦ g] = +∞ and the
other conditions remain the same.

Theorem 2.2. Let f (z) and g (z) be two entire functions such that 0 < λ(α1,β,γ)[f◦
g] ≤ ρ(α1,β,γ)[f ◦ g] < +∞ and 0 < λ(α,β,γ)[f ] ≤ ρ(α,β,γ)[f ] < +∞. Then

λ(α1,β,γ)[f ◦ g]
ρ(α2,β,γ)[f ]

≤ lim inf
r→+∞

α1


log[2](µ(r, f ◦ g))



α2


log[2](µ(r, f))



≤ min

{
λ(α1,β,γ)[f ◦ g]
λ(α2,β,γ)[f ]

,
ρ(α1,β,γ)[f ◦ g]
ρ(α2,β,γ)[f ]

}

≤ max

{
λ(α1,β,γ)[f ◦ g]
λ(α2,β,γ)[f ]

,
ρ(α1,β,γ)[f ◦ g]
ρ(α2,β,γ)[f ]

}

≤ lim sup
r→+∞

α1


log[2](µ(r, f ◦ g))



α2


log[2](µ(r, f))

 ≤ ρ(α1,β,γ)[f ◦ g]
λ(α2,β,γ)[f ]

.

Proof. Using Proposition 1, we have from the denitions of λ(α1,β,γ)[f ◦ g],
ρ(α1,β,γ)[f ◦ g], λ(α2,β,γ)[f ] and ρ(α2,β,γ)[f ], for arbitrary positive ε and for all suf-
ciently large values of r that

α1


log[2](µ(r, f ◦ g))


>


λ(α1,β,γ)[f ◦ g]− ε


β(log(γ(r))), (5)

α1


log[2](µ(r, f ◦ g))


≤


ρ(α1,β,γ)[f ◦ g] + ε


β(log(γ(r))), (6)

α2


log[2](µ(r, f))


>


λ(α2,β,γ)[f ]− ε


β(log(γ(r))), (7)

and α2


log[2](µ(r, f))


≤


ρ(α2,β,γ)[f ] + ε


β(log(γ(r))). (8)

Again for a sequence of values of r tending to innity,

α1


log[2](µ(r, f ◦ g))


≤


λ(α1,β,γ)[f ◦ g] + ε


β(log(γ(r))), (9)

α1


log[2](µ(r, f ◦ g))


>


ρ(α1,β,γ)[f ◦ g]− ε


β(log(γ(r))), (10)

α2


log[2](µ(r, f))


≤


λ(α2,β,γ)[f ] + ε


β(log(γ(r))), (11)

and α2


log[2](µ(r, f))


>


ρ(α2,β,γ)[f ]− ε


β(log(γ(r))). (12)
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Now from (5) and (8) it follows for all suciently large values of r that

α1


log[2](µ(r, f ◦ g))



α2


log[2](µ(r, f))

 >
λ(α1,β,γ)[f ◦ g]− ε

ρ(α2,β,γ)[f ] + ε
.

As ε (> 0) is arbitrary, we obtain that

lim inf
r→+∞

α1


log[2](µ(r, f ◦ g))



α2


log[2](µ(r, f))

 >
λ(α1,β,γ)[f ◦ g]
ρ(α2,β,γ)[f ]

. (13)

Combining (7) and (9) , we have for a sequence of values of r tending to innity
that

α1


log[2](µ(r, f ◦ g))



α2


log[2](µ(r, f))

 ≤ λ(α1,β,γ)[f ◦ g] + ε

λ(α2,β,γ)[f ]− ε
.

Since ε (> 0) is arbitrary, it follows that

lim inf
r→+∞

α1


log[2](µ(r, f ◦ g))



α2


log[2](µ(r, f))

 ≤ λ(α1,β,γ)[f ◦ g]
λ(α2,β,γ)[f ]

. (14)

Again from (5) and (11), for a sequence of values of r tending to innity, we get

α1


log[2](µ(r, f ◦ g))



α2


log[2](µ(r, f))

 ≥ λ(α1,β,γ)[f ◦ g]− ε

λ(α2,β,γ)[f ] + ε
.

As ε (> 0) is arbitrary, we get from above that

lim sup
r→+∞

α1


log[2](µ(r, f ◦ g))



α2


log[2](µ(r, f))

 ≥ λ(α1,β,γ)[f ◦ g]
λ(α2,β,γ)[f ]

. (15)

Also, it follows from (6) and (7) , for all suciently large values of r that

α1


log[2](µ(r, f ◦ g))



α2


log[2](µ(r, f))

 ≤ ρ(α1,β,γ)[f ◦ g] + ε

λ(α2,β,γ)[f ]− ε
.

Since ε (> 0) is arbitrary, we obtain that

lim sup
r→+∞

α1


log[2](µ(r, f ◦ g))



α2


log[2](µ(r, f))

 ≤ ρ(α1,β,γ)[f ◦ g]
λ(α2,β,γ)[f ]

. (16)

Now from (6) and (12) , it follows for a sequence of values of r tending to innity
that

α1


log[2](µ(r, f ◦ g))



α2


log[2](µ(r, f))

 ≤ ρ(α1,β,γ)[f ◦ g] + ε

ρ(α2,β,γ)[f ]− ε
.
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As ε (> 0) is arbitrary, we obtain that

lim inf
r→+∞

α1


log[2](µ(r, f ◦ g))



α2


log[2](µ(r, f))

 ≤ ρ(α1,β,γ)[f ◦ g]
ρ(α2,β,γ)[f ]

. (17)

Combining (8) and (10) , we get for a sequence of values of r tending to innity
that

α1


log[2](µ(r, f ◦ g))



α2


log[2](µ(r, f))

 >
ρ(α1,β,γ)[f ◦ g]− ε

ρ(α2,β,γ)[f ] + ε
.

Since ε (> 0) is arbitrary, it follows that

lim sup
r→+∞

α1


log[2](µ(r, f ◦ g))



α2


log[2](µ(r, f))

 >
ρ(α1,β,γ)[f ◦ g]
ρ(α2,β,γ)[f ]

. (18)

Thus the theorem follows from (13) , (14) , (15), (16) , (17) and (18) . 

Remark 4. If we take 0 < λ(α3,β,γ)[g] ≤ ρ(α3,β,γ)[g] < +∞ instead of 0 <
λ(α2,β,γ)[f ] ≤ ρ(α2,β,γ)[f ] < +∞ and other conditions remain same, the conclu-
sion of Theorem 2.2 remains true with λ(α3,β,γ)[g], ρ(α3,β,γ)[g] and

α3


log[2](µ(r, g))


 in place of λ(α2,β,γ)[f ], ρ(α2,β,γ)[f ] and α2


log[2](µ(r, f))




respectively in the denominators.

3. Conclusion

Beläıdi et al. [1] have introduced the idea of (α,β, γ)-order of entire function in
terms of maximum modulus, by which some existing growth indicators have been
extended. They have also proved some results in the eld of dierential equation. In
this paper, we have given the equivalent denition of (α,β, γ)-order using maximum
term and have generalized some previous results. The study may be an ample scope
for further research.

Acknowledgement. The authors are very much thankful to the reviewer for
his/her valuable suggestions to bring the paper in its present form.
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