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LINEAR AND NONLINEAR FREDHOLM

INTEGRO-DIFFERENTIAL EQUATIONS: AN APPLICATION OF

COLLOCATION METHOD

G. AJILEYE, L. ADIKU, J. T. AUTA, O.O. ADUROJA, T. OYEDEPO

Abstract. This work examines the collocation approach used to solve linear
and nonlinear Fredholm integro- differential equations numerically. To convert

the problem into an algebraic system of equations, standard collocation points

are used. The algebraic equations were then solved using the matrix inversion
approach. The method’s uniqueness was established, and its efficiency, accu-

racy, and consistency were demonstrated through the solution of numerical

problems.

1. Introduction

Mathematical equations known as ”Integro-Differential Equations” (IDEs) com-
bine integrals and derivatives. They appear in a variety of scientific and engineering
domains, such as physics, biology, economics, and finance, where systems display
memory- or history-dependent behavior. Integro-Differential Equations (IDEs) in-
corporate the influence of previous values of the unknown function through the inte-
gration term, in contrast to Ordinary Differential Equations (ODEs), which solely
involve derivatives. Problems involving diffusion, wave propagation, population
dynamics, control theory, and other topics frequently include integral-differential
equations. They offer a more accurate explanation of events that show memory ef-
fects or spatial interactions. Since the majority of IDEs cannot be resolved analyti-
cally, research has concentrated on creating numerical techniques to achieve approx-
imations of solutions [28] .Many methods for determining the numerical solution
of integro-differential equations, include the Adomian decompositions method by
[15, 19], Collocation method by [2, 3, 8, 20], Hybrid linear multistep method [17, 18],
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Chebyshev-Galerkin method [13], Bernoulli matrix method [10], Differential trans-
form method [12], Lagrange Interpolation [27], Bernstein Polynomials Method [14],
Differential transformation [11], Chebyshev polynomials [16], Weighted mean-value
theorem [1], Optimal Auxiliary Function Method (OAFM) [29], Block pulse func-
tions operational matrices [26] and Spectral Homotopy Analysis Method [6].A non-
standard finite difference method for numerically solving linear Fredholm integro-
differential equations was presented by [21]. The Fredholm integro-differential equa-
tion is transformed into a system of non-linear algebraic equations using the non-
standard finite difference method and the repeated/composite trapezoidal quad-
rature method. [4] solved first-order Volterra integro-differential equations using
the standard collocation method. Furthermore, in their research, [8, 22, 23, 24]
utilized the collocation method to solve integro-differential equations, whereas [25]
employed least squares collocation for fractional integro-differential equations. The
class of integro-differential equations was restated in terms of the generated polyno-
mial, assuming an approximate solution. We obtained a system of linear algebraic
equations after solving for the unknown by collocating the resulting equation at sev-
eral locations within the range [0, 1]. A collocation approach for the computational
solution of the Fredholm-Volterra fractional order of integro-differential equations
was presented by [5]. After obtaining the problem in linear integral form, they used
typical collocation points to translate it into a set of linear algebraic equations.
In this study, we consider linear and nonlinear Fredholm integro-differential equa-
tion of the form

y(α)(x) = g(x) +

∫ 1

0

K(x, t) (y(t))
m
dt 0 ≤ x, t ≤ 1, α = 1,m ≥ 1 (1)

subject to initial condition

y(j)(0) = qj , j = 0, 1, . . . , N (2)

where K(x, t) is the Fredholm integral kernel function, g(x) is the known function,
and y(x) is an unknown function to be determined.

2. Basic definitions

We give certain definitions and fundamental notions in this section for the purpose
of problem formulation.

Definition 2.1. [4] Let (am) ,m ≥ 0 be a sequence of real numbers. The power
series in k with coefficients an is an expression.

y(k) =

N∑
n=0

ank
n (3)

Definition 2.2. [4] The desired collocation points within an interval are determined
using this method. i.e. [a,b] and is provided by

ki = a+
(b− a)i

M
, i = 1, 2, 3, ...M (4)

Definition 2.3. [4] Let z(s) be an integrable function, then

0I
α
x (z(s)) =

1

Γ(α)

∫ x

0

(x− s)α−1z(s)ds (5)
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Definition 2.4. [4] Let y(x) be a continuous function, then

0I
β
x

(
y(β)y(x)

)
= y(x)−

N∑
k=0

y(k)(0)

k!
xk (6)

Definition 2.5. [4] A metric on a set M is a function d : M ×M −→ R with the
following properties. For all x, y ∈ M (a) d(x, y) ≥ 0; (b) d(x, y) = 0 ⇐⇒ x = y
(c) d(x, y) = d(y, x) (d) d(x, y) ≤ d(x, z) + d(x, y) If d is a metric on M, then the
pair (M,d) is called a metric space.

Definition 2.6. The Beta function can be defined in terms of the Gamma function
as

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, x, y ∈ R+

Definition 2.7. Let (X, d) be a metric space, A mapping T : X −→ X is Lips-
chitzian if ∃ a constant L > 0 such that d(Tx, Ty) ≤ Ld(x, y) ∀ x, y ∈ X.

3. Methodology

Here, we implement collocation approach for the numerical solution of nonlinear
fredholm integro- differential equations.
Theorem (3.0) (Banach Contraction Principle) [7]: Let (X, d) be a complete

metric space, then each contraction mapping T : X → X has a unique fixed point
x of T in X, such that T (x) = x
Lemma (3.1) (Integral form): Let yεC ((0, 1) ,R) be the solution to equation (1)
with equation(2), then it is equivalent to

y(x) = U(x) +
1

Γ(α)

∫ x

0

(x− s)α−1
(∫ 1

0

K(x, t) (y(t))
m
dt

)
ds (7)

where

U(x) =

N∑
k=0

y(k)(0)

k!
xk +

1

Γ(α)

∫ x

0

(x− s)α−1g(s)ds

Proof. Multiply equation (1) by 0I
α
x (.) gives

0I
α
x

(
y(α)(x)

)
= 0I

α
x (g(x)) + 0I

α
x

(∫ 1

0

K(x, t) (y(t))
m
dt

)
using equation (6) gives

y(x) =

N∑
k=0

y(k)(0)

k!
xk + 0I

α
x (g(x)) + 0I

α
x

(∫ 1

0

K(x, t) (y(t))
m
dt

)
using equation (5) gives

y(x) =

N∑
k=0

y(k)(0)

k!
xk+

1

Γ(α)

∫ x

0

(x−s)α−1 (g(x)) ds+
1

Γ(α)

∫ x

0

(x−s)α−1
(∫ 1

0

K(x, t) (y(t))
m
dt

)
ds

y(x) = U(x) +
1

Γ(α)

∫ x

0

(x− s)α−1
(∫ 1

0

K(x, t) (y(t))
m
dt

)
ds
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where

U(x) =

N∑
k=0

y(k)(0)

k!
xk +

1

Γ(α)

∫ x

0

(x− s)α−1g(s)ds

�

3.1. Method of Solution. We approximate the solution of equation (7) by the
polynomial approximate solution in the form

y (x) =

N∑
n=0

anx
n (8)

where an is the coefficients to be determined. hence,

ym(x) =

N∑
n=m

an
Γ(n+ 1)

Γ(n−m+ 1)
xn−m, n ≥ m (9)

substituting equation (8) into equation (7) gives

N∑
n=0

anx
n = U(x) +

1

Γ(α)

∫ x

0

(x− s)α−1
(∫ 1

0

K(x, t)

(
N∑
n=0

ant
n

)m
dt

)
ds (10)

where

U(x) =

N∑
k=0

y(k)(0)

k!
xk +

1

Γ(α)

∫ x

0

(x− s)α−1g(s)ds

substituting K(s, t) = tisj

N∑
n=0

anx
n = U(x) +

1

Γ(α)

∫ x

0

(x− s)α−1
(

N∑
n=0

an

∫ 1

0

sitnm+jdt

)
ds

N∑
n=0

anx
n = U(x) +

1

Γ(α)

∫ x

0

(x− s)α−1
(

N∑
n=0

ans
i

∫ 1

0

tnm+jdt

)
ds

N∑
n=0

anx
n = U(x) +

1

Γ(α)

∫ x

0

(x− s)α−1
(

N∑
n=0

ans
i

[
tnm+j+1

nm+j+1

]1
0

)
ds

N∑
n=0

anx
n = U(x) +

N∑
n=0

an
1nm+j+1

(nm+ j + 1)

1

Γ(α)

∫ x

0

(x− s)α−1 sids (11)

Let x− s = (1− u)x,then s = ux =⇒ ds = xdu, substitute into equation (11) gives

N∑
n=0

anx
n = U(x) +

N∑
n=0

an
1nm+j+1

(nm+ j + 1)

1

Γ(α)

∫ 1

0

((1− u)x)
α−1

(ux)ix du

using definition 1.6, gives

N∑
n=0

anx
n = U(x) +

N∑
n=0

an
Γ(i+ 1)1n−m+j+1

(nm+ j + 1) Γ(α+ i+ 1)
xα+i (12)

collocating equation (12) at xi

N∑
n=0

anx
n
i = U(xi) +

N∑
n=0

an
Γ(i+ 1)1n−m+j+1

(nm+ j + 1) Γ(α+ i+ 1)
xα+ii (13)
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Equation (13) is the algebraic equation that is solved to obtain the values of an and
substituted into the approximate solution to give the numerical solution.

4. Uniqueness of the Method

In this section, we establish the uniqueness of the method by introducing the follow-
ing theorem and hypothesis: H1 : Let T : X → X be a mapping for y1, y2 ∈ X,There
exist a constant, L > 0. such that

|ym1 (t)− ym2 (t)| ≤ L |y1(t)− y2(t)|

H2 : There exist a functionK∗ ∈ C ([0, 1]× [0, 1],R) , the set of all positive functions
such that

K∗ = max
x∈[0,1]

∫ 1

0

|K(x, t)| dt <∞

H3 : The function g ∈ R is continuous. Theorem 4.1: Assume the H1- H3 hold.
If (

LK∗

Γ (α+ 1)

)
< 1 (14)

then there exist a unique solution y(x) ∈ T

Proof. Let y1(x), y2(x) ∈ X,then

(Ty1) (x) = U(x) +
1

Γ(α)

∫ x

0

(x− s)α−1
(∫ 1

0

K(x, t) (ym1 (t)) dt

)
ds (15)

and

(Ty2) (x) = U(x) +
1

Γ(α)

∫ x

0

(x− s)α−1
(∫ 1

0

K(x, t) (ym2 (t)) dt

)
ds (16)

substract equation (16) from equation (15) gives

(Ty1) (x)− (Ty2) (x) =
1

Γ(α)

∫ x

0

(x− s)α−1
(∫ 1

0

K(s, t) [ym1 (t)− ym2 (t)] dt

)
ds

taking the absolute value gives

|(Ty1) (x)− (Ty2) (x)| ≤ 1

Γ(α)

∫ x

0

(x− s)α−1
(∫ 1

0

|K(s, t)| |ym1 (t)− ym2 (t)| dt
)
ds

taking maximum of both sides and using H1 and H2

d (Ty1(x), T y2(x)) ≤
[

LK∗

Γ(α+ 1)

]
d(y1, y2)

based on the inequality (14) we have

d (Ty1(x), T y2(x)) ≤ d(y1, y2)

By the Banach contraction principle, we can conclude that T has a unique fixed
point. �
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5. Convergence of the method

Theorem 5.1: (Convergence of method) Let (X, d) be a metric space and
T : X −→ X be a continuous mapping and yN (x), yN−1(x)εX are approximate
solutions of equation (7). Let ∆N (x) = |yN (x)− yN−1(x)| , if limN→0 (∆N (x))→

0, then the method converges to exact solution.

Proof. Let y1(x), y2(x) be approximated by yN (x) =
∑M
n=0 anx

n = φ(x) A and

yN−1 =
∑M
n=0 bnx

n = φ(x) B respectively. Substitute the approximate solution
into equation (7) gives

TyN (x) = U(x) +
1

Γ(α)

∫ x

0

(x− s)α−1
(∫ 1

0

K(x, t) ( φ(t)m) dt

)
dsA

Similarly

TyN−1(x) = U(x) +
1

Γ(α)

∫ x

0

(x− s)α−1
(∫ 1

0

K(x, t) (φ(t)m) dt

)
dsB

|TyN (x)− TyN−1(x)| = 1

Γ(α)

∫ x

0

(x− s)α−1
(∫ 1

0

K(x, t) (φ(t)m ) |B−A| dt
)
ds

Since xε [0, 1] and |B−A| 6= 0, hence limN→0 ∆N (x) → 0 Therefore the method

of solution converges. �

6. Numerical Examples

In this section, we present numerical examples of linear and nonlinear to evaluate
the effectiveness and accuracy of the method. Let yn(x) and y(x) be the approxi-
mate and exact solutions, respectively. ErrorN = |yn(x)− y(x)| Example 1: [29]
Considering linear Fredholm integro-differential equation

y
′
(x) +

1

3
y(x)−

∫ 1

0

xty(t)dt = f(x) (17)

subject to initial condition
y(0) = 0

where
f (x) = 1

Exact solution: y (x) = x The approximate solution of equation (17) at N = 3 gives

y3 = 1.000000000000x+ 3.552713678801× 10−15x2 − 3.552713678801× 10−15x3

Table 1: Exact, approximate and absolute error values for example 1
x Exact Our methodN=3 error3 error [29]N=3

0.2 0.200000000000 0.200000000000 0.00 8.32667e-17
0.4 0.400000000000 0.400000000000 0.00 2.22045e-16
0.6 0.600000000000 0.600000000000 0.00 1.11022e-16
0.8 0.800000000000 0.800000000000 0.00 1.11022e-16
1.0 1.000000000000 1.000000000000 0.00 1.11022e-16

Example 2: [29] Considering linear Fredholm integro-differential equation

y
′
(x)−

∫ 1

0

xy(t)dt = f(x) (18)
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subject to initial condition

y(0) = 0

where

f (x) = xex + ex − x
Exact solution: y (x) = xex The approximate solution of equation (18) at N =
3, 5 and 7 gives

y3 =
(
−5.610063457000× 10−12 + 1.014452579454x+ 0.703408832104x2 + 0.997286084761x3

)
y5 =

(
1.484922630000× 10−14 + 1.000013757479x+ 0.996267549909x2

+0.520765000052x3 + 0.124449681936x4 + 0.76776116165e− 1x5

)

y9 =

 −8.741312253000× 10−16 + 0.999999999995x+ 0.999999925494x2

+0.500001162291x3 + 0.166660785675x4 + 0.41699409485e− 1x5

+0.8277893066e− 2x6 + 0.1466751099e− 2x7 + 0.144958496e− 3x8 + 0.44822693e− 4x9


Table 2: Exact and approximate values for example 2

x Exact N = 3 N = 5 N = 9
0.2 0.244280551600 0.239005157800 0.244243261300 0.244280556400
0.4 0.596729879200 0.582152754100 0.596709370100 0.596729996700
0.6 1.093271280000 1.093248602000 1.222118351000 1.093272168000
0.8 1.780432742000 1.780386506000 1.425540168000 1.780436804000
1.0 2.718281828000 2.718272105000 1.718280607000 2.718295708000

Table 3: Absolute Error for example 2
x error3 error5 error9 error [29] N=10

0.2 5.275393800e-3 3.7290300e-5 4.800000000000e-9 2.80414e-6
0.4 1.4577125100e-2 2.0509100e-5 1.175000000000e-7 2.01829e-7
0.6 1.5958759000e-2 2.2678000e-5 8.880000000000e-7 2.80414e-6
0.8 8.078551000e-3 4.6236000e-5 4.062000e-7 2.01829e-6
1.0 3.134332000e-3 9.723000e-6 1.3880000e-7 5.44857e-6

Example 3: [16] Considering nonlinear Fredholm integro-differential equation

y
′
(x)−

∫ 1

0

x (y(t))
2
dt = f(x) (19)

subject to initial condition

y(0) = 0

where

f (x) = 1− x

3

Exact solution: y (x) = x The approximate solution of equation (19) at N = 3 gives

y3 = 2.720046457648× 10−17 + 1.000000000000x

Table 4: Exact and approximate values for example 3
x Exact Our methodN=3 error3 error [16]N=3

0.2 0.200000000000 0.200000000000 0.00 5.86e-19
0.4 0.400000000000 0.400000000000 0.00 2.34e-18
0.6 0.600000000000 0.600000000000 0.00 5.27e-18
0.8 0.800000000000 0.800000000000 0.00 9.38e-18
1.0 1.000000000000 1.000000000000 0.00 1.47e-17
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Example 4 [27] Considering nonlinear Fredholm integro-differential equation

y
′
(x)−

∫ 1

0

xte−(y(t))
2

dt = f(x) (20)

subject to initial condition

y(0) = 0

where

f (x) = 1− 1

2
x+

x

2e

Exact solution: y (x) = x The approximate solution of equation (20) at N = 6 gives

y6 =

 −3.579410672000× 10−16 + 1.000000000x
+4.547473509000× 10−13x2 − 7.275957614000× 10−12x3

+1.455191523000× 10−11x4 + 2.910383046000× 10−11x5


Table 5: Exact, approximate and absolute error values for example 4
x Exact Our methodN=6 error6 error [27]N=6

0.2 0.200000000000 0.200000000000 0.00 7.00e-7
0.4 0.400000000000 0.400000000000 0.00 3.00e-6
0.6 0.600000000000 0.600000000000 0.00 6.00e-6
0.8 0.800000000000 0.800000000000 0.00 1.00e-5
1.0 1.000000000000 1.000000000000 0.00 1.00e-5

7. Discussion of Results

In this section, we discuss the numerical results obtained from the solved ex-
amples using the derived numerical method. Based on the result obtained for
example 1, as shown in Table 1, the approximate solution at N = 3 gives y3 =
1.000000000000x+3.552713678801×10−15x2 −3.552713678801×10−15x3. The nu-
merical result converged to an exact solution, and this confirmed that our method
performed better than the method proposed by [29]. The results of numerical
example 2 as shown in Tables 2 and 3 show that the approximate solution at N
= 3 gives y3 = −5.610063457000 × 10−12 + 1.014452579454x + 0.703408832104x2

+0.997286084761x3. Solving for N = 5 and 9, the numerical results converge to
an exact solution as the value of N increases. This shows that the numerical
method developed is consistent and gives a better result than the method pro-
posed by [29]. The approximate solution obtained in example 3 at N = 3
gives y3 = 2.720046457648 × 10−17 + 1.000000000000x.The numerical result con-
verged to an exact solution, and this confirmed that our method performed better
than the method proposed by [16]. as shown in Table 4. In example 4, the ap-
proximate solution at N = 6 gives y6 = −3.579410672000×10−16 +1.000000000x+
4.547473509000×10−13x2−7.275957614000×10−12x3 +1.455191523000×10−11x4

+2.910383046000 × 10−11x5. Table 5 shows the results obtained at x = 0.2 to 1.0
for the value of N, the exact solution, and the absolute error. We observed that
the numerical result also converged to the exact solution. This confirmed that the
numerical method we developed is consistent and converges faster.
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8. Conclusion

In this study, we investigated the collocation approach for the numerical solution
of linear and nonlinear Fredholm integro-differential equations. This approach is
simple to compute, dependable, and efficient. All of the calculations in this work
are done using Maple 18. In this study, we investigated the collocation approach for
the numerical solution of linear and nonlinear Fredholm integro-differential equa-
tions. This approach is simple to compute, dependable, and efficient. All of the
calculations in this work are done using Maple 18.
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