
Journal of Fractional Calculus and Applications
Vol. 15(2) July. 2024, No. 4
ISSN: 2090-5858.
ISSN 2090-584X (print)
http://jfca.journals.ekb.eg/

NEW RESULTS ON IMPLICIT DELAY FRACTIONAL

DIFFERENTIAL EQUATIONS WITH IMPULSIVE INTEGRAL

BOUNDARY CONDITIONS

S. POORNIMA, P. KARTHIKEYAN

Abstract. In this paper, we analyse the existence results for implicit frac-

tional differential equations with impulsive delay integral boundary conditions.

The sufficient conditions are established to prove the existence results by using
the fixed point theorems such as Banach contraction principle and Schaefer’s

fixed point theorem. An application is illustrated through an example.

Fractional calculus is a natural extension of ordinary calculus, where integrals
and derivatives are defined for arbitrary real orders. Since the development of
fractional calculus in the 17th century, numerous derivatives have been developed,
including Riemann-Liouville, Hadamard, Grunwald-Letnikov, Caputo, and others.
There are numerous works devoted to various fractional operators because the se-
lection of an appropriate fractional derivative (or integral) depends on the system
under consideration, refer [9, 10, 13]. In [14], Prathumwan et al. has investigated
the study of transmission dynamics of streptococcus suis infection mathematical
model between Pig and Human under fractional derivative. Tul Ain et al. [17] has
studied ABC fractional derivative for the Alcohol drinking model using Two-Scale
fractal dimension.

Impulsive differential equations have played an important role in modeling phe-
nomena. Since the last century, some authors have used impulsive differential
systems to describe the model, particularly in describing dynamics of populations
subject to abrupt changes as well as other phenomena like harvesting, diseases, and
so forth. In [16], Renusumrit et al. has discussed about the existence results for
impulsive fractional integro-differential equations involving the Atangana-Baleanu-
Caputo derivative under integral boundary conditions. Wattanakejorn et al. [19]
has examined the implicit fractional relaxation differential equations with impul-
sive delay boundary conditions. Equations involving fractional derivatives and time
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delays are known as fractional delay differential equations. Unlike ordinary deriva-
tives, fractional derivatives are non-local in nature and are capable of modeling
memory effects whereas time delays express the history of an earlier state. In [11],
Krim et al. has discussed Caputo-Hadamard implicit fractional differential equa-
tions with delay. When the boundary conditions are specified at two or more points
on the independent variable, a boundary value problem is a higher-order differen-
tial equation or a group of differential equations. Numerous chemical engineering
applications, including diffusion and reaction in catalysts, heat conduction in fins,
and transport phenomena in boundary layers, all involve this issue, see [2, 3, 7].
We will employ the Atangana-Baleanu fractional operator in the Caputo sense to
analyse the fractional dynamics of the provided model. The fractional derivatives
of Atangana-Baleanu are used because of their nonlocal properties, see reference
[1, 5, 12, 15, 18]. Gulalai et al. [6] analyzed a nonlinear modified KdV equation
under Atangana Baleanu Caputo derivative.
In [7], Gul et al. examined the existence of the following boundary value problems
under ABC fractional derivative

ABC
0 Dϕ

t [κ(t)−V(t,κ(t))] = W(t,κ(t), 0 < ϕ ≤ 1, t ∈ [0, T ] = J
′
,

κ(0) =
∫ ϱ

0

(ϱ− ν)ϕ−1

Γ(ϕ)
U(ν,κ(ν))dν,

where ABC
0 Dϕ

t - is the AB-Caputo fractional derivative of order ϕ, V,U,W : J
′×R →

R.
In [16], Reunsumrit et al. discussed the existence results for the following problem

ABC
0 Dϕ

t [κ(t)− U(t,κ(t))] = V(t,κ(t),Lκ(t)), 0 < ϕ ≤ 1, t ∈ [0, T ] = J
′
,

∆(κ)
∣∣∣
t=tk

= Ik(κ(t−k )),

κ(0) =
∫ ϱ

0

(ϱ− ν)ϕ−1

Γ(ϕ)
S(ν,κ(ν))dν,

where ABC
0 Dϕ

t - is the AB-Caputo fractional derivative of order ϕ, U,S : J
′ ×

R → R and V, g : J
′ × R2 → R is continuous function. Where Lκ(t) =∫ t

0
g(t, x(t), ϕ(t))dt, and Ik : R → R, k = 1, 2, ...m. 0 = t0 < t1 < t2 <

... < tm = T , ∆κ|t=tk = κ(t+k ) − κ(t−k ), and κ(t+k ) = lim
h→0+

κ(tk + h) and

κ(t−k ) = lim
h→0−

κ(tk + h) indicates the right and left hand limits of κ(t) at t = tk.

Prompted by the above works, consider the impulsive ABC fractional implicit
differential equations with integral boundary conditions of the form:

ABC
0 Dν

t [x(t)− g(t, xt)] = f(t, xt,
ABC
0 Dν

t ), t ∈ [0,T] = J, 0 < ν ≤ 1,

∆(x)
∣∣∣
t=tz

= Iz(xt−z )

x(t) = φ(t), t ∈ (−∞, 0]

x(0) =

∫ T

0

(T− ℓ)ν−1

Γ(ν)
h(ℓ, xℓ)dℓ,

(1.1)

where ABC
0 Dν

t - is the ABC fractional derivative of order ν, g, h : J×R → R and f :
J × R2 → R is continuous function. Where Iz : R → R, z = 1, 2, ...m. 0 = t0 <
t1 < t2 < ... < tn = T, ∆x|t = tz = x(t+z ) − x(t−z ), x(t−z ) = lim

r→0−
x(tz + r) and
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x(t+z ) = lim
r→0+

x(tz + r) represent the left and right hand limits of x(t) at t = tz. For

any t ∈ J, we represent xt by

xt(s) = x(t+ s) and −∞ < s ≤ 0.

The contents of this paper is organized as follows. There are some basic defini-
tions and lemmas in Section 2. Section 3 discusses the uniqueness and existence
of fractional implicit differential equations. An example is used in Section 4 to
illustrate the applications.

1. Preliminaries

Define all continuous real functions in the Banach space by C(J) = C(J, R) on
J := [0,T] equipped with the norm

∥y∥ := sup{|y(t)| : t ∈ [0,T]}.
Let the space (B, ∥.∥B) is a seminormed linear space of functions mapping (−∞, 0]
into R, and satisfying the underlying axioms listed below,
(A1) If y : (−∞,T] → R and y0 ∈ B, then there are constants L,M,H > 0, such
that for any t ∈ J the subsequent conditions retain:

• yt is in B, and yt is continuous on [0,T)\{t1, t2, ..., tm},
• ∥yt∥ℵ ≤ K∥y1∥B +M sups∈[0,t] |y(s)|,
• ∥y(t)∥ ≤ H∥yt∥B .

(A2) yt is a B− valued continuous function on J, for the function y(.) in (A1),
(A3) The space B is complete.

Consider the following space

PC([0,T], R) = {y : [0,T] → R : y ∈ C((tz, tz+1], R), z = 0, ....,m, and there exist

y(t−z )and y(t+z ), z = 1, ...,m,with y(t−z ) = y(t−z )}.
Consider the Banach space PC([0,T], R) equipped with the norm

∥y∥PC = sup
t∈[0,T]

|y(t)|.

Set
Bb = {y : (−∞,T] → R\y ∈ PC(J, R) ∩B}.

And the space of absolutely continuous valued functions AC(J) from J into R, and
set

ACm(J) = {y : J → R : y, y
′
, y

′′
, . . . , ym−1 ∈ C and ym−1 ∈ AC(J)}.

Definition 2.1 [16] Let ν ∈ h1(0,T) with ν ∈ (0, 1], the fractional order ABC
derivative is defined as

ABC
0 Dν

t w(t) =
M(ν)

1− ν

∫ T

0

dw

dℓ
Eν

[
−ν(t− ℓ)

1− ν

]
dℓ,

where M(ν) called normalization function and Eν =

∞∑
i=0

tiν

(νi+ 1)
is a Mittag-Leffler

function.
Definition 2.2 [16] The ABC fractional integral for w is written as

ABC
0 Iνtw(t) =

1− ν

M(ν)
w(t) +

ν

M(ν)

∫ t

0

(t− ℓ)ν−1

Γ(ν)
w(ℓ)dℓ,
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where Iν is the Riemann - Liouville fractional integral.
Lemma 2.3 [16] Consider the following problem

ABC
0 Dν

t x(t) = z(t)

x(0) = x0.

Then, the solution is given by

x(0) = x0 +
1− ν

M(ν)
z(t) +

ν

M(ν)Γ(ν)

∫ t

0

(t− ℓ)ν−1z(ℓ)dℓ.

Proof By using the definition 2.2, we get

x(t) = x0 +
ABC
0 Iνt z(t)

= x0 ++
1− ν

M(ν)
z(t) +

ν

M(ν)Γ(ν)

∫ t

0

(t− ℓ)ν−1z(ℓ)dℓ.

Theorem 2.4 [16] Let Z be a Banach space, and ℵ : Z → Z completely continuous
operator. If the set E = {x ∈ Z : x = λℵx, for some λ ∈ (0, 1)} is bounded, then ℵ
has fixed points.
Lemma 2.5 Consider the boundary value problem with nonlinear integral bound-
ary conditions, if z ∈ L(J),

ABC
0 Dν

t x(t) = z(t), o < ν < 1, t ∈ J

x(0) =

∫ T

0

(t− ℓ)ν−1

Γ(ν)
h(ℓ, x(ℓ))dℓ

then the solution x ∈ AC(J) is given by

x(t) =

∫ T

0

(t− ℓ)ν−1

Γ(ν)
h(ℓ, x(ℓ))dℓ+

(1− ν)

M(ν)
z(t) +

ν

M(ν)Γ(ν)

∫ t

0

(t− ℓ)ν−1z(ℓ)dℓ.

(2.1)

Proof By Lemma 2.3, we can get the result (2.1) directly by replacing x0 into the
boundary condition.
Lemma 2.6 Consider the nonlinear integral boundary value problem

ABC
0 Dν

t [x(t)− g(t, xt)] = f(t), t ∈ [0,T] = J, 0 < ν ≤ 1,

∆(x)
∣∣∣
t=tz

= Iz(xt−z )

x(t) = φ(t), t ∈ (−∞, 0]

x(0) =

∫ T

0

(T− ℓ)ν−1

Γ(ν)
h(ℓ, xℓ)dℓ, (2.2)
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then the solution of the problem (2.2) is

x(t) =



φ(t), t ∈ (−∞, 0]

g(t, xt) +

∫ T

0

(T− ℓ)ν−1

Γ(ν)
h(ℓ, xℓ)dℓ+

(1− ν)

M(ν)
f(t)

+
ν

M(ν)Γ(ν)

∫ t

0

(t− ℓ)ν−1f(ℓ)dℓ, if t ∈ [0, t1],

g(t, x(t)) +

∫ T

0

(T− ℓ)ν−1

Γ(ν)
h(ℓ, xℓ)dℓ+

(1− ν)

M(ν)
f(t)

+

z∑
i=1

(1− ν)

M(ν)
f(ti) +

ν

M(ν)Γ(ν)

z∑
i=1

∫ ti

ti−1

(ti − ℓ)ν−1f(ℓ)dℓ

+
ν

Γ(ν)M(ν)

∫ t

tz

(t− ℓ)ν−1f(ℓ)dℓ+

z∑
i=1

Ii(x(t
−
i )), if t ∈ (tz, tz+1].

(2.3)

Proof Assume t satisfies (2.2).
If t ∈ [0, t1]

ABC
0 Dν

t [x(t)− g(t, xt)] = f(t).

Lemma (2.6) implies

x(t)− g(t, xt) =

∫ T

0

(T− ℓ)ν−1

Γ(ν)
h(ℓ, xℓ)dℓ+

ABC
0 Iνt f(t)

=

∫ T

0

(T− ℓ)ν−1

Γ(ν)
h(ℓ, xℓ)dℓ+

(1− ν)

M(ν)
f(t) +

ν

M(ν)Γ(ν)

∫ t

0

(t− ℓ)ν−1f(ℓ)dℓ.

If t ∈ (t1, t2],

x(t)− g(t, xt) = x(t+1 )− g(t1, xt1) +
(1− ν)

M(ν)
f(t) +

ν

M(ν)Γ(ν)

∫ t

f(t)t1

(t− ℓ)ν−1f(ℓ)dℓ

= ∆x
∣∣∣
t=t1

+ x(t−1 )− g(t1, xt1) +
(1− ν)

M(ν)
f(t) +

ν

M(ν)Γ(ν)

∫ t

t1

(t− ℓ)ν−1f(ℓ)dℓ

= I1(xt−1
) +

[∫ T

0

(T− ℓ)ν−1

Γ(ν)
h(ℓ, xℓ)dℓ+

(1− ν)

M(ν)
f(t1)

+
ν

M(ν)Γ(ν)

∫ t1

0

(t1 − ℓ)ν−1f(ℓ)dℓ

]
+

(1− ν)

M(ν)
f(t) +

ν

M(ν)Γ(ν)

∫ t

t1

(t− ℓ)ν−1f(ℓ)dℓ

= I1(xt−1
) +

∫ T

0

(T− ℓ)ν−1

Γ(ν)
h(ℓ, xℓ)dℓ+

(1− ν)

M(ν)
f(t) +

(1− ν)

M(ν)
f(t1)

+
ν

M(ν)Γ(ν)

∫ t1

0

(t1 − ℓ)ν−1f(ℓ)dℓ+
ν

M(ν)Γ(ν)

∫ t

t1

(t− ℓ)ν−1f(ℓ)dℓ.
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If t ∈ (t2, t3],

x(t)− g(t, xt) = x(t+2 )− g(t2, xt2) +
(1− ν)

M(ν)
f(t) +

ν

M(ν)Γ(ν)

∫ t

t2

(t− ℓ)ν−1f(ℓ)dℓ

= ∆x
∣∣∣
t=t2

+ x(t−2 )− g(t2, xt2) +
(1− ν)

M(ν)
f(t) +

ν

M(ν)Γ(ν)

∫ t

t2

(t− ℓ)ν−1f(t)(ℓ)dℓ

= I2(xt−2
) +

[∫ T

0

(T− ℓ)ν−1

Γ(ν)
h(ℓ, xℓ)dℓ+ I1(xt−1

) +
(1− ν)

M(ν)
f(t2) +

(1− ν)

M(ν)
f(t1)

+
ν

M(ν)Γ(ν)

∫ t1

0

(t1 − ℓ)ν−1f(ℓ)dℓ++
ν

M(ν)Γ(ν)

∫ t2

t1

(t2 − ℓ)ν−1f(ℓ)dℓ

]
+

(1− ν)

M(ν)
f(t) +

ν

M(ν)Γ(ν)

∫ t

t2

(t− ℓ)ν−1f(ℓ)dℓ

=

∫ T

0

(T− ℓ)ν−1

Γ(ν)
h(ℓ, xℓ)dℓ+

[
I1(xt−1

) + I2(xt−2
)
]
+

(1− ν)

M(ν)
f(t)

+
(1− ν)

M(ν)
[f(t1) + f(t2)] +

[
ν

M(ν)Γ(ν)

∫ t1

0

(t1 − ℓ)ν−1f(ℓ)dℓ

+
ν

M(ν)Γ(ν)

∫ t2

t1

(t2 − ℓ)ν−1f(ℓ)dℓ

]
+

ν

M(ν)Γ(ν)

∫ t

t2

(t− ℓ)ν−1f(ℓ)dℓ.

Repeating this process in these ways, the solution x(t), for t ∈ (tz, tz+1], where
z = 1, ...,m, can be written as

x(t) = g(t, x(t)) +

∫ T

0

(T− ℓ)ν−1

Γ(ν)
h(ℓ, xℓ)dℓ+

(1− ν)

M(ν)
f(t) +

z∑
i=1

(1− ν)

M(ν)
f(ti)

+
ν

M(ν)Γ(ν)

z∑
i=1

∫ ti

ti−1

(ti − ℓ)ν−1f(ℓ)dℓ+
ν

Γ(ν)M(ν)

∫ t

tz

(t− ℓ)ν−1f(ℓ)dℓ

+

z∑
i=1

Ii(x(t
−
i )).

2. Main Results

The following hypothesis are need to prove the main results.
(A1) For the constants ag > 0, for any x, y ∈ Bb

|g(t, x(t))− g(t, y(t))| ≤ ag∥x(t)− y(t)∥PC .

(A2) For constants af , bf , for any x1, y1 ∈ Bb, x2, y2 ∈ R

|f(t, x1(t), x2(t))− f(t, y1(t), y2(t))| ≤ af∥x1(t)− y1(t)∥PC + bf |x2(t)− y2(t)|.
(A3) For the constants ai > 0, for any x, y ∈ Bb

|Izx(t)− Iky(t)| ≤ ai(∥x(t)− y(t)∥PC .

(A4) For the constants ah > 0, for any x, y ∈ Bb

|h(t, x(t))− h(t, y(t))| ≤ ah∥x(t)− y(t)∥PC .

(A5) There exists constants a1 > 0 and 0 < a2 < 1 such that

|f(t, x(t), y(t))| ≤ a1∥x∥PC + a2|y|.
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for t ∈ J, x ∈ Bb and y ∈ R.
(A6) There exists constants n1, n2 > 0 such that

|Iz(x)| ≤ n1∥x∥PC + n2

for each x ∈ Bb.
(A7) There exists constants d1, d2 > 0 such that

|g(t, x(t))| ≤ d1∥x∥PC + d2

for each x ∈ Bb.
Theorem 3.1 Assume the hypothesis (A1) - (A4) holds, then the problem (1.1)
has a unique solution if

Θ = M

[
ag +

[
1− ν

M(ν)
+ ν

T ν

M(ν)Γ(ν + 1)

]
(m+ 1)

af
1− bf

+mai

]
< 1.

Proof Consider the operator P : Bb → Bb by

P x(t) =



φ(t); t ∈ (−∞, 0]

g(t, xt) +

∫ T

0

(T− ℓ)ν−1

Γ(ν)
h(ℓ, xℓ)dℓ+

(1− ν)

M(ν)
f(t)

+

z∑
i=1

(1− ν)

M(ν)
f(ti) +

ν

M(ν)Γ(ν)

z∑
i=1

∫ ti

ti−1

(ti − ℓ)ν−1f(ℓ)dℓ

+
ν

M(ν)Γ(ν)

∫ t

tz

(t− ℓ)ν−1f(ℓ)dℓ+

z∑
i=1

Ii(x(t
−
i )), t ∈ J,

(3.1)

where f(t) ∈ C(J, R) be such that

F(t) = f(t, xt,
ABC
0 Dν

t x(t)).

Let x(.) : (−∞,T] → R be a function indicated by

x(t) =

{
ϕ(t); t ∈ (−∞, 0],∫ T

0
(T−ℓ)ν−1

Γ(ν) h(ℓ, xℓ)dℓ; t ∈ J.

Then x0 = ϕ, For each z ∈ C(J), with z(0) = 0, we denote by the function z̄ is
defined by

z̄ =

{
0; t ∈ (−∞, 0],

z(t); t ∈ J.

If u(.) satisfies the integral equation

u(t) = g(t, xt) +

∫ T

0

(T− ℓ)ν−1

Γ(ν)
h(ℓ, xℓ)dℓ+

(1− ν)

M(ν)
f(t)

+

z∑
i=1

(1− ν)

M(ν)
f(ti) +

ν

M(ν)Γ(ν)

z∑
i=1

∫ ti

ti−1

(ti − ℓ)ν−1f(ℓ)dℓ

+
ν

M(ν)Γ(ν)

∫ t

tz

(t− ℓ)ν−1f(ℓ)dℓ+

z∑
i=1

Ii(x(t
−
i )).
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We can disintegrate u(.) as u(t) = z̄(t)+x(t); for t ∈ J, which shows that ut = z̄t+xt
∀t ∈ J, and z(.) fulfills

z(t) = g(t, zt) +
(1− ν)

M(ν)
f(t) +

z∑
i=1

(1− ν)

M(ν)
f(ti)

+
ν

M(ν)Γ(ν)

z∑
i=1

∫ ti

ti−1

(ti − ℓ)ν−1f(ℓ)dℓ

+
ν

M(ν)Γ(ν)

∫ t

tz

(t− ℓ)ν−1f(ℓ)dℓ+

z∑
i=1

Ii(z(t
−
i )),

where

f(t) = f(t, z̄t + xt, f(t)).

Consider

C0 = {z ∈ C(J); z0 = 0}.

The norm ∥.∥T in C0 is denoted by

∥z∥T = ∥z0∥Bb
+ sup

t∈J
|u(t)| = sup

t∈J
|u(t)|; u ∈ C0.

C0 is a Banach space with norm ∥.∥T.
Define the operator P1 : C0 → C0

P1z(t) = g(t, zt) +
(1− ν)

M(ν)
F(t)

+

z∑
i=1

(1− ν)

M(ν)
f(ti) +

ν

M(ν)Γ(ν)

z∑
i=1

∫ ti

ti−1

(ti − ℓ)ν−1f(ℓ)dℓ

+
ν

M(ν)Γ(ν)

∫ t

tz

(t− ℓ)ν−1f(ℓ)dℓ+

z∑
i=1

Ii(z(t
−
i )),

where

f(t) = f(t, z̄t + xt, f(t)), t ∈ J.

Thus, the operator P has a fixed point is identical to P1 has a fixed point. Now,
let’s establish that P1 has a fixed point. We shall prove that P1 : C0 → C0 is a
contraction map.
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Take z, z
′ ∈ C0, then ∀ t ∈ J,

∥P1(z)(t)− P1(z
′
)(t)∥ ≤ sup

t∈J

∣∣∣∣∣g(t, zt) + (1− ν)

M(ν)
f(t) +

z∑
i=1

(1− ν)

M(ν)
f(ti)

+
ν

M(ν)Γ(ν)

z∑
i=1

∫ ti

ti−1

(ti − ℓ)ν−1f(ℓ)dℓ

+
ν

M(ν)Γ(ν)

∫ t

tz

(t− ℓ)ν−1f(ℓ)dℓ+

z∑
i=1

Ii(z(t
−
i ))

−

{
g(t, z

′

(t) +
(1− ν)

M(ν)
f
′
(t) +

z∑
i=1

(1− ν)

M(ν)
f
′
(ti)

+
ν

M(ν)Γ(ν)

z∑
i=1

∫ ti

ti−1

(ti − ℓ)ν−1f
′
(ℓ)dℓ

+
ν

M(ν)Γ(ν)

∫ t

tz

(t− ℓ)ν−1f
′
(ℓ)dℓ+

z∑
i=1

Ii(z
′
(t−i ))

}∣∣∣∣∣
≤ sup

t∈J
|g(t, zt)− g(t, z

′

t)|

+
(1− ν)

M(ν)
|f(t)− f

′
(t)|+

z∑
i=1

(1− ν)

M(ν)
|f

′
((ti)− f

′
(ti)|

+
ν

M(ν)Γ(ν)

z∑
i=1

∫ ti

ti−1

(ti − ℓ)ν−1|f(ℓ)− f
′
(ℓ)|dℓ

+
ν

M(ν)Γ(ν)

∫ t

tz

(t− ℓ)ν−1|f(ℓ)− f
′
(ℓ)|dℓ+

z∑
i=1

|Ii(z(t−i ))− Ii(z
′
(t−i ))|,

where f, f
′ ∈ C(J, R) be such that

f(t) = f((t, z̄t + xt, f(t))

and

f
′
(t) = f

′
(t, z̄

′
t + xt, f

′
(t)).

Since, for each t ∈ J , we have

|f(t)− f
′
(t)| = |f(t, z̄t + xt, f(t))− f

′
(t, z̄

′
t + xt, f

′
(t))|

≤ af∥z̄t + xt − z̄
′
t − xt∥PC + bf |f((t))− f

′
(t)|

|f(t)− f
′
(t)| ≤ af

1− bf
∥z̄t − z̄

′
t∥PC
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∥P1(z)(t)− P1(z
′
)(t)∥ ≤ ag∥z̄t − z̄

′
t∥PC +

1− ν

M(ν)

af
1− bf

∥z̄t − z̄
′
t∥PC

+m
1− ν

M(ν)

af
1− bf

∥z̄t − z̄
′
t∥PC +

νTν

M(ν)Γ(ν + 1)
m

af
1− bf

∥z̄t − z̄
′
t∥PC

+
νTν

M(ν)Γ(ν + 1)

af
1− bf

∥z̄t − z̄
′
t∥PC +mai∥z̄t − z̄

′
t∥PC

≤
{
ag +

[
1− ν

M(ν)
+

νTν

M(ν)Γ(ν + 1)

]
(m+ 1)

af
1− bf

+mai

}
∥z̄t − z̄

′
t∥PC

≤ M

{
ag +

[
1− ν

M(ν)
+

νTν

M(ν)Γ(ν + 1)

]
(m+ 1)

af
1− bf

+mai

}
sup
t∈J

∥z̄t − z̄
′
t∥Bb

≤ M

{
ag +

[
1− ν

M(ν)
+

νTν

M(ν)Γ(ν + 1)

]
(m+ 1)

af
1− bf

+mai

}
sup
t∈J

∥z̄t − z̄′
t∥T.

Hence we obtain

∥P1(z̄)(t)− P1(z̄
′)(t)∥ ≤ Θ∥z̄t − z̄

′
t∥T. (3.2)

Therefore, P1 is a contraction and (1.1) has unique solution.
Theorem 3.2 Assume the hypothesis (A1) - (A7) holds, then the problem (1.1)
has at least one solution.
Proof We consider the operator P1 : C0 → C0 defined (previously), for each given
R > 0, we define the ball Denote the ball

BR = {x ∈ C0, ∥x∥T ≤ R}.

Step 1. P1 is continuous.
Let the sequence {zn} such that zn → z in C0.
For each t ∈ J, we have

∥P1(zn)(t)− P1(z)(t)∥
≤ sup

t∈J
|g(t, znt)− g(t, zt)|

+
(1− ν)

M(ν)
|fn(t)− f(t)|+

z∑
i=1

(1− ν)

M(ν)
|fn(ti)− f(ti)|

+
ν

M(ν)Γ(ν)

z∑
i=1

∫ ti

ti−1

(ti − ℓ)ν−1|fn(ℓ)− f(ℓ)|dℓ

+
ν

M(ν)Γ(ν)

∫ t

tz

(t− ℓ)ν−1|fn(ℓ)− f(ℓ)|dℓ+
z∑

i=1

|Ii(zn(t−i ))− Ii(z(t
−
i ))|

where fn, f ∈ C(J,R) be such that

fn(t) = f(t, z̄nt + xt, fn(t))

and

f(t) = f(t, z̄t + xt, f(t))

Here, f, fn are continuous and ∥zn − z∥T → 0 as n → ∞ then by the Lebesgue
dominated convergence theorem

∥P1(zn)− P1(z)∥T → 0 as n → ∞.
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Hence, P1 is Continuous.
Step 2: P1(BR) is bounded. Let z ∈ BR, for each t ∈ J, we have

|f(t)| = |f(t, z̄t + x(t), f(t))|
≤ a1∥z̄t + x(t)∥+ a2|f(t)|
≤ a1[∥z̄t∥+ ∥x(t)∥] + a2|f(t)|
≤ a1MR+ a1K∥ϕ∥+ a2∥f(t)∥∞

then

∥f(t)∥∞ ≤ a1MR+ a1K∥ϕ∥
1− a2

:= χ

Thus,

|P1z(t)| = |g(t, zt)|+
(1− ν)

M(ν)
|f(t)|+

z∑
i=1

(1− ν)

M(ν)
|f(ti)|

+
ν

M(ν)Γ(ν)

z∑
i=1

∫ ti

ti−1

(ti − ℓ)ν−1|f(ℓ)|dℓ

+
ν

M(ν)Γ(ν)

∫ t

tz

(t− ℓ)ν−1|f(ℓ)|dℓ+
z∑

i=1

|Ii(z(t−i ))|,

≤ d1∥z∥+ d2 +
(1− ν)

M(ν)
χ+m

(1− ν)

M(ν)
χ+

mTν

M(ν)Γ(ν)
χ+

Tν

M(ν)Γ(ν)
χ+m(n1∥z(t−i )∥+ n2)

≤ d1R+ d2 +

[
(1− ν)

M(ν)
+

Tν

M(ν)Γ(ν)

]
(m+ 1)χ+m(n1R+ n2) := l1.

Hence,

∥P1(z)∥T ≤ l1.

Consequently, P1 maps bounded sets into bounded sets in C0.
Step 3: P1(BR) is equicontinuous.
Let tz−1, tz ∈ (0,T], tz−1 < tz, and z ∈ BR. Then

|P1(x)(tz)− P1(x)(tz−1)| =
(1− ν)

M(ν)
f(tz) +

z∑
i=1

(1− ν)

M(ν)
f(tz) +

ν

M(ν)Γ(ν)

z∑
i=1

∫ ti

ti−1

(tz − ℓ)ν−1f(ℓ)dℓ

+
ν

M(ν)Γ(ν)

∫ t

tz

(tz − ℓ)ν−1f(ℓ)dℓ+

z∑
i=1

Ii(x(t
−
z ))

− (1− ν)

M(ν)
f(tz−1)−

z∑
i=1

(1− ν)

M(ν)
f(tz−1)−

ν

M(ν)Γ(ν)

z∑
i=1

∫ ti

ti−1

(tz−1 − ℓ)ν−1f(ℓ)dℓ

− ν

M(ν)Γ(ν)

∫ t

tz

(tz−1 − ℓ)ν−1f(ℓ)dℓ−
z∑

i=1

Ii(x(t
−
z−1))

∣∣∣
≤ (1− ν)

M(ν)
|f(tz)− f(tz−1)|+

z∑
i=1

(1− ν)

M(ν)
|f(tz)− f(tz−1)|+

(m+ 1)

M((ν)Γ(ν))
(tνz − tνz−1)

+

z∑
i=1

|Ii(x(t−z ))− Ii(x(t
−
z−1))|.
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As tz → tz−1, the RHS tents to 0. Hence P1 is completely continuous.
Step 4: A priori bounds. To prove that the set

E = {z ∈ C0 : z = λP1(z) for some λ ∈ (0, 1)}

is bounded. Let z ∈ C0. Let x ∈ C0, such that z = λP1(z) for some λ ∈ (0, 1).
Thus, for each t ∈ J we have

x(t) = λg(t, xt) +
λ(1− ν)

M(ν)
f(t) +

z∑
i=1

λ(1− ν)

M(ν)
f(ti)

+
λν

M(ν)Γ(ν)

z∑
i=1

∫ ti

ti−1

(ti − ℓ)ν−1f(ℓ)dℓ+
λν

M(ν)Γ(ν)

∫ t

tz

(t− ℓ)ν−1f(ℓ)dℓ+ λ

z∑
i=1

Ii(x(t
−
i ))

(3.3)

|f(t)| = |f(t, z̄t + x(t), f(t))|
≤ a1∥z̄t + x(t)∥+ a2|f(t)|
≤ a1[∥z̄t∥+ ∥x(t)∥] + a2|f(t)|
≤ a1M∥z∥T + a1K∥ϕ∥+ a2∥f(t)∥∞

then

∥f(t)∥∞ ≤ a1M∥z∥T + a1K∥ϕ∥
1− a2

:= χ1.

Thus,

|P1z(t)| = |g(t, zt)|+
(1− ν)

M(ν)
|f(t)|+

z∑
i=1

(1− ν)

M(ν)
|f(ti)|

+
ν

M(ν)Γ(ν)

z∑
i=1

∫ ti

ti−1

(ti − ℓ)ν−1|f(ℓ)|dℓ

+
ν

M(ν)Γ(ν)

∫ t

tz

(t− ℓ)ν−1|f(ℓ)|dℓ+
z∑

i=1

|Ii(z(t−i ))|,

≤ d1∥z∥+ d2 +
(1− ν)

M(ν)
χ1 +m

(1− ν)

M(ν)
χ1 +

mTν

M(ν)Γ(ν)
χ1 +

Tν

M(ν)Γ(ν)
χ1 +m(n1∥z(t−i )∥+ n2)

≤ d1∥z∥T + d2 +

[
(1− ν)

M(ν)
+

Tν

M(ν)Γ(ν)

]
(m+ 1)χ1 +m(n1∥z∥T + n2) := l2.

Hence,

∥P1(z)∥T ≤ l2.

Hence the set E is bounded. By theorem 2.4, fixed point of the operator P is a
solution of the problem (1.1).
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3. Example

Consider the following problem

ABC
0 D

1
2
t

[
x(t)− tan−1 |x(t)|

35

]
=

t3 + sin |x(t)|
45

− e−t

11 + et
|ABC
0 D

1
2
t x(t)|

1 + |ABC
0 D

1
2
t x(t)|

, t ∈ [0, 1],

∆x(t) =
x( 12

−
)

10 + x( 12
−
)
,

x(t) = φ(t), t ∈ (−∞, 0],

x(0) =

∫ 1

0

(1− ℓ)ν−1

Γ(ν)

1

25
exp(−x(ℓ))dℓ,

(4.1)

Let δ > 0 be a real constant and

Bδ = {x ∈ C(−∞, 0], R, ) : lim
η→∞

eδηx(η) exists in R}.

The norm Bδ is provided by

∥x∥δ = sup
η∈(−∞,0]

eδηx(η).

where

g(t, x(t)) =
tan−1 |x(t)|

35
, f(t, x, y) =

t3 + sin |x(t)|
45

− e−t

11 + et
|y|

1 + |y|
, h(t, x(t)) =

1

25
exp(−x(t)).

As T = 1 and ν = 1
2 , let x, y ∈ Bb

|g(t, x(t))− g(t, y(t))| =

∣∣∣∣∣ tan−1 |x(t)|
35

− tan−1 |y(t)|
35

∣∣∣∣∣
≤ 1

35
|x(t)− y(t)|,

|f(t, x, y)− f(t, x̄, ȳ)| =

∣∣∣∣∣ t3 + sin |x(t)|
45

− t3 + sin |y(t)|
45

∣∣∣∣∣+ e−t

11 + et

∣∣∣∣∣ |x̄|
1 + |̄x|

|ȳ|
1 + |ȳ|

∣∣∣∣∣
≤ 19

180
|x(t)− y(t)|+ 19

180
|̄x(t)− ȳ(t)|

|Izx(t)− Iky(t)| =

∣∣∣∣∣ x

10 + x
− y

10 + y
=

10|x− y|
(10 + x)(10 + y)

∣∣∣∣∣ ≤ 1

10
|x− y|

and

Thus we have ag = 1
35 , af = bf = 19

180 , ai =
1
10 and choose m = 1, T = 1.

Now examine the condition of the theorem 3.1 and attain

Θ =

{
ag +

[
1− ν

M(ν)
+ ν

Tν

M(ν)Γ(ν + 1)

]
(m+ 1)

af
1− bf

+mai

}
= 0.63026 < 1.

Therefore, the problem (4.1) has a unique solution.
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4. Conclusion

This study has successfully examined the existence and uniqueness findings for
the integral boundary conditions and fractional implicit differential equation. Nu-
merous mathematical models of human diseases and dynamical issues are applicable
to this kind of issue. We have established adequate results for at least one solution
based on the fixed point theorems of Schaefer and Banach. The results that were
deduced have been supported by a good problem. We will eventually add numerical
results to our work.
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