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SOME APPLICATIONS OF FRACTIONAL DERIVATIVE AND

MITTAG-LEFFLER FUNCTIONS

ARUN B. DAMKONDWAR, B.D. KARANDE

Abstract. The aim of this paper is to introduce a new subclass TS(ω,, )
of univalent functions with negative coecients related to fractional deriva-
tive and Mittag-Leer function in the unit disk U = z ∈ C : z < 1 . We
obtain basic properties like coecient inequality, distortion and covering the-
orem, radii of starlikeness, convexity and close-to-convexity, extreme points,
Hadamard product, and closure theorems for functions belonging to our class.

1. Introduction

In recent years, the subject of fractional calculus, as a calculus of integrals and
derivatives of any real or complex order, has gained considerable popularity and
importance, which is due mainly to its demonstrated applications in the modeling
and analysis of applied problems and real-world situations occurring in numerous
seemingly diverse and widespread elds of science and engineering. It does indeed
also provide several potentially useful tools and techniques for solving dierential
and integral equations, and various other problems involving special functions of
mathematical physics as well as their extensions and generalizations in one and more
variables. In geometric function theory, fractional derivatives and the Mittag-Leer
function play crucial roles in understanding complex functions and their geomet-
ric properties. fractional derivatives generalize this concept to non-integer orders.
They provide a powerful tool for analyzing complex systems with fractal or non-
local behaviors. In geometric function theory, fractional derivatives are used to
study the behavior of complex functions on fractal sets or in domains with irregu-
lar boundaries. They help characterize the smoothness and regularity of functions
in such contexts.
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Fractional derivatives also enable the study of fractional-order dierential equa-
tions, which have applications in various elds including physics, engineering, and
mathematical modeling.
The Mittag-Leer function, is a generalization of the exponential function. It arises
naturally in the theory of fractional calculus and complex analysis. It is dened
as a solution to certain types of fractional dierential equations and plays a fun-
damental role in the theory of fractional calculus. In geometric function theory,
the Mittag-Leer function often appears in the context of fractional order dier-
ential operators and fractional integral transforms. It provides a natural extension
of exponential functions in fractional calculus. The Mittag-Leer function is also
signicant in probability theory, where it appears in the study of random processes,
particularly in fractional Brownian motion and related stochastic processes. The
fractional derivatives and the Mittag-Leer function oer powerful tools for ana-
lyzing complex functions and their geometric properties, particularly in contexts
where traditional calculus techniques may not suce. They provide insights into the
behavior of functions on irregular domains. while visualizing fractional derivatives
and the Mittag-Leer function directly on a geometric plane might be challenging,
their geometric interpretations involve understanding their eects on functions’ be-
havior over complex or irregular geometries. These interpretations help elucidate
how these mathematical concepts contribute to the study of complex functions in
geometric function theory.
Fractional calculus is one of the most intensively developing areas of the mathe-
matical analysis. The fractional calculus operators have gone deep across into the
realm of the theory of univalent functions. Various operators of fractional calculus
have been studied in the literature rather extensively. We nd it to be convenient
to recall here the following denitions (cf., e.g., [19, 20, 28]).

The study of the Mittag-Leer function and its various generalizations has be-
come a very popular topic in mathematics and its applications. The recent growing
interest in this function is mainly due to its close relation to the Fractional Calcu-
lus and especially to fractional problems which come from applications. For a few
decades, the special transcendental function known as the Mittag-Leer function
has attracted the increasing attention of researchers because of its key role in treat-
ing problems related to integral and dierential equations of fractional order. Since
its introduction in 1903-1905 by the Swedish mathematician Mittag-Leer at the
beginning of the last century up to the 1990s, this function was seldom considered
by mathematicians and applied scientist.

Nowadays it is well recognized that the Mittag-Leer function plays a funda-
mental role in Fractional Calculus even if with a single parameter (as originally
introduced by Mittag-Leer) just to be worth of being referred to as the Queen
Function of Fractional Calculus, see Mainardi and Goreno [17]. We nd some
information on the Mittag-Leer functions in any treatise on Fractional Calculus
but for more details we refer the reader to the surveys of Haubold, Mathai and
Saxena [11] and by Van Mieghem [34] and to the treatise by Goreno et al.[10],
just devoted to Mittag-Leer functions, related topics and applications.

Recent attention has been drawn to Mittag-Leer function research, as this kind
of function can be widely applied across engineering, chemical and biological sci-
ences, physics and in applied science. Various factors in applying such functions
are evident within chaotic, stochastic and dynamic systems, fractional dierential
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equations, and distribution of statistics. The geometric characteristics such as con-
vexity, close-to-convexity and starlikeness, of the functions investigated here have
been broadly examined by many authors, and direct applications from such func-
tions can be seen for a number of fractional calculus tools, including signicant
work by [2, 3, 5, 6, 23, 33, 31]

The Mittag-Leer function arises naturally in the solution of fractional order
dierential and integral equations, and especially in the investigations of fractional
generalization of kinetic equation, random walks, Levy ights, super-diusive trans-
port and in the study of complex systems. Several properties of Mittag-Leer
function and generalized Mittag-Leer function can be found e.g. in [7, 26, 4, 3,
8, 9, 14, 15].

Let A signify the class of all functions u(z) of the type

u(z) = z +

∞

n=2

anz
n (1)

in the open unit disc U = z ∈ C : z < 1. Let S be the subclass of A consisting of
univalent functions and satisfy the following usual normalization condition u(0) =
u′(0) − 1 = 0. We denote by S the subclass of A consisting of functions u(z)
which are all univalent in U. A function u ∈ A is a starlike function of the order
, 0 ≤  < 1, if it satisfy

ℜ

zu′(z)
u(z)


> , z ∈ U. (2)

We denote this class with S∗() .
A function u ∈ A is a convex function of the order , 0 ≤  < 1, if it full

ℜ

1 +

zu′′(z)
u′(z)


> , z ∈ U. (3)

We denote this class with K().
Note that S∗(0) = S∗ and K(0) = K are the usual classes of starlike and convex

functions in U respectively.
Let T denote the class of functions analytic in U that are of the form

u(z) = z −
∞

n=2

anz
n, an ≥ 0 z ∈ U (4)

and let T ∗() = T ∩ S∗(), C() = T ∩ K(). The class T ∗() and allied classes
possess some interesting properties and have been extensively studied by Silverman
[27].

Many basically equivalent denitions of fractional computation have been given
in literature ((cf.)e.g.,[24] and ([29], p. 45) ). We state the following denitions due
to Owa and Srivastava [21] which have been used rather frequently in the theory of
analytic functions (see also [12, 13]).

Pochhammer symbol (α)n can be dened as

(α)n = α(α+ 1) · · · (α+ n− 1) if n ̸= 0

and

(α)n = 1 if n = 0.
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The (α)n can be expressed in terms of the Gamma function as:

(α)n =
Γ(α+ n)

Γ(α)
, (n ∈ N).

In [18], Mittag-Leer introduced Mittag-Leer functions

Hα(z) =

∞

n=0

1

Γ(αn+ 1)
zn, (α ∈ C, Re(α)) > 0,

and its generalization Hα,β(z) introduced by Wiman [35] as

Hα,β(z) =

∞

n=0

1

Γ(αn+ β)
zn, (α,β ∈ C, Re(α), Re(β)) > 0. (5)

Now we dene the normalization of Mittag-Leer function Mα,β(z) as follows:

Mα,β(z) = zΓ(β)Hα,β(z)

= z +

∞

n=2

Γ(β)

Γ(α(n− 1) + β)
zn, (6)

where, z ∈ U , (Re α > 0,β ∈ C \ 0,−1,−2, · · ·). In [30], Srivastava and Owa
gave denitions for fractional derivative operator and fractional integral operator
in the complex z- plane C in terms of the RiemannLiouville fractional calculus, as
follows: The fractional integral of order δ is dened for a function u(z), by

Iδzu(z) ≡ I−δ
z u(z) =

1

Γ(δ)

 z

0

(z − t)δ−1u(t)d(t), (δ > 0).

The fractional derivative operator Dz of order δ is dened by

Dδ
zu(z) = DzI

1−δ
z u(z) =

1

Γ(1− δ)
Dz

 z

0

u(t)

(z − t)δ
dt, (0 ≤ δ < 1).

where, the function u(z) is analytic in the simply-connected region of the complex
z-plane C containg the origin, and the multiplicity of (z − t)−δ is removed by
requiring log(z − t) to be real when (z − t) > 0.
Let δ > 0 and m be the smallest integer, and the extended fractional derivative of
u(z) of order δ is dened as:

Dδ
zu(z) = Dm

z Im−δ
z u(z), δ ≥ 0, n > −1 (7)

provided that it exists. We nd from (7) that is

Dδ
zz

n =
Γ(n+ 1)

Γ(n+ 1− δ)
zn−δ, (0 ≤ δ < 1, n > −1)

and

Iδzz
n =

Γ(n+ 1)

Γ(n+ 1− δ)
zn+δ, (0 < δ, n > −1).

Owa and Srivastava [21], dened the dierential Integral operator Ωδ
z : A → A in

the term of series:
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Ωδ
zu(z) =

Γ(2− δ)

Γ(2)
zδDδ

zu(z) (8)

= z +

∞

n=2


Γ(2− δ)Γ(n+ 1)

Γ(2)Γ(n+ 1− δ)


anz

n

where, δ < 2, and z ∈ U.)
Here Dδ

zu(z) represents the fractional of u(z) of order δ when −∞ < δ < 0 and
a fractional derivative of u(z) of order δ when 0 ≤ δ < 2. Now, by using the
denition of convolution of (6) and (8), we dene fractional dierential integral
operator Dδ,α,β

z : A −→ A, associated with normalized Mittag-Leer function
Mα,β(z)as follows:

Dδ,α,β
z u(z) = z +

∞

n=2

Θ(n, δ,α,β)anz
n (9)

where Θ(n, δ,α,β) =


Γ(2−δ)Γ(n+1)
Γ(2)Γ(n+1−δ)


Γ(β)

Γ(α(n−1)+β)


anz

n

and (δ < 2, Re α > 0, β ∈ C \ 0,−1,−2, · · ·), z ∈ U.
It is noted that

D0,0,1
z u(z) = u(z).

Motivated by work of [1, 22, 25, 32], we dene a new subclass of functions
belonging to the class A.

Denition 1 For 0 ≤ ω < 1, 0 ≤  < 1, 0 <  < 1, and 0 ≤ ϑ < 1, we
let TS(ω,, ) be the subclass of u consisting of functions of the form (4) and its
geometrical condition satisfy



ω

(Dδ,α,β

z u(z))′ − Dδ,α,β
z u(z)

z



(Dδ,α,β
z u(z))′ + (1− ω)D

δ,α,β
z u(z)

z


< , z ∈ U

where Dδ,α,β
z u(z), is given by (9).

2. Coefficient Inequality

In the following theorem, we obtain a necessary and sucient condition for
function to be in the class TS(ω,, ).
Theorem 1 Let the function u be dened by (4). Then u ∈ TS(ω,, ) if and only
if

∞

n=2

[ω(n− 1) + (n + 1− ω)]Θ(n, δ,α,β)an ≤ ( + (1− ω)), (10)

where 0 <  < 1, 0 ≤ ω < 1, and 0 ≤  < 1, The result (10) is sharp for the
function

u(z) = z − ( + (1− ω))

[ω(n− 1) + (n + 1− ω)]Θ(n, δ,α,β)
zn, n ≥ 2.
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Proof. Suppose that the inequality (10) holds true and z = 1. Then we obtain
ω


(Dδ,α,β

z u(z))′ − Dδ,α,β
z u(z)

z

− 



Dδ,α,β

z u(z))′ + (1− ω)
Dδ,α,β

z u(z)

z



=

−ω
∞

n=2

(n− 1)Θ(n, δ,α,β)anz
n−1



− 

 + (1− ω)−
∞

n=2

(n + 1− ω)Θ(n, δ,α,β)anz
n−1



≤
∞

n=2

[ω(n− 1) + (n + 1− ω)]Θ(n, δ,α,β)an − ( + (1− ω))

≤ 0.

Hence, by maximum modulus principle,u ∈ TS(ω,, ). Now assume that u ∈
TS(ω,, ) so that



ω

(Dδ,α,β

z u(z))′ − Dδ,α,β
z u(z)

z



(Dδ,α,β
z u(z))′ + (1− ω)D

δ,α,β
z u(z)

z


< , z ∈ U

Henceω

(Dδ,α,β

z u(z))′ − Dδ,α,β
z u(z)

z

 < 



Dδ,α,β

z u(z))′ + (1− ω)
Dδ,α,β

z u(z)

z

 .

Therefore, we get−
∞

n=2

ω(n− 1)Θ(n, δ,α,β)anz
n−1



< 

 + (1− ω)−
∞

n=2

(n + 1− ω)Θ(n, δ,α,β)anz
n−1

 .

Thus
∞

n=2

[ω(n− 1) + (n + 1− ω)]Θ(n, δ,α,β)an ≤ ( + (1− ω))

and this completes the proof.
Corollary 1 Let the function u ∈ TS(ω,, ).Then

an ≤ ( + (1− ω))

[ω(n− 1) + (n + 1− ω)]Θ(n, δ,α,β)
zn, n ≥ 2.

3. Distortion and Covering Theorem

We introduce the growth and distortion theorems for the functions in the class
TS(ω,, )
Theorem 2 Let the function u ∈ TS(ω,, ). Then

z − ( + (1− ω))

Θ(2, δ,α,β)[ω + (2 + 1− ω)]
z2 ≤ u(z)

≤z+ ( + (1− ω))

Θ(2, δ,α,β)[ω + (2 + 1− ω)]
z2.
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The result is sharp and attained

u(z) = z − ( + (1− ω))

Θ(2, δ,α,β)[ω + (2 + 1− ω)]
z2.

Proof.

u(z) =
z −

∞

n=2

anz
n

 ≤ z+
∞

n=2

anzn

≤ z+ z2
∞

n=2

an.

By Theorem 2, we get

∞

n=2

an ≤ ( + (1− ω))

[ω + (2 + 1− ω)]Θ(n, δ,α,β)
. (11)

Thus

u(z) ≤ z+ ( + (1− ω))

Θ(2, δ,α,β)[ω + (2 + 1− ω)]
z2.

Also

u(z) ≥ z −
∞

n=2

anzn

≥ z − z2
∞

n=2

an

≥ z − ( + (1− ω))

Θ(2, δ,α,β)[ω + (2 + 1− ω)]
z2.

Theorem 3 Let u ∈ TS(ω,, ). Then

1− 2(+(1−ω))
Θ(2,δ,α,β)[ω+(2+1−ω)] z ≤ u′(z) ≤ 1 + 2(+(1−ω))

Θ(2,δ,α,β)[ω+(2+1−ω)] z

with equality for

u(z) = z − 2( + (1− ω))

Θ(2, δ,α,β)[ω + (2 + 1− ω)]
z2.

Proof. Notice that

Θ(2, δ,α,β)[ω + (2 + 1− ω)]

∞

n=2

nan

≤
∞

n=2

n[ω(n− 1) + (n + 1− ω)]Θ(n, δ,α,β)an

≤( + (1− ω)), (12)
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from Theorem 2. Thus

u′(z) =
1−

∞

n=2

nanz
n−1



≤ 1 +

∞

n=2

nanzn−1

≤ 1 + z
∞

n=2

nan

≤ 1 + z 2( + (1− ω))

Θ(2, δ,α,β)[ω + (2 + 1− ω)]
. (13)

On the other hand

u′(z) =
1−

∞

n=2

nanz
n−1



≥ 1−
∞

n=2

nanzn−1

≥ 1− z
∞

n=2

nan

≥ 1− z 2( + (1− ω))

Θ(2, δ,α,β)[ω + (2 + 1− ω)]
. (14)

Combining (13) and (14), we get the result.

4. Radii of Starlikeness, Convexity and Close-to-Convexity

In the following theorems, we obtain the radii of starlikeness, convexity and
close-to-convexity for the class TS(ω,, ).
Theorem 4 Let u ∈ TS(ω,, ). Then u is starlike in z < R1 of order , 0 ≤
 < 1, where

R1 = inf
n


(1− )(ω(n− 1) + (n + 1− ω))Θ(n, δ,α,β)

(n− )( + (1− ω))

 1
n−1

, n ≥ 2. (15)

Proof. u is starlike of order , 0 ≤  < 1 if

ℜ

zu′(z)
u(z)


> .

Thus it is enough to show that


zu′(z)
u(z)

− 1

 =



−
∞

n=2
(n− 1)anz

n−1

1−
∞

n=2
anzn−1


≤

∞
n=2

(n− 1)anzn−1

1−
∞

n=2
anzn−1

.

Thus 
zu′(z)
u(z)

− 1

 ≤ 1−  if

∞

n=2

(n− )

(1− )
anzn−1 ≤ 1. (16)
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Hence by Theorem 2, (16) will be true if

n− 

1− 
zn−1 ≤ (ω(n− 1) + (n + 1− ω))Θ(n, δ,α,β)

( + (1− ω)

or if

z ≤

(1− )(ω(n− 1) + (n + 1− ω))Θ(n, δ,α,β)

(n− )( + (1− ω))

 1
n−1

, n ≥ 2. (17)

The theorem follows easily from (17).
Theorem 5 Let u ∈ TS(ω,, ). Then u is convex in z < R2 of order , 0 ≤

 < 1, where

R2 = inf
n


(1− )(ω(n− 1) + (n + 1− ω))Θ(n, δ,α,β)

n(n− )( + (1− ω))

 1
n−1

, n ≥ 2. (18)

Proof. u is convex of order , 0 ≤  < 1 if

ℜ

1 +

zu′′(z)
u′(z)


> .

Thus it is enough to show that


zu′′(z)
u′(z)

 =



−
∞

n=2
n(n− 1)anz

n−1

1−
∞

n=2
nanzn−1


≤

∞
n=2

n(n− 1)anzn−1

1−
∞

n=2
nanzn−1

.

Thus 
zu′′(z)
u′(z)

 ≤ 1−  if
∞

n=2

n(n− )

(1− )
anzn−1 ≤ 1. (19)

Hence by Theorem 2, (19) will be true if

n(n− )

1− 
zn−1 ≤ (ω(n− 1) + (n + 1− ω))Θ(n, δ,α,β)

( + (1− ω)

or if

z ≤

(1− )(ω(n− 1) + (n + 1− ω))Θ(n, δ,α,β)

n(n− )( + (1− ω))

 1
n−1

, n ≥ 2. (20)

The theorem follows easily from (20).
Theorem 6 Let u ∈ TS(ω,, ). Then u is close-to-convex in z < R3 of order

, 0 ≤  < 1, where

R3 = inf
n


(1− )(ω(n− 1) + (n + 1− ω))Θ(n, δ,α,β)

n( + (1− ω))

 1
n−1

, n ≥ 2. (21)

Proof. u is close-to-convex of order , 0 ≤  < 1 if

ℜu′(z) > .

Thus it is enough to show that

u′(z)− 1 =
−

∞

n=2

nanz
n−1

 ≤
∞

n=2

nanzn−1.
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Thus

u′(z)− 1 ≤ 1−  if

∞

n=2

n

(1− )
anzn−1 ≤ 1. (22)

Hence by Theorem 2, (22) will be true if

n

1− 
zn−1 ≤ (ω(n− 1) + (n + 1− ω))Θ(n, δ,α,β)

( + (1− ω)

or if

z ≤

(1− )(ω(n− 1) + (n + 1− ω))Θ(n, δ,α,β)

n( + (1− ω))

 1
n−1

, n ≥ 2. (23)

The theorem follows easily from (23).

5. Extreme Points

In the following theorem, we obtain extreme points for the class TS(ω,, ).
Theorem 7 Let u1(z) = z and

un(z) = z − ( + (1− ω))

[ω(n− 1) + (n + 1− ω)]Θ(n, δ,α,β)
zn, for n = 2, 3, · · · .

Then u ∈ TS(ω,, ) if and only if it can be expressed in the form

u(z) =

∞

n=1

θnun(z), where θn ≥ 0 and

∞

n=1

θn = 1.

Proof. Assume that u(z) =
∞

n=1
θnun(z), hence we get

u(z) = z −
∞

n=2

( + (1− ω))θn
[ω(n− 1) + (n + 1− ω)]Θ(n, δ,α,β)

zn.

Now, u ∈ TS(ω,, ), since

∞

n=2

[ω(n− 1) + (n + 1− ω)]Θ(n, δ,α,β)

( + (1− ω))

× ( + (1− ω))θn
[ω(n− 1) + (n + 1− ω)]Θ(n, δ,α,β)

=

∞

n=2

θn = 1− θ1 ≤ 1.

Conversely, suppose u ∈ TS(ω,, ). Then we show that u can be written in the

form
∞

n=1
θnun(z).

Now u ∈ TS(ω,, ) implies from Theorem 2

an ≤ ( + (1− ω))

[ω(n− 1) + (n + 1− ω)]Θ(n, δ,α,β)
.

Setting θn = [ω(n−1)+(n+1−ω)]Θ(n,δ,α,β)
(+(1−ω)) an, n = 2, 3, · · ·

and θ1 = 1−
∞

n=2
θn, we obtain u(z) =

∞
n=1

θnun(z).
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6. Hadamard product

In the following theorem, we obtain the convolution result for functions belongs
to the class TS(ω,, ).
Theorem 8 Let u, g ∈ TS(ω,, ,ϑ). Then u ∗ g ∈ TS(ω,, ζ,ϑ) for

u(z) = z −
∞

n=2

anz
n, g(z) = z −

∞

n=2

bnz
n and (u ∗ g)(z) = z −

∞

n=2

anbnz
n,

where

ζ ≥ 2( + (1− ω))ω(n− 1)

[ω(n− 1) + (n + 1− ω)]2Θ(n, δ,α,β)− 2( + (1− ω))(n + 1− ω)
.

Proof. u ∈ TS(ω,, ) and so

∞

n=2

[ω(n− 1) + (n + 1− ω)]Θ(n, δ,α,β)

( + (1− ω))
an ≤ 1, (24)

and
∞

n=2

[ω(n− 1) + (n + 1− ω)]Θ(n, δ,α,β)

( + (1− ω))
bn ≤ 1. (25)

We have to nd the smallest number ζ such that

∞

n=2

[ω(n− 1) + ζ(n + 1− ω)]Θ(n, δ,α,β)

ζ( + (1− ω))
anbn ≤ 1. (26)

By Cauchy-Schwarz inequality

∞

n=2

[ω(n− 1) + (n + 1− ω)]Θ(n, δ,α,β)

( + (1− ω))


anbn ≤ 1. (27)

Therefore it is enough to show that

[ω(n− 1) + ζ(n + 1− ω)]Θ(n, δ,α,β)

ζ( + (1− ω))
anbn

≤ [ω(n− 1) + (n + 1− ω)]Θ(n, δ,α,β)

( + (1− ω))


anbn.

That is

anbn ≤ [ω(n− 1) + (n + 1− ω)]ζ

[ω(n− 1) + ζ(n + 1− ω)]
. (28)

From (27)

anbn ≤ ( + (1− ω))

[ω(n− 1) + (n + 1− ω)]Θ(n, δ,α,β)
.

Thus it is enough to show that

( + (1− ω))

[ω(n− 1) + (n + 1− ω)]Θ(n, δ,α,β)
≤ [ω(n− 1) + (n + 1− ω)]ζ

[ω(n− 1) + ζ(n + 1− ω)]
,

which simplies to

ζ ≥ 2( + (1− ω))ω(n− 1)

[ω(n− 1) + (n + 1− ω)]2Θ(n, δ,α,β)− 2( + (1− ω))(n + 1− ω)
.



12 ARUN B. DAMKONDWAR, B.D. KARANDE JFCA-2024/15(2)

7. Closure Theorems

We shall prove the following closure theorems for the class TS(ω,, ).
Theorem 9 Let uj ∈ TS(ω,, ), j = 1, 2, . . . , s. Then

g(z) =

s

j=1

cjuj(z) ∈ TS(ω,, )

For uj(z) = z −
∞

n=2
an,jz

n, where
s

j=1

cj = 1.

Proof.

g(z) =

s

j=1

cjuj(z)

= z −
∞

n=2

s

j=1

cjan,jz
n

= z −
∞

n=2

enz
n,

where en =
s

j=1

cjan,j . Thus g(z) ∈ TS(ω,, ) if

∞

n=2

[ω(n− 1) + (n + 1− ω)]Θ(n, δ,α,β)

( + (1− ω))
en ≤ 1,

that is, if
∞

n=2

s

j=1

[ω(n− 1) + (n + 1− ω)]Θ(n, δ,α,β)

( + (1− ω))
cjan,j

=

s

j=1

cj

∞

n=2

[ω(n− 1) + (n + 1− ω)]Θ(n, δ,α,β)

( + (1− ω))
an,j

≤
s

j=1

cj = 1.

Theorem 10 Let u, g ∈ TS(ω,, ). Then

h(z) = z −
∞

n=2

(a2n + b2n)z
n ∈ TS(ω,, ), where

ζ ≥ 2ω(n− 1)2( + (1− ω))

[ω(n− 1) + (n + 1− ω)]2Θ(n, δ,α,β)− 22( + (1− ω))(n + 1− ω)
.

Proof. Since u, g ∈ TS(ω,, ), so Theorem2 yields

∞

n=2


(ω(n− 1) + (n + 1− ω))Θ(n, δ,α,β)

( + (1− ω))
an

2
≤ 1

and
∞

n=2


(ω(n− 1) + (n + 1− ω))Θ(n, δ,α,β)

( + (1− ω))
bn

2
≤ 1.
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We obtain from the last two inequalities

∞

n=2

1

2


(ω(n− 1) + (n + 1− ω))Θ(n, δ,α,β)

( + (1− ω))

2
(a2n + b2n) ≤ 1. (29)

But h(z) ∈ TS(ω,, ζ, q,m), if and only if

∞

n=2

[ω(n− 1) + ζ(n + 1− ω)]Θ(n, δ,α,β)

ζ( + (1− ω))
(a2n + b2n) ≤ 1, (30)

where 0 < ζ < 1, however (29) implies (30) if

[ω(n− 1) + ζ(n + 1− ω)]Θ(n, δ,α,β)

ζ( + (1− ω))

≤1

2


(ω(n− 1) + (n + 1− ω))Θ(n, δ,α,β)

( + (1− ω))

2
.

Simplifying, we get

ζ ≥ 2ω(n− 1)2( + (1− ω))

[ω(n− 1) + (n + 1− ω)]2Θ(n, δ,α,β)− 22( + (1− ω))(n + 1− ω)
.

Acknowledgments: The authors would like to thank the editor and referees
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