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CHEBYSHEV COMPUTATIONAL ALGORITHM FOR EIGHT

ORDER BOUNDARY VALUE PROBLEMS

T. OYEDEPO, E.A. ADENIPEKUN, G. AJILEYE, A. M. AJILEYE

Abstract. In this research, we present a computational algorithm designed
for solving eighth-order Boundary Value Problems(BVPs) using fourth-kind

Chebyshev polynomials as basis functions. The method entails assuming an
approximate solution employing fourth-kind shifted Chebyshev polynomials.

Subsequently, this assumed solution is substituted into the general problem.

The resulting equation is collocated at evenly spaced points within the interval,
resulting in a linear system of equations with unknown Chebyshev coefficient

constants. To solve this system, we employ a matrix inversion approach to

determine the unknown constants, which are then substituted back into the
assumed solution to obtain the desired approximate solution. To validate the

effectiveness of the proposed technique, three numerical examples are selected

from existing literature. The results obtained from our method are compared
with those reported in the literature, demonstrating that the proposed algo-

rithm is not only accurate but also efficient in solving BVPs. Tables and figures

are employed to present and illustrate the results.

1. Introduction

In the realm of differential equations, a mathematical boundary value problem
is constituted by a differential equation accompanied by additional constraints re-
ferred to as boundary conditions. A boundary value problem is deemed to be
present when a differential equation possesses a solution that adheres to the spec-
ified boundary conditions. Given that virtually every physical differential equa-
tion inherently involves Boundary Value Problems(BVPs), these problems man-
ifest across various domains of physics. BVPs serve as a prevalent method for
framing challenges involving wave equations, such as the identification of normal
modes. Sturm-Liouville problems encompass a substantial category of noteworthy
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BVPs, wherein the eigenfunctions of a differential operator play a crucial role in
their examination. Numerous numerical techniques have been devised for solving
BVPs. Several authors have contributed numerical solutions to BVPs, employ-
ing distinct methodologies. For instance, one approach involves solving special
eighth-order BVPs using the modified decomposition method [30], while another
employs non-polynomial spline methodology for eighth-order BVPs [26]. The ho-
motopy perturbation method is applied to address eighth-order BVPs [10], and
non-polynomial splines are employed for sixth-order BVPs [27]. Various other
methods, such as the variational iteration technique, cubic B-spline method, col-
location method, reproducing kernel space, Daftardar Jafari method, and tau-
collocation approximation method, have been employed for solving BVPs with
varying orders [[1],[3],[8],[11],[12],[13],[14],[16], [17], [18],[19],[24],[25], [29]]. Addi-
tionally, Vieta-Lucas polynomials, Haar wavelet method, and modified variation
iteration method using Chebyshev polynomials have been utilized for specific cases
[[2],[28],[15]]. Also, [[4],[20],[21],[22]] applied collocation method for solving integro-
differential equations, while [23] applied least squares collocation for fractional
integro-differential equations. Building upon the aforementioned studies, this work
focuses on the numerical solution of an eighth-order BVP, expressed as:

wviii(u) + k1(u)wvii(u) + k2(u)wvi(u) + k3(u)wv(u) + k4(u)wiv(u)+

k5(u)wiii(u) + k6(u)wii(u) + k7(u)w(u) = g(u), u ∈ [a, b], (1)

subject to the boundary conditions:

wi(a) = αi, w
i(b) = βi, i = 0, 1, 2, (2)

Here, α0,α1, α1 and β0, β1,β2 are predetermined real constants, ki(u), i = 0, 1, 2, . . . n
and g(u) are known functions on the an interval ∈ [a, b] and w(u) is the unknown
function to be determined.

2. Basic definitions

Definition 2.1. Chebyshev Polynomials of the Fourth Kind (CPFK) [[6], [7],[9]]:The

CPFK are orthogonal polynomials with respect to the weight function
√

1−u
1+u ∀u ∈

[−1, 1], is defined by mn(u) =
sin (n+ 1

2 )θ

sin ( θ
2 )

, where u = cos θ and the recurrence relation

mn+1(u) = 2umn(u)−mn−1(u);n ≥ 1,

starting with

m0(u) = 1,m1(u) = 2u+ 1

Definition 2.2. Shifted Chebyshev Polynomials of the Fourth Kind (SCPFK):The

SCPFK is orthogonal polynomials with respect to the weight function
√

1−u
u ∀u ∈

[0, 1],is defined by m∗n(u) = mn(2u− 1) where ωn(ζ) is CPFK .

m∗n+1(u) = 2(2u− 1)m∗n(u)−m∗n−1(u);n ≥ 1,

starting with

m∗0(u) = 1,m∗1(u) = 4u− 1
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3. Demonstration of the method

The work assumed an approximate solution by means of the SCPFK in the form:

w(u) =

n∑
i=0

m∗(u)ai (3)

where ai, i = 0, 1, 2 . . . n are the unknown shifted Chebyshev coefficients constants
to be determined.

Thus, substituting Equ. (3) in Equ. (1) gives

n∑
i=0

m∗viii(u)ai + k1(u)

n∑
i=0

m∗vii(u)ai + k2(u)

n∑
i=0

m∗vi(u)ai(u)+

k3(u)
n∑
i=0

m∗v(u)ai + k4(u)
n∑
i=0

m∗iv(u)ai + k5(u)
n∑
i=0

m∗iii(u)ai+

k6(u)

n∑
i=0

m∗ii(u)ai + k7(u)

n∑
i=0

m(u)ai = g(u) (4)

Let z(u) =

n∑
i=0

m∗viii(u)ai, z
∗(u) =

n∑
i=0

m∗vii(u)ai

y(u) =

n∑
i=0

m∗vi(u)ai(u), y∗(u) =

n∑
i=0

m∗v(u)ai,

r(u) =

n∑
i=0

m∗iv(u)ai, r
∗(u) =

n∑
i=0

m∗iii(u)ai,

s(u) =

n∑
i=0

m∗ii(u)ai, , s
∗(u) =

n∑
i=0

m(u)ai

Thus, Equ. (4) becomes

z(u) + k1(u)z∗(u) + k2(u)y(u) + k3(u)y∗(z) + k4(u)r(u) + k5(u)r∗(u)+

k6(u)s(u) + k7(u)s∗(u) = g(u) (5)

The system of linear algebraic equations involving (n + 1) unknown constants,
represented as constants a′is is obtained by positioning Eq.(5) at evenly distributed

locations determined by points ui = a + (b−a)i
n , where (i = 0(1)(n)). Additional

equations are derived from Eq. (2) and expressed using matrix representation:
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P11 P12 P13 · · · · · · · · · P1n

P21 P22 P23 · · · · · · · · · P2n

...
...

...
...

...
...

...
...

Pm1 Pm2 Pm3 · · · · · · · · · Pmn
P 0
11 P 0

12 P 0
13 · · · · · · · · · P 0

1n

P 1
21 P 1

22 P 1
23 · · · · · · · · · P 1

2n
...

...
...

...
...

...
...

...
Pnm1 Pnm2 Pnm3 · · · · · · · · · Pnmn





a0
a1
...
...
...
...
...
...
...
an



=



Q11

Q22

...

...
Qmn
Q0

11

Q1
22
...
...

Qn−1mn



(6)

Here,P ′is and Pni ’s represent the coefficients of a′is,provided as, while Q′is de-
notes are values of g(ui). Following this, the matrix inversion method is utilized to
resolve the system of equations and ascertain the unknown constants.



a0
a1
...
...
...
...
...
...
...
an



=



P11 P12 P13 · · · · · · · · · P1n

P21 P22 P23 · · · · · · · · · P2n

...
...

...
...

...
...

...
...

Pm1 Pm2 Pm3 · · · · · · · · · Pmn
P 0
11 P 0

12 P 0
13 · · · · · · · · · P 0

1n

P 1
21 P 1

22 P 1
23 · · · · · · · · · P 1

2n
...

...
...

...
...

...
...

...
Pnm1 Pnm2 Pnm3 · · · · · · · · · Pnmn



−1


Q11

Q22

...

...
Qmn
Q0

11

Q1
22
...
...

Qnmn



(7)

Solving equation (7) yields the unknown constants, which are then substituted into
the assumed approximate solution in equation (5) to obtain the required approxi-
mate solution.

4. Numerical examples

Example 1 [18]: Consider the eight Order boundary value problem.

w8(u) = −uw(u)− (48 + 15u+ u3)eu, 0 ≤ u ≤ 1, (8)

subject to the boundary conditions w(0) = 0,w
′
(0) = 0,w

′′
(0) = 0, w

′′′
(0) = −3,

w(1) = 0,w
′
(1) = −e,w′′

(1) = −4e, w
′′′

(1) = −9e. The exact solution is w(u) =
u(1− u)eu. We obtained the following unknown constants via the above-described
method:
a0 = 0.281718155870810, a1 = 0.0839128319848488,
a2 = −0.269776938652414,a3 = −0.0828153503388682,
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a4 = −0.0118660202349515,a5 = −0.00109887552220600,
a6 = −0.0000748839394258634,a7 = −0.00000396409454284097
a8 = −1.79014618310089× 10−7, a9 = −6.76616483126564× 10−9,
a10 = −2.22475939204455× 10−10,a11 = −6.47174478183181× 10−12,
a12 = −1.68773483902462× 10−13, a13 = −3.98781361334468× 10−15

a14 = −8.61430236746842× 10−17,a15 = −1.72344429321310× 10−18,
a16 = −3.22781901642560× 10−20.
Thus, the approximate solution is given as:

w(u) = 0.9999926704u− 0.001190476319u8 − 0.006718200148u7

−0.03412353920u6 − 0.1239179239u5 − 0.3340662441u4

−0.4997423268u3 − 0.00004627786939u2 − 0.0001736110049u9

−0.00002204596836u10 − 0.000002480032208u11 − 2.506602467× 10−7u12

−2.283419914× 10−8u13 − 2.014019880× 10−9u14 − 1.121221076× 10−10u15

−1.940178713× 10−11u16 + 0.000005498522491

Example 2 [5]: Consider the Boundary Value Problem

w8(u) + w7(u) + 2w6(u) + 2w5(u) + 2w4(u) + 2w
′′′

(u) + 2w
′′
(u)+

w
′
(u) + w(u) = 14 cos (u)− 16 sin (u)− 4u sin (u), 0 ≤ u ≤ 1, (9)

subject to the boundary conditions w(0) = 0,w
′
(0) = 0,w

′′
(0) = 0, w

′′′
(0) = −3,

w(1) = 0,w
′
(1) = 2 sin (1),w

′′
(1) = 4 cos (1) + 2 sin (1), w

′′′
(1) = 6 cos (1)−6 sin (1).

The exact solution is w(u) = (u2 − 1) sin (u). We obtained the following unknown
constants via the above-described method:
a0 = 0− .236453418579600, a1 = −0.0350603754105561, a2 = 0.242017589579213,
a3 = 0.0355705478924233,a4 = −0.00559375374286199,a5 = −0.000512124356115776,
a6 = 0.0000296479773765308,a7 = 0.00000194979875187218
a8 = −6.530136009768909× 10−8, a9 = −3.34327069741497× 10−9,
a10 = 7.73870492666299× 10−11, a11 = 3.24108224717461× 10−12,
a12 = −5.69095186049598× 10−14, a13 = −2.01601279935148× 10−15

a14 = 2.84240173218021× 10−17,a15 = 8.72355728249490× 10−19,
a16 = −1.19580783642360× 10−20,a17 = −2.32648466341516× 10−22,
a18 = 1.48503961553844× 10−22

Thus, the approximate solution is given as:
w(u) = −1.000000004u+ 3.711555375× 10−8u2 + 1.166666542u3 − 2.015805540×
10−7u4 − 0.1749991918u5

−7.437779736× 10−7u6 + 0.008531958092u7 + 1.349063911× 10−8u8

−0.0002011754998u9+4.032032446×10−10u10+0.0000002780738215u11 +1.296127930×
10−10u12 − 2.539435635× 10−8u13 + 1.728983111× 10−10u14

+4.92381638−11u15 + 4.750340936× 10−11u16 − 1.267215181× 10−11u17

5.417729697× 10−9

Example 3 [1]: Consider the Boundary Value Problem

w8(u)− w(u) = −8(2u cos (u) + 7 sin (u)),−1 ≤ u ≤ 1, (10)

subject to the boundary conditions w(−1) = 0,w
′
(−1) = 2 sin (1),w

′′
(−1) = −4 cos (1)−

2 sin (1), w
′′′

(−1) = 6 cos (1) − 6 sin (1), w(1) = 0,w
′
(1) = 2 sin (1),w

′′
(−1) =
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−4 cos (1) + 2 sin (1), w
′′′

(1) = 6 cos (1) − 6 sin (1). The exact solution is w(u) =
(u2 − 1) sin (u)

a0 = 5.01911910271564×10−15, a1 = −.372210312147683, a2 = −5.23414184073522×
10−15,
a3 = 0.392430628322382,a4 = 4.88076041811298×10−15,a5 = −0.205209074968138,
a6 = −1.00404615697957× 10−17,a7 = 0.000302626404121425
a8 = 1.31664068892446×10−20, a9 = −0.204290734608008e−5,a10 = −1.74772634793934×
10−21

a11 = 7.84757782804694×10−9,a12 = 6.50222905153518×10−22, a13 = −1.94032989928556×
10−11

a14 = −2.89209606088613×10−22,a15 = 3.34189256202840×10−14, a16 = 9.01110406364609×
10−23

a17 = −4.17541481985765× 10−17, a18 = −1.28508730979663× 10−23.

w(u) = −1.000000000u− 4.448830113× 10−19u18 − 7.433909603× 10−13u17

+2.771251043× 10−18u16 + 1.612625507× 10−10u15 − 7.443354431 ∗ 10× 10−18u14

−2.521249308810×10−8u13+7.822360441×10−15+1.129540269×10−17u12 +0.2780783755×
10−5u11 − 1.075614572× 10−17u10 − 0.2011684302× 10−3u9

+7.279890681× 10−18u8 + 0.008531746030u7 − 1.487136127× 10−16u6

−0.1750000000u5+2.334238035×10−15u4+1.166666666u3−9.747562328×10−15u2
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5. Numerical Results

Approximate Solution=AS,Absolute Error=AE

Table 1. Numerical Results for Example 1

ui Exact Our Method AS AE of our method AE [18]
0.0 0.00000000000000 0.00000549852249 5.499E − 06 −
0.1 0.09946538262000 0.09946987985000 4.497E − 06 3.576279E − 07
0.2 0.19542444130000 0.19542781020000 3.369E − 06 6.318092E − 06
0.3 0.28347034970000 0.28347260760000 2.258E − 06 1.895428E − 05
0.4 0.35803792750000 0.35803903280000 1.105E − 06 3.099442E − 05
0.5 0.41218031780000 0.41218021950000 9.820E − 08 3.641844E − 05
0.6 0.43730851200000 0.43730723290000 1.279E − 06 3.170967E − 05
0.7 0.42288806850000 0.42288570000000 2.369E − 06 1.925230E − 05
0.8 0.35608654850000 0.35608316770000 3.381E − 06 7.182360E − 06
0.9 0.22136428000000 0.22135989690000 4.383E − 06 1.460314E − 06
1.0 0.00000000000000 −0.00000523199237 5.232E − 06 −

Table 2. Numerical Results for Example 2

ui Exact Our Method AS AE of our Result AE [30]
0.0 0.00000000000000 0.00000000541773 5.418E − 09 −
0.1 −0.09883508248000 −0.09883507720000 5.251E − 09 4.239380E − 06
0.2 −0.19072255760000 −0.19072255250000 5.033E − 09 9.983778E − 06
0.3 −0.26892338810000 −0.26892338410000 4.062E − 09 5.096197E − 06
0.4 −0.32711140750000 −0.32711140530000 2.166E − 09 7.629395E − 06
0.5 −0.35956915400000 −0.35956915390000 3.729E − 11 1.493096E − 05
0.6 −0.36137118300000 −0.36137118540000 2.333E − 09 2.288818E − 05
0.7 −0.32855102050000 −0.32855102460000 4.047E − 09 2.276897E − 05
0.8 −0.25824819270000 −0.25824819750000 4.726E − 09 1.943111E − 05
0.9 −0.14883211280000 −0.14883211780000 4.710E − 09 1.323223E − 05
1.0 0.00000000000000 −0.00000000444248 4.442E − 09 −
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Table 3. Numerical Results for Example 3

ui Exact Our Method AS AE of our Result
−1.0 0.00000000000000 0.00000000099999 1.000E − 09
−0.8 0.25824819270000 0.25824819310000 4.000E − 10
−0.6 0.36137118300000 0.36137118300000 3.509E − 15
−0.4 0.32711140750000 0.32711140760000 9.000E − 11
−0.2 0.19072255760000 0.19072255760000 3.100E − 11
0.0 0.00000000000000 0.00000000000001 7.822E − 15
0.2 −0.19072255760000 −0.19072255760000 3.100E − 11
0.4 −0.32711140750000 −0.32711140760000 9.000E − 11
0.6 −0.36137118300000 −0.36137118300000 3.509E − 15
0.8 −0.25824819270000 −0.25824819310000 4.000E − 10
1.0 0.00000000000000 −0.00000000100001 1.000E − 09

Table 4. Numerical Results for Example 3

Our Method [1] [26]
3.509E − 15 4.90E − 09 1.02E − 08

Figure 1. depicts comparison of the absolute errors of example 1
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Figure 2. depicts comparison of the absolute errors of example 2

6. Conclusion

This study investigates the Chebyshev Computational Algorithm for solving
eighth-order BVPs. All the examples presented in this research were addressed
using Maple 18. In example 1, the fem-based collocation method employed by
[18] was compared, revealing that the proposed method exhibited greater accuracy.
Similarly, in example 2, the Galerkin Method with Septic B-splines used by [5] was
surpassed in accuracy by the proposed method, as indicated in the result table.
Example 3, previously addressed by [26] and [1], also demonstrated the superior
accuracy of the proposed method. Additionally, figures 1 and 2 illustrate that the
absolute errors obtained with the proposed method are smaller than those using
the methods of [18] and [5]. Our findings suggest that the proposed method can
effectively tackle further boundary value problems.
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