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NUMERICAL APPROXIMATION OF MULTI-ORDER

FRACTIONAL DIFFERENTIAL EQUATIONS BY GALERKIN

METHOD WITH CHEBYSHEV POLYNOMIAL BASIS

A.K. BELLO, J.U. ABUBAKAR, T. OYEDEPO, A.M. AYINDE, T.F. MOHAMMED

Abstract. The Galerkin method is a numerical technique used to approxi-

mate solutions to Partial Differential Equations (PDEs) or integral equations.
To this end, this study employed the Galerkin method to address Multi-Order

Fractional Differential Equations (MFDEs), utilizing Chebyshev Polynomials

as the basis functions. The approach involved assuming an approximate solu-
tion using shifted Chebyshev polynomials, which was then substituted into the

given problem. Subsequently, boundary conditions were applied. The resid-

ual equation, integrated over the interval of interest along with the weight
function, resulted in a linear system of equations with unknown Chebyshev

coefficient constants. Maple 18 was utilized to determine these unknown con-

stants, which were then substituted back into the assumed solution to obtain
the desired approximate solution. To assess the effectiveness of the proposed

technique, numerical examples were solved, and the results were compared with

existing literature. The comparison showcased that the suggested algorithm is
not only accurate but also efficient in multi-order fractional differential equa-

tions. Tables and figures were employed to present and illustrate the obtained
results.

1. Introduction

The exploration of differential equations stands as a fundamental pillar within
the field of mathematics, playing a pivotal role in comprehending and resolving
diverse real-world challenges. These mathematical constructs serve to depict the
intricate connection between a function and its derivatives. Contemporary focus
has been directed towards fractional differential equations (FDEs) as they hold the
remarkable capacity to model complex systems encountered in physics, engineering,
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and various applied sciences. This surge of interest has been motivated by their
potential to offer deeper insights and more accurate representations of the intricate
dynamics present in such systems.

In recent years, researchers have shown significant interest in developing robust
and efficient numerical methods for solving multi-order fractional differential equa-
tions. These equations involve multiple fractional derivatives of different orders,
making their analytical solutions elusive, if not impossible, for all but a few special
cases. Consequently, the quest for accurate and efficient numerical techniques has
intensified to unlock the secrets hidden in these intricate mathematical models.

The Galerkin method, a highly influential and extensively employed numeri-
cal technique, has showcased its efficacy in tackling diverse differential equations.
This approach involves employing a finite-dimensional subspace to approximate the
sought-after solution, effectively transforming the original problem into a system
of algebraic equations. By doing so, it becomes amenable to efficient resolution
through standard numerical methods. The Galerkin method has garnered notable
achievements in solving both ordinary and partial differential equations, arousing
considerable interest among researchers keen to explore its potential in the realm
of fractional calculus. Its adaptability and success in various differential equation
scenarios make it a compelling option for investigating and solving complex math-
ematical models arising in practical applications and scientific investigations.

Accurate solutions using the Galerkin method for fractional differential equa-
tions necessitate careful selection of suitable basis functions. Among the plethora
of options, Chebyshev polynomials emerge as a standout choice owing to their
exceptional properties. As orthogonal polynomials, they contribute to efficient nu-
merical computations while demonstrating remarkable approximation capabilities.
Consequently, Chebyshev polynomials present themselves as an ideal candidate to
address the intricacies posed by multi-order fractional differential equations, making
them a promising avenue of exploration in this context.

Chebyshev polynomials, known for their excellent approximation properties,
serve as the basis functions in our approach. Chebyshev polynomials are a set
of orthogonal polynomials defined on a given interval, which possess several desir-
able properties for numerical approximation. They have been successfully applied
in various areas of mathematics and engineering due to their ability to provide
accurate and efficient solutions.

The main advantage of using the Galerkin method with Chebyshev polynomials
lies in its ability to handle multi-order fractional differential equations. By con-
sidering different fractional orders in the equations, we can capture the dynamics
of complex systems more effectively. This approach allows us to obtain numerical
solutions that accurately represent the behavior of the systems under investigation.
This work considers the numerical solution of multi-order fractional differential
equation:

Dαu(x) =

k∑
i=0

yiD
βiu(x) + f(x), x ∈ [0, 1] (1)

with the initial conditions:

u(p)(0) = dp, p = 0, 1, . . . , n− 1, (2)

where n − 1 < a ≤ n, the coefficient yi(i = 0, 1, . . . , k) is constant, and 0 < β0 <
· · · < βk < a, f(x) is a known function.



JFCA-2024/15(2) SOLUTION OF MULTI-ORDER FRACTIONAL DIFFERENTIAL EQUATIONS3

Numerous researchers have contributed to the exploration of numerical solutions
for Fractional Differential Equations(FDEs). Kilbas et al. [12] delved into the
theory and application of FDEs. Chen et al. [6] focused on the numerical solution
of nonlinear fractional integral Differential Equations(DE), employing the second
kind Chebyshev wavelets. In another study, Chen et al. [7] proposed a numerical
solution for a class of linear systems of FDEs using the Haar wavelet method,
including a convergence analysis.

Pimenov and Hendy [19] conducted numerical studies on functional DEs with
delay, utilizing backward differentiation Formula (BDF-type) shifted Chebyshev
approximations. Babolian et al. [5] explored numerical solutions for MFDEs using
Boubaker polynomials. Anastassiou et al. [2] established the monotone conver-
gence of extended iterative methods and fractional calculus, showcasing various
applications.

Saeedi [20] employed a fractional-order operational method to numerically treat
multi-order fractional partial DEs with variable coefficients. Jafari et al. [11] pro-
vided an analysis of Riccati differential equations within a new fractional derivative
without a singular kernel. Han et al. [10] proposed a numerical solution for a class
of MFDEs, incorporating error correction and convergence analysis. Dabiri and
Butche [8] obtained the numerical solution MFDEs with multiple delays through
spectral collocation methods.

Yusuf et al. [24] introduced soliton structures for some time-fractional nonlin-
ear DEs with a conformable derivative. Bello et al. [4] utilized fourth kinds of
Chebyshev polynomials as basis functions for the numerical treatment of MFDEs.
El-Sayed et al. [9] established the Jacobi operational matrix for the numerical solu-
tion of multi-term variable-order FDEs. Shah and Khan [21] investigated a system
of nonlinear fractional order hybrid DEs under usual boundary conditions for the
existence of a solution.

Alshehri et al. [1] derived a Caputo (discretization) fractional-order model of
glucoseinsulin interaction, presenting numerical solutions and comparisons with
experimental data. Tajadodi et al. [22] presented exact solutions of conformable
FDEs. Talib et al. [23] conducted a numerical study on multi-order fractional
differential equations with constant and variable coefficients.[15]-[18] applied col-
location method for solving integro-differential equations, while [22] applied least
squares collocation for fractional integro-differential equations.

Mamadu and Njoseh [13] applied Galerkin method Volterra equations with cer-
tain orthogonal polynomials. Mamadu et al. [14] applied Galerkin Method with
Mamadu-Njoseh Polynomials for the solution of Fractional Integro-Differential Equa-
tion. Motivated by the above work, this study propose Galakin Method with shifted
Chebyshev polynomial polynomials for the solution of MFDEs.

2. Definition of Relevant Terms

2.1. Fractional Differential Equations (FDEs). A fractional differential equa-
tion is a type of differential equation that involves fractional derivatives of a func-
tion. It is a Differential Equation whose Order of Derivative is not an integer.

Dαu(x) + au(x) = 0 (3)

x > 0 and α > 0 (α not necessarily an integer )
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2.2. Galerkin Method. The approach, alternatively known as the weighted resid-
ual method, employs trial functions (or approximating functions) that adhere to
the boundary conditions of the given problem. The trial function is inserted into
the specified differential equation, and the outcome is termed the residual. Subse-
quently, the integral of the product between this residual and a weighted function
across the domain is equated to zero, leading to a set of equations that determine
the unknown parameters in the trial function.

2.3. Chebyshev Polynomials. The very known Chebyshev polynomial of degrees
n denoted Tn(x),defined on the interval −1 ≤ x ≤ 1 can be determined using the
recurrence formular.

Tn+1(x) = 2T1(x)Tn(x)− Tn−1(x) n = 0, 1, 2, . . . (4)

Therefore, we have only a few terms:

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

In order to derive these polynomials within the interval [0, 1], we introduce a
variable transformation with respect to x.

x =
1

2
X +

1

2

=⇒ X = 2x− 1

Now substitute X into Tn(x) = cos(n ·cos−1(X)), n = 0, 1, 2 . . . The shifted Cheby-
shev polynomial is defined as follows:

T ∗0 (x) = 1

T ∗1 (x) = 2x− 1

This leads to the recursive relation:

T ∗n+1(x) = 2(2x− 1)T ∗n(x)− T ∗n−1(x), n ≥ 1 (5)

Utilizing this recurrence relation, we can generate the following terms:

T ∗0 (x) = 1

T ∗1 (x) = 2x− 1

T ∗2 (x) = 8x2 − 8x+ 1

T ∗3 (x) = 32x3 − 48x2 + 18x− 1

T ∗4 (x) = 128x4 − 256x3 + 160x2 − 32x+ 1

T ∗5 (x) = 512x5 − 1280x4 + 1120x3 − 400x2 + 50x− 1

T ∗6 (x) = 2048x6 − 6144x5 + 6912x4 − 3584x3 + 840x2 − 72x+ 1
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2.4. Multi-Order Fractional Differential Equations. Multi-order Fractional
Differential Equation (FDE) is a type of differential equation that involves multiple
fractional derivatives of different orders. Fractional derivatives extend the concept
of differentiation to non-integer orders, allowing for the description of systems with
complex dynamics and memory effects. In a multi-order FDE, the fractional deriva-
tives can have various orders, and the equation may include both fractional and
integer-order derivatives.

Mathematically, a multi-order FDE can be represented as:

Dα1Dα2 . . . Dαky(t) = f(t, y(t), Dβ1y(t), . . . , Dβmy(t))

where y(t) is the unknown function, Dαi denotes the fractional derivatives of
different orders αi, and Dβj represents the integer-order derivatives of different or-
ders βj . The function f(t, y(t), Dβ1y(t), . . . , Dβmy(t)) represents a given expression
involving the variables t, y(t), and the integer-order derivatives.

2.5. Exact Solution. An exact solution is a precise and complete analytical so-
lution to a mathematical problem or equation that provides an explicit formula or
expression satisfying all given conditions without any approximation or error.

2.6. Approximate Solution. An approximate solution refers to an estimation
or an approach to solving a mathematical problem, such as a differential equation,
that provides an approximation of the true solution with a certain level of accuracy.

2.7. Absolute Error. In the context of numerical computation and approxima-
tion, the absolute error is a measure of the difference between an approximate value
or solution and the true or exact value. It quantifies the magnitude of the discrep-
ancy between the approximation and the actual value, disregarding the direction
of the error (whether it is positive or negative).

Mathematically, for a true or exact value xtrue and an approximate value xapprox,
the absolute error (Eabs) is calculated as:

Eabs = |xtrue − xapprox|

3. Method of solution

In this section, we shall consider the general Multi-Order Fractional differential
equation of the form Equ. (1) and Equ. (2) as:

Dαu(x) =
k∑
i=0

yiD
βiu(x) + f(x), x ∈ [0, 1] (6)

with initial conditions

u0(0) = d0 u1(0) = d1 (7)

We assumed an approximate solution of the form:

um(x) =

m∑
n=0

anT
∗
n(x), (8)

where T ∗n(x) is the shifted Chebyshev Polynomial and an are the constants to be
determined. Equ. (7) is imposed on (8) and manipulated to give:
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u∗m(x) =

m∑
n=2

anT
∗
n(x). (9)

Substituting (9) in (6) gives:

Dα(u∗m) = y0D
β0u∗m(x) + y1D

β1u∗m(x) + y2D
β2u∗m(x)

+y3D
β3u∗m(x) + f(x). (10)

Hence, the residual equation is obtained as:

R(x) = Dα(u∗m)− y0Dβ0u∗(x)− y1Dβ1u∗(x)

−y2Dβ2u∗(x)− y3Dβ3u∗(x)− f(x) (11)

Let

In =

∫ b

a

T ∗n(x)R(x)dx = 0, (12)

considering that T ∗n(x)) is the weight function defined in the interval [0,1], setting
Equation (1) to zero results in a system of algebraic equations with unknown con-
stants. These constants, denoted as ai(i = 2, 3, 4, 5, . . . n), are then determined by
solving the system using Maple 18. Subsequently, the unknowns the unknowns ai
are substituted into (9) to derive the desired approximate solution.

4. Numerical Examples

4.1. Example 4.1. Consider the following multi-order fractional differential equa-
tion

Dαu(x) = y0D
β0u(x) + y1D

β1u(x) + y2D
β2u(x)

+y3D
β3u(x) + f(x); x ∈ [0, 1], (13)

with initial conditions

u0(0) = d0 u1(0) = d1

where α = 2, d0 = d1 = 0, the coefficient is y0 = y2 = −1, y1 = 2, y3 = 0 and
β0 = 0, β1 = 1, β2 = 1

2 ∈ (0, 1),

f(x) = x7 +
2048

429
√
π
x6.5 − 14x6 + 42x5 − x2 − 8

3
√
π
x1.5 + 4x− 2

The exact solution is u(x) = x7 − x2.

Solution: Here, Equ. (13) assumed an approximate solution of the form:

u(x) = u7(x) =

7∑
n=0

anTn(x) (14)
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Expanding Equation (14) yields:

u(x) = a0 + a1(2x− 1) + a2(8x2 − 8x+ 1) + a3(32x3 − 48x2 + 18x− 1)

+ a4(128x4 − 256x3 + 160x2 − 32x+ 1) + a5(512x5

− 1280x4 + 1120x3 − 400x2 + 50x− 1) + a6(2048x6

− 6144x5 + 6912x4 − 3584x3 + 840x2 − 72x+ 1)

+ a7(8192x7 − 28672x6 + 39424x5 − 26880x4

+ 9408x3 − 1568x2 + 98x− 1) (15)

Applying the initial conditions to Equ. (15) as outlined in Equations (9) and (10),
Equation (15) transforms into:

u∗(x) = 8a2x
2 + a3(32x3 − 48x2) + a4(128x4 − 256x3 + 160x7)

+ a5(512x5 − 1280x4 + 1120x3 − 400x7) + a6(2048x6

− 6144x5 + 6912x4 − 3584x3 + 840x2) + a7(8192x7

− 28672x6 + 39424x5 − 26880x4 + 9408x3 − 1568x2) (16)

Inserting Equation (16) into Equation (13) results in the expression for R(x).

R(x) =
[
16a2 + a3(−96 + 192x) + a4(320− 1536x+ 1536x2)

+a5(−800 + 6720x− 15360x2 + 10240x3) + a6(1680− 21504x

+82944x2 − 122880x3 + 61440x4) + a7(−3136 + 56448x

−322560x2 + 788480x3 − 860160x4 + 344064x5)
]

+
[
8a2x

2

+a3(32x3 − 42x2) + a4(128x4 − 256x3 + 160x2) + a5(512x5

−1280x4 + 1120x3 − 400x2) + a6(2048x6 − 6144x5 + 6912x4

−3584x3 + 840x2) + a7(8192x7 − 28672x6 + 39424x5 − 26880x4

+9408x3 − 1568x2)
]
− 32a2x+ a3(192x− 192x2) + a4(−640x

+1536x2x− 1024x3) + a5(1600x− 6720x2 + 10240x3 − 5120x4)

+a6(−3360x+ 21504x2 − 55290x3 + 61440x4 − 24570x5) + a7(6272x

−56448x2 + 215040x3 − 394240x4 + 344064x5 − 114688x6)

+
[
a2(

64x
3
2

3
√
π

) + a3(512
x

5
2

5
√
π
− 128x

3
2

√
π

) + a4(16384
x

7
2

35
√
π
− 4096

x
5
2

5
√
π

+

1280x
3
2

3
√
π

) + a5(131072
x

9
2

63
√
π
− 32768

x
7
2

7
√
π

+ 3584
x

5
2

√
π
− 3200

x
3
2

3
√
π

)

+a6(2097152
x

11
2

231
√
π
− 3524288

x
9
2

21
√
π

+
884736x

7
2

35
√
π
− 57344

x
5
2

5
√
π

+2240
x

3
2

√
π

) + a7(16777216
x

13
2

429
√
π
− 4194304

x
11
2

33
√
π

+1441792
x

9
2

9
√
π
− 98304

x
7
2

√
π

+ 150528
x

5
2

5
√
π
− 112544x

3
2

3
√
π

)− f(x)
]

(17)
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Let

In =

∫ 1

0

T ∗n(x)R(x)dx = 0 (18)

Here, T ∗n(x) (where n = 2, 3, 4, 5, . . .m) represents the weight functions, selected
from the coefficients of ai (where n = 2, 3, 4, 5, . . .m) in Equation (16). Substituting
Equation (17) and the weight functions into Equation (18) yields:

I1 =

∫ 1

0

x2[R(x)] dx = 0

I2 =

∫ 1

0

[32x3 − 48x2][R(x)] dx = 0

I3 =

∫ 1

0

[128x4 − 256x3 + 160x2][R(x)] dx = 0

I4 =

∫ 1

0

[512x5 − 1280x4 + 1120x3 − 400x2][R(x)] dx = 0

I5 =

∫ 1

0

[2048x6 − 6144x5 + 6912x4 − 3584x3 + 840x2][R(x)] dx = 0

I6 =

∫ 1

0

[8192x7 − 28672x6 + 39424x5 − 26880x4 + 9408x3

−1568x2][R(x)]dx = 0
Solving I1 to I6,we have the unknown constants as:

a2 = 0.1193847656
a3 = 0.1221923828
a4 = 0.04443359375
a5 = 0.011108398437
a6 = 0.001708984375

a7 = 0.000122070312305


(19)

Substituting ai’s in equation (16) gives:

u∗(x) = 8(0.119385)x2 + 0.122192(32x3 − 48x2) + 0.0444336(128x4

− 256x3 + 160x2) + 0.0111084(512x5 − 1280x4 + 1120x3

− 400x2) + 0.00170898(2048x6 − 6144x5 + 6912x4 − 3584x3

+ 840x2) + 0.00012207(8192x7 − 28672x6 + 39424x5

− 26880x4 + 9408x3 − 1568x2) (20)

Thus, the required approximation solution is given as:

u∗(x) = −x2 − 4.1682× 10−9x3 + 9.2183× 10−9x4

+ 1.09061× 10−8x5 + 6.58295× 10−9x6 + x7 (21)

4.2. Example 4.2. Consider the following Multi-Order fractional differential equa-
tion

Dαu(x) = y0D
β0u(x) + y1D

β1u(x) + y2D
β2u(x)

+y3D
β3u(x) + f(x) x ∈ [0, 1] (22)
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with initial conditions

u0(0) = d0 u1(0) = d1

Where α = 2, d0 = d1 = 0, the coefficient is y0 = y2 = −1, y1 = 0, y3 = 2 and
β0 = 0, β1 = 1, β2 = 2

3 ∈ (0, 1), β3 = 5
3 ∈ (1, 2),

f(x) = x3 + 6x+
12√

7
3

x
4
3 +

6√
10
3

x
7
3

The exact solution is u(x) = x3.

Solution
Here, equation (22) assumed an approximate solution of the form:

u(x) = u7(x) =

7∑
n=0

anTn(x). (23)

Expanding Equ. (23) gives:

u(x) = a0 + a1(2x− 1) + a2(8x2 − 8x+ 1) + a3(32x3 − 48x2 + 18x− 1)

+ a4(128x4 − 256x3 + 160x2 − 32x+ 1) + a5(512x5

− 1280x4 + 1120x3 − 400x2 + 50x− 1) + a6(2048x6

− 6144x5 + 6912x4 − 3584x3 + 840x2 − 72x+ 1)

+ a7(8192x7 − 28672x6 + 39424x5 − 26880x4

+ 9408x3 − 1568x2 + 98x− 1) (24)

Applying the initial conditions to Equation (24) as outlined in Equations (9) and
(10), Equation (24) transforms into:

u∗(x) = 8a2x
2 + a3(32x3 − 48x2) + a4(128x4 − 256x3 + 160x7)

+ a5(512x5 − 1280x4 + 1120x3 − 400x7) + a6(2048x6

− 6144x5 + 6912x4 − 3584x3 + 840x2) + a7(8192x7

− 28672x6 + 39424x5 − 26880x4 + 9408x3 − 1568x2) (25)
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Substituting (25) in (22) gives:

R(x) =
[
16a2 + a3(−96 + 192x) + a4(320− 1536x+ 1536x2)

+a5(−800 + 6720x− 15360x2 + 10240x3) + a6(1680− 21504x

+82944x2 − 122880x3 + 61440x4) + a7(−3136 + 56448x

−322560x2 + 788480x3 − 860160x4 + 344064x5)
]

+
[
8a2x

2 + a3(32x3

−42x2) + a4(128x4 − 256x3 + 160x2) + a5(512x5 − 1280x4 + 1120x3

−400x2) + a6(2048x6 − 6144x5 + 6912x4 − 3584x3 + 840x2)+

a7(8192x7 − 28672x6 + 39424x5 − 26880x4 + 9408x3 − 1568x2)
]

+
[
16a2

x
4
3

Γ 7
3

+ a3(192
x

7
3

Γ 10
3

− 96x
4
3

Γ 7
3

) + a4(3072
x

10
3

Γ 13
3

− 1536
x

7
3

Γ 10
3

+ 320
x

4
3

Γ 7
3

)

+a5(61440
x

13
3

Γ 16
3

− 30720
x

10
3

Γ 13
3

− 800
x

4
3

Γ 7
3

) + a6(1474560
x

16
3

Γ 19
3

− 737280
x

13
3

Γ 16
3

+165888
x

10
3

Γ 13
3

− 21504
x

7
3

Γ 10
3

+ 1680
x

4
3

Γ 7
3

) + a7(41287680
x

19
3

Γ 22
3

−20643840
x

16
3

Γ 19
3

+ 4730880
x

13
3

Γ 16
3

− 645120
x

10
3

Γ 13
3

+ 56448
x

7
3

Γ 10
3

− 3136x
4
3

Γ 7
3

)
]

−32a2
x

1
3

Γ 4
3

− 2a3(
192x

4
3

Γ 7
3

− 96x
1
3

Γ 4
3

) + 2a4(3072
x

7
3

Γ 10
3

− 1536
x

4
3

Γ 7
3

+ 320
x

1
3

Γ 4
3

)

−2a5(61440
x

10
3

Γ 13
3

− 30720
x

7
3

Γ 10
3

+ 6720
x

4
3

Γ 7
3

− 800
x

1
3

4
3

)

−2a6(1474560
x

13
3

Γ 16
3

− 737280
x

10
3

Γ 13
3

+ 165880
x

7
3

Γ 10
3

− 21504
x

4
3

Γ 7
3

+1680
x

1
3

Γ 4
3

) + 2a7(41287680
x

16
3

Γ 19
3

− 206431640x
13
3

Γ 16
3

+ 4730880
x

10
3

Γ 13
3

−645120
x

7
3

Γ 10
3

+ 56448
x

4
3

Γ 7
3

− 3136
x

1
3

Γ 4
3

)− x3 − 6x+
12x

4
3

Γ 7
3

+
6x

7
3

Γ 10
3

(26)

Let

In =

∫ 1

0

T ∗n(x)R(x)dx = 0 (27)

Here, T ∗n(x) (where i = 2, 3, 4, 5, . . . n) represents the weight functions, selected
from the coefficients of ai (where i = 2, 3, 4, 5, . . . n) in Equation (25). Substituting
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Equation (26) and the weight functions into Equation (27) yields:

I1 =

∫ 1

0

x2[R(x)] dx = 0

I2 =

∫ 1

0

[32x3 − 48x2][R(x)] dx = 0

I3 =

∫ 1

0

[128x4 − 256x3 + 160x2][R(x)] dx = 0

I4 =

∫ 1

0

[512x5 − 1280x4 + 1120x3 − 400x2][R(x)] dx = 0

I5 =

∫ 1

0

[2048x6 − 6144x5 + 6912x4 − 3584x3 + 840x2][R(x)] dx = 0

I6 =

∫ 1

0

[8192x7 − 28672x6 + 39424x5 − 26880x4 + 9408x3

−1568x2][R(x)]dx
Solving I1 to I6, we have,

a2 = 0.1875
a3 = 0.03125

a4 = 2.88769× 10−11

a5 = 7.16425× 10−12

a6 = 1.20112× 10−12

a7 = 1.58142× 10−12


(28)

substituting ai’s in equation (25), gives:

u∗(x) = −1.46412× 10−10x2 + x3 − 6.12385× 10−9x4 + 1.09369× 10−8x5

− 9.11392× 10−9x6 + 3.52933× 10−9x7 (29)

4.3. Example 4.3. Consider the following Multi-Order fractional differential equa-
tion

Dβ1u(x) + x0.3Dβ2u(x) = F (x) x ∈ [0, 1] (30)

with initial conditions

u0(0) = 0 u1(0) = 0

Where d0 = d1 = 0, β1 = 1.5 and β2 = 0.8, f(x) = 2√
1.5
x0.5 + 2√

2.2
x1.5.

The exact solution is u(x) = x2

Solution: Likewise, by applying the same methodology as in Examples 4.1 and
4.2 to solve Example 3.3, we obtained the following unknown constants:

a2 = 0.125
a3 = 1.8751× 10−11

a4 = 5.61708× 10−12

a5 = 1.02262× 10−12

a6 = 9.47084× 10−14

a7 = 7.46314× 10−15


, (31)
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and the required approximate solution as:

u∗(x) = x2 − 1.01487× 10−10x3 + 2.65671× 10−10x4 − 3.52535× 10−10x5

+ 4.07946× 10−10x6 + 6.1138× 10−11x7 (32)
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5. Numerical Results

Table 1. Numerical Results for Example 4.1

x Exact Solution Approximate Solution Absolute Error
0.0 0.0000000000 0.0000000000 0
0.1 -0.0099999000 -0.0099999000 0
0.2 -0.0399872000 -0.0399872000 0
0.3 -0.0897813000 -0.0897813000 0
0.4 -0.1583616000 -0.1583616001 1× 10−10

0.5 -0.2421875000 -0.2421875002 2× 10−10

0.6 -0.3320064000 -0.3320064002 2× 10−10

0.7 -0.4076457000 -0.4076457003 3× 10−10

0.8 -0.4302848000 -0.4302848002 2× 10−10

0.9 -0.3317031000 -0.3317030999 1× 10−10

1.0 0.0000000000 -0.0000000000 0
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Figure 1. depicts error between exact and approximate solution for
example 4.1
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Table 2. Numerical Results for Example 4.2

x Exact Solution Approximate Solution Absolute Error
0.0 0.0000000000 0.0000000000 0
0.1 0.0010000000 0.0009999991 9× 10−10

0.2 0.0080000000 0.0007999991 1× 10−10

0.3 0.0270000000 0.0269999999 1× 10−10

0.4 0.0640000000 0.0639999999 1× 10−10

0.5 0.1250000000 0.1249999999 2× 10−10

0.6 0.2160000000 0.2159999997 3× 10−10

0.7 0.3430000000 0.3429999995 5× 10−10

0.8 0.5120000000 0.5119999993 7× 10−10

0.9 0.7290000000 0.7289999992 8× 10−10

1.0 1.0000000000 0.9999999999 1× 10−10
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Figure 2. depicts error between exact and approximate solution for
example 4.2
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Table 3. Numerical Results for Example 4.3

x Exact Solution Approximate Solution Absolute Error
0.0 0.0000000000 0.0000000000 0
0.1 0.0100000000 0.0100000000 0
0.2 0.0400000000 0.0400000000 0
0.3 0.0900000000 0.0900000000 0
0.4 0.1600000000 0.1600000000 0
0.5 0.2500000000 0.2500000000 0
0.6 0.3600000000 0.3600000000 0
0.7 0.4900000000 0.4900000000 0
0.8 0.6400000000 0.6400000000 0
0.9 0.8100000000 00.8100000000 0
1.0 1.0000000000 1.0000000001 1× 10−10
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Figure 3. depicts error between exact and approximate solution for
example 4.3
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6. Conclusion

This study effectively applies the Galerkin method to address MFDEs, obtaining
numerical solutions through the use of shifted Chebyshev polynomials. The inte-
gration of Chebyshev polynomials within the Galerkin method is a pivotal aspect
of this approach. The methodology results in rapidly converging series solutions,
particularly well-suited for addressing physical problems. The efficacy of this ap-
proach is evident from the results presented in Tables 1, 2, and 3, demonstrating its
convergence when compared to exact solutions. Additionally, figures 1-3 illustrate
an excellent agreement with the exact solution. Moreover, the numerical findings
emphasize the robustness of the proposed technique as a potent mathematical tool
for tackling the specific class of MFDEs.
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