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SOLVABILITY OF A FUNCTIONAL DIFFERENTIAL EQUATION

WITH INTERNAL NONLOCAL INTEGRO-DIFFERENTIAL

CONDITION

AHMED M. A. EL-SAYED, MOAMEN O. RADWAN, HANNA R. EBEAD

Abstract. Here, we study a nonlocal problem of a functional differential

equation subject to an internal integro-differential condition. The existence
and uniqueness of the solution will be proved. The Hyers-Ulam stability will

be applied. The continuous dependence of the unique solution on some factors
will be examined. Special cases and examples will be given.

1. Introduction

Functional differential equations are essential to understanding complex pro-
cesses in a variety of scientific and practical domains, such as engineering, physics,
biology, and economics [6, 22, 29]. Several authors have studied delay functional
differential equations with parameters, which provide a crucial mathematical foun-
dation for modeling real-world processes (see [14, 16, 20, 25, 28]). These equations
become more complex when an integro-differential condition is applied, leading
to what are commonly known as nonlocal problems which have been explored by
various authors (see [1, 10, 15, 24, 26]).

Assuring the credibility of these models requires integrating the concepts of
Hyers-Ulam stability and continuous dependence. This integration is vital for evalu-
ating how the models respond to slight disturbances, shedding light on their robust-
ness and reliability. Hyers-Ulam stability, when applied to the problem specifically,
evaluates the model’s robustness to disturbances, while continuous dependency ex-
amines the effect on its parameters (see [5, 12, 18, 19, 23, 27]).

Many techniques, such as operator theory and fixed point theorems, have been
developed to analyze the solvability of such problems. One method is to consider
the problem as a fixed-point problem and use the Schauder fixed point theorem
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to show that a solution exists. This method has been established by numerous
amounts of publications and monographs (we refer to [3, 4, 7, 8, 21]).

Additional investigations on the existence of solutions are provided in [11], where
authors explored a constrained problem of a fractional functional integro-differential
equation. Their research included a detailed analysis of the solution’s solvability,
Hyers-Ulam stability, and continuous dependence on particular factors.

Motivated by the above mentioned outcomes, We are exploring the solvability
of the nonlocal problem of a delay functional differential equation with parameter

dx(t)

dt
= f

(
t, λ

d

dt
x
(
ϕ(t)

))
, a.e. t ∈ (0, T ], (1)

subject to the internal integro-differential condition,

x(τ) = x0 +

∫ T−τ

0

g

(
s, x(s),

dx(s)

ds

)
ds, (2)

where λ > 0 and τ ∈ (0, T ).
In this paper, we focus on analyzing the existence and uniqueness of solutions of

the problem (1)-(2) by converting it into a fixed point problem and employing the
Schauder fixed point theorem to prove the solvability of it. Our research includes
investigating the Hyers-Ulam stability of the problem. We also explore the con-
tinuous dependence of the unique solution on the initial data x0, the functions g
and f , and parameter λ. Finally, we will illustrate the relevance of our conclusions
through special cases and examples.

2. Existence of Solutions

In this section, we will justify the existence of at least one absolutely continuous
solution x ∈ AC[0, T ] of (1)-(2). To achieve this purpose, we require the following
key assumptions:

(i) f : [0, T ]×R → R fulfills the Carathéodory condition, being measurable in
t ∈ [0, T ] for all x ∈ R and continuous in x ∈ R for almost all t ∈ [0, T ].

(ii) There exist an integrable function a ∈ L1[0, T ] and a positive constant b
such that

|f(t, x)| ≤ |a(t)|+ b|x|.

(iii) ϕ : [0, T ] → [0, T ] is continuous and increasing function, satisfying ϕ(t) ≤ t.
(iv) bλ < 1.
(v) g : [0, T ]×R×R → R fulfills the Carathéodory condition, being measurable

in t ∈ [0, T ] for all x, y ∈ R and continuous in x, y ∈ R for almost all
t ∈ [0, T ].

(vi) There exist an integrable function h ∈ L1[0, T ] and a positive constant L
such that

|g(t, x, y)| ≤ |h(t)|+ L
(
|x|+ |y|

)
.

(vii) LT < 1.

The following lemma demonstrates the equivalence between the problem (1)-(2)
and its corresponding problem (3)-(4).
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Lemma 2.1. The solution to the problem (1)-(2), if it exists, is given by the integral
equation

x(t) = x0 +

∫ T−τ

0

g
(
s, x(s), y(s)

)
ds−

∫ τ

0

y(s)ds+

∫ t

0

y(s)ds, t ∈ [0, T ], (3)

where y(t) satisfies the functional equation

y(t) = f
(
t, λϕ′(t)y(ϕ(t))

)
, t ∈ [0, T ]. (4)

Proof. Assuming x is a solution of (1)-(2) and dx(t)
dt = y ∈ L1[0, T ], then

x(t) = x(0) +

∫ t

0

y(s)ds, (5)

at t = τ , we have

x(τ) = x(0) +

∫ τ

0

y(s)ds,

substituting in (2), we get

x(0) = x0 +

∫ T−τ

0

g
(
s, x(s), y(s)

)
ds−

∫ τ

0

y(s)ds,

using (5), we get (3)

x(t) = x0 +

∫ T−τ

0

g
(
s, x(s), y(s)

)
ds−

∫ τ

0

y(s)ds+

∫ t

0

y(s)ds ∈ AC[0, T ],

and

x(ϕ(t)) = x0 +

∫ T−τ

0

g
(
s, x(s), y(s)

)
ds−

∫ τ

0

y(s)ds+

∫ ϕ(t)

0

y(s)ds,

then we obtain
d

dt
x(ϕ(t)) = ϕ′(t)y(ϕ(t)). (6)

Substituting from (6) into (1), we obtain (4)

y(t) = f
(
t, λϕ′(t)y(ϕ(t))

)
, t ∈ [0, T ].

Additionally, we can return to equations to (1)-(2) by differentiating (3) and ap-
plying (4) and (6) in the following manner.

dx(t)

dt
= y(t), a.e. t ∈ (0, T ]

= f
(
t, λϕ′(t)y(ϕ(t))

)
= f

(
t, λ

d

dt
x
(
ϕ(t)

))
,

The condition (2) is met by substituting t = τ and y = dx(t)
dt into (3). □

The following theorem establishes the existence of at least one integrable solution
to the functional equation (4).

Theorem 2.1. If the assumptions (i) − (iv) are valid, then (4) has at least one
integrable solution y ∈ L1[0, T ].
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Proof. Define the set Qr1 and the operator F1 correlated with (4) by

Qr1 :=
{
y ∈ R : ||y||L1

≤ r1
}
⊂ L1[0, T ],where r1 =

||a||L1

1− bλ
,

F1y(t) = f
(
t, λϕ′(t)y(ϕ(t))

)
, t ∈ [0, T ].

It obvious that Qr1 is nonempty, closed, bounded and convex subset of L1[0, T ].
Suppose y ∈ Qr1 , then considering t ∈ [0, T ], we have

|F1y(t)| =
∣∣f(t, λϕ′(t)y(ϕ(t))

)∣∣
≤ |a(t)|+ bλϕ′(t)|y(ϕ(t))|.

Therefore

||F1y||L1 :=

∫ T

0

|F1y(t)|dt

≤
∫ T

0

|a(t)|dt+ bλ

∫ T

0

ϕ′(t)|y(ϕ(t))|dt.

Let ϕ(t) = u, this implies ϕ′(t)dt = du, now

||F1y||L1 ≤ ||a||L1 + bλ

∫ ϕ(T )

ϕ(0)

ϕ′(t)|y(u)| du

ϕ′(t)

≤ ||a||L1 + bλ

∫ T

0

|y(u)|du

= ||a||L1 + bλ||y||L1

≤ ||a||L1 + bλr1 = r1.

This demonstrates that F1 : Qr1 → Qr1 and the family {F1y(t)} is uniformly
bounded on Qr1 .
Suppose y ∈ Ω ⊂ Qr1 , then

||(F1y)h − (F1y)||L1 =

∫ T

0

|(F1y(t))h − (F1y(t))|dt

=

∫ T

0

∣∣∣∣ 1h
∫ t+h

t

F1y(θ)dθ − F1y(t)

∣∣∣∣dt
≤

∫ T

0

1

h

∫ t+h

t

∣∣F1y(θ)− F1y(t)
∣∣dθdt

=

∫ T

0

1

h

∫ t+h

t

∣∣f(θ, λϕ′(θ)y(ϕ(θ))
)
− f

(
t, λϕ′(t)y(ϕ(t))

)∣∣dθdt.
It implies that f ∈ L1[0, T ] based on assumptions (i)–(ii).

1

h

∫ t+h

t

∣∣f(θ, λϕ′(θ)y(ϕ(θ))
)
− f

(
t, λϕ′(t)y(ϕ(t))

)∣∣dθ → 0 as h → 0.

This concludes that (F1y(t))h → (F1y(t)) uniformly in L1[0, T ].
According to the Kolmogorov compactness criterion [17], F1(Ω) is relatively com-
pact, which implies that F1 is compact.
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Suppose the sequence {yn} ⊂ Qr1 such that yn → y, then

F1yn(t) = f
(
t, λϕ′(t)yn(ϕ(t))

)
,

and

lim
n→∞

F1yn(t) = lim
n→∞

f
(
t, λϕ′(t)yn(ϕ(t))

)
= f

(
t, λϕ′(t) lim

n→∞
yn(ϕ(t))

)
= f

(
t, λϕ′(t)y(ϕ(t))

)
= F1y(t).

Therefore, F1 is continuous operator. Now all hypotheses of Schauder fixed point
Theorem [7] are fulfilled, then F1 has at least one fixed point y ∈ Qr1 , implying
that (4) has at least one solution y ∈ L1[0, T ]. □

The following theorem establishes the existence of at least one continuous solu-
tion to the integral equation (3), consequently leading to an absolutely continuous
solution to the problem (1)-(2).

Theorem 2.2. If the assumptions (i) − (vii) are valid, then (3) has at least one
continuous solution x ∈ C[0, T ]. As a result, (1)-(2) has at least one solution
x ∈ AC[0, T ].

Proof. Define the set Qr2 and the operator F2 correlated with (3) by

Qr2 :=
{
x ∈ R : ||x||C ≤ r2

}
⊂ C[0, T ],where r2 =

|x0|+ ||h||L1 + (L+ 2)r1
1− LT

,

F2x(t) = x0 +

∫ T−τ

0

g
(
s, x(s), y(s)

)
ds−

∫ τ

0

y(s)ds+

∫ t

0

y(s)ds, t ∈ [0, T ].

It obvious that Qr2 is nonempty, closed, bounded and convex subset of C[0, T ].
Suppose y ∈ Qr2 , then considering t ∈ [0, T ], we have

|F2x(t)| =
∣∣∣∣x0 +

∫ T−τ

0

g
(
s, x(s), y(s)

)
ds−

∫ τ

0

y(s)ds+

∫ t

0

y(s)ds

∣∣∣∣
≤ |x0|+

∫ T−τ

0

∣∣g(s, x(s), y(s))∣∣ds+ ∫ τ

0

|y(s)|ds+
∫ t

0

|y(s)|ds

≤ |x0|+
∫ T

0

[
|h(s)|+ L|x(s) + y(s)|

]
ds+

∫ T

0

|y(s)|ds+
∫ T

0

|y(s)|ds

≤ |x0|+
∫ T

0

|h(s)|ds+ L

∫ T

0

|x(s)|ds+ L

∫ T

0

|y(s)|ds+ 2

∫ T

0

|y(s)|ds

≤ |x0|+ ||h||L1 + L

∫ T

0

sup
s∈[0,T ]

|x(s)|ds+ L||y||L1 + 2||y||L1

= |x0|+ ||h||L1 + LT ||x||C + (L+ 2)||y||L1 ,

and

||F2x||C ≤ |x0|+ ||h||L1 + LTr2 + (L+ 2)r1 = r2.
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Which proves that the family {F2x(t)} is uniformly bounded on Qr2 .
Suppose x ∈ Qr2 and t1, t2 ∈ [0, T ], such that t2 > t1 and |t2 − t1| ≤ δ, therefore

|F2x(t2)− F2x(t1)| =
∣∣∣∣x0 +

∫ T−τ

0

g
(
s, x(s), y(s)

)
ds−

∫ τ

0

y(s)ds+

∫ t2

0

y(s)ds

− x0 −
∫ T−τ

0

g
(
s, x(s), y(s)

)
ds+

∫ τ

0

y(s)ds−
∫ t1

0

y(s)ds

∣∣∣∣
≤

∫ t2

t1

|y(s)|ds ≤ ϵ.

This shows that F2 : Qr2 → Qr2 and the family {F2x(t)} is equi-continuous on Qr2 .
According to the Arzela-Ascoli Theorem [2], {F2x(t)} is relatively compact and F2

is compact operator.
suppose the sequence {xn} ⊂ Qr1 such that xn → x, then

F2xn(t) = x0 +

∫ T−τ

0

g
(
s, xn(s), y(s)

)
ds−

∫ τ

0

y(s)ds+

∫ t

0

y(s)ds,

and

lim
n→∞

F2xn(t) = x0 + lim
n→∞

∫ T−τ

0

g
(
s, xn(s), y(s)

)
ds−

∫ τ

0

y(s)ds+

∫ t

0

y(s)ds.

Utilizing assumptions (v), (vi) along with application of the the Lebesgue domi-
nated convergence Theorem [9], we obtain

lim
n→∞

F2xn(t) = x0 +

∫ T−τ

0

lim
n→∞

g
(
s, xn(s), y(s)

)
ds−

∫ τ

0

y(s)ds+

∫ t

0

y(s)ds

= x0 +

∫ T−τ

0

g
(
s, lim

n→∞
xn(s), y(s)

)
ds−

∫ τ

0

y(s)ds+

∫ t

0

y(s)ds

= x0 +

∫ T−τ

0

g
(
s, x(s), y(s)

)
ds−

∫ τ

0

y(s)ds+

∫ t

0

y(s)ds

= F2x(t).

Therefore, F2 is continuous operator, and by applying the Schauder fixed point
Theorem [7], F2 has at least one fixed point y ∈ Qr2 , implying that (3) has at least
one solution x ∈ C[0, T ].
As a result, (1)-(2) has at least one solution x ∈ AC[0, T ]. □

3. Uniqueness of solution

Here, we will ensure the uniqueness of the solution of (1)-(2) by implementing
the following assumptions:

(i)′ f : [0, T ] × R → R is measurable in t ∈ [0, T ] and satisfy the Lipschitz
condition in x ∈ R such that

|f(t, x)− f(t, y)| ≤ b|x− y| where b > 0.

(ii)′ f(t, 0) ∈ L1[0, T ].
(iii)′ g : [0, T ]×R×R → R is measurable in t ∈ [0, T ] and satisfy the Lipschitz

condition in x, y ∈ R such that

|g(t, x, y)− g(t, w, z)| ≤ L
(
|x− w|+ |y − z|

)
where L > 0.

(iv)′ g(t, 0, 0) ∈ L1[0, T ].
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The following theorem demonstrates the uniqueness of the solution of the func-
tional equation (4) .

Theorem 3.3. If the assumptions (iii)-(iv) (of Theorem 2.1) and (i)′-(ii)′ are
valid, then the solution y ∈ L1[0, T ] of (4) is unique.

Proof. assumptions (i)-(ii) of Theorem 2.1 can be inferred from (i)′ and (ii)′.
Setting y = 0 in (i)′, we obtain

|f(t, x)| ≤ b|x|+ |f(t, 0)|,

where a(t) = f(t, 0) ∈ L1[0, T ].
Therefore, we conclude that all the assumptions of Theorem 2.1 are met, and (4)
has at least one solution y ∈ L1[0, T ]. Now, if y1, y2 are two solutions of (4), then

|y2(t)− y1(t)| =
∣∣f(t, λϕ′(t)y2(ϕ(t))

)
− f

(
t, λϕ′(t)y1(ϕ(t))

)∣∣
≤ bλϕ′(t)

∣∣y2(ϕ(t))− y1(ϕ(t))
∣∣.

Hence

||y2 − y1||L1 ≤ bλ||y2 − y1||L1 .

As bλ < 1, this implies y1 = y2, leading to the uniqueness of the solution of (4). □

Here, we prove the uniqueness of an absolutely continuous solution to the prob-
lem (1)-(2).

Theorem 3.4. If the assumptions (iii) − (iv) and (vii) (of Theorem 2.2) and
(i)′-(iv)′ are valid, then the solution x ∈ AC[0, T ] of (1)-(2) is unique.

Proof. assumptions (v)-(vi) of Theorem 2.2 can be inferred from (iii)′ and (iv)′.
Setting w = z = 0 in (iii)′, we obtain

|g(t, x, y)| ≤ |g(t, 0, 0)|+ L(|x|+ |y|),

where h(t) = g(t, 0, 0) ∈ L1[0, T ].
Therefore, we conclude that all the assumptions of Theorem 2.2 are met, and (3)
has at least one solution x ∈ C[0, T ]. Now, if x1, x2 are two solutions of (4), then

|x2(t)− x1(t)| =
∣∣∣∣x0 +

∫ T−τ

0

g
(
s, x2(s), y(s)

)
ds−

∫ τ

0

y(s)ds+

∫ t

0

y(s)ds

− x0 −
∫ T−τ

0

g
(
s, x1(s), y(s)

)
ds+

∫ τ

0

y(s)ds−
∫ t

0

y(s)ds

∣∣∣∣
≤

∫ T

0

∣∣g(s, x2(s), y(s)
)
− g

(
s, x1(s), y(s)

)∣∣ds
≤ L

∫ T

0

|x2(s)− x1(s)|ds.

Hence

||x2 − x1||C ≤ LT ||x2 − x1||C .

As LT < 1, this implies x1 = x2 and the solution x ∈ C[0, T ] of (3) is unique.
As a result, the solution x ∈ AC[0, T ] of (1)-(2) is unique. □
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4. Hyers-Ulam stability

Here, we study the first concept of stability which is Hyers-Ulam stabiltiy of our
problem (1)-(2), assessing its resilience under slight disturbances.

Definition 4.1. [11, 12, 13] Let the solution to (1)-(2) be exists uniquely. The
problem (1)-(2) is Hyers-Ulam stable, if ∀ ϵ > 0, ∃ δ(ϵ) > 0 such that for any
δ-approximate solution xs ∈ AC[0, T ] of (1)-(2) satisfying∣∣∣∣dxs(t)

dt
− f

(
t, λ

d

dt
xs

(
ϕ(t)

))∣∣∣∣ ≤ δ,

then
||x− xs||C ≤ ϵ.

Theorem 4.5. If the assumptions of Theorem 3.4 are met, then the problem (1)-(2)
is Hyers-Ulam stable.

Proof. suppose

∣∣∣∣dxs(t)
dt − f

(
t, λ d

dtxs

(
ϕ(t)

))∣∣∣∣ ≤ δ, this implies

−δ ≤ dxs(t)

dt
− f

(
t, λϕ′(t)

dxs

(
ϕ(t)

)
d
(
ϕ(t)

) )
≤ δ,

−δ ≤ ys(t)− f
(
t, λϕ′(t)ys(ϕ(t))

)
≤ δ.

Now

|y(t)− ys(t)| =
∣∣f(t, λϕ′(t)y(ϕ(t))

)
− ys(t)

∣∣
=

∣∣f(t, λϕ′(t)y(ϕ(t))
)
− ys(t)− f

(
t, λϕ′(t)ys(ϕ(t))

)
+ f(t, λϕ′(t)ys(ϕ(t)))

∣∣
≤

∣∣f(t, λϕ′(t)y(ϕ(t))
)
− f

(
t, λϕ′(t)ys(ϕ(t))

)∣∣+ ∣∣f(t, λϕ′(t)ys(ϕ(t))
)
− ys(t)

∣∣
≤ b

∣∣λϕ′(t)y(ϕ(t))− λϕ′(t)ys(ϕ(t))
∣∣+ δ

= bλϕ′(t)
∣∣y(ϕ(t))− ys(ϕ(t))

∣∣+ δ.

Hence
||y − ys||L1 ≤ bλ||y − ys||L1 + δT,

and

||y − ys||L1 ≤ δT

1− bλ
= ϵ∗.

Now

|x(t)− xs(t)| =
∣∣∣∣x0 +

∫ T−τ

0

g
(
s, x(s), y(s)

)
ds−

∫ τ

0

y(s)ds+

∫ t

0

y(s)ds

− x0 −
∫ T−τ

0

g
(
s, xs(s), ys(s)

)
ds+

∫ τ

0

ys(s)ds−
∫ t

0

ys(s)ds

∣∣∣∣
≤

∫ T−τ

0

∣∣g(s, x(s), y(s))− g
(
s, xs(s), ys(s)

)∣∣ds
+

∫ τ

0

∣∣y(s)− ys(s)
∣∣ds+ ∫ t

0

∣∣y(s)− ys(s)
∣∣ds

≤ L

∫ T

0

[
|x(s)− xs(s)|+ |y(s)− ys(s)|

]
ds+ 2||y − ys||L1

≤ LT ||x− xs||C + (L+ 2)||y − ys||L1 .
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Hence

||x− xs||C ≤ LT ||x− xs||C + (L+ 2)ϵ∗,

and

||x− xs||C ≤ (L+ 2)ϵ∗

1− LT
= ϵ.

As LT < 1, this implies that the problem (1)-(2) is Hyers-Ulam stable.
□

5. Continuous Dependence

Here, we investigate the second concept of stability, which is the continuous
dependence of the unique solution to the problem (1)-(2) on its parameters. We
explore whether minor variations in these parameters preserve the solution.

Definition 5.2. The solution x ∈ AC[0, T ] of (1)-(2) depends continuously on
the function y ∈ L1[0, T ], if ∀ ϵ > 0, ∃ δ(ϵ) > 0 such that

||y − y∗||L1 ≤ δ ⇒ ||x− x∗||C ≤ ϵ,

where x∗ represents the unique solution of the integral equation

x∗(t) = x0 +

∫ T−τ

0

g
(
s, x∗(s), y∗(s)

)
ds−

∫ τ

0

y∗(s)ds+

∫ t

0

y∗(s)ds, t ∈ [0, T ]. (7)

Theorem 5.6. If the assumptions of Theorem 3.4 are met, then the solution
x ∈ AC[0, T ] of (1)-(2) depends continuously on the function y.

Proof. Suppose x and x∗ are the two solutions of (3) and (7) respectively, then we
obtain

|x(t)− x∗(t)| =
∣∣∣∣x0 +

∫ T−τ

0

g
(
s, x(s), y(s)

)
ds−

∫ τ

0

y(s)ds+

∫ t

0

y(s)ds

− x0 −
∫ T−τ

0

g
(
s, x∗(s), y∗(s)

)
ds+

∫ τ

0

y∗(s)ds−
∫ t

0

y∗(s)ds

∣∣∣∣
≤

∫ T−τ

0

∣∣g(s, x(s), y(s))− g
(
s, x∗(s), y∗(s)

)∣∣ds
+

∫ τ

0

|y(s)− y∗(s)|ds+
∫ t

0

|y(s)− y∗(s)|ds

≤ L

∫ T

0

[
|x(s)− x∗(s)|+ |y(s)− y∗(s)|

]
ds+ 2||y − y∗||L1

≤ LT ||x− x∗||C + (L+ 2)||y − y∗||L1 .

Thus

||x− x∗||C ≤ LT ||x− x∗||C + (L+ 2)δ.

Hence

||x− x∗||C ≤ (L+ 2)δ

1− LT
= ϵ.

As LT < 1, then the solution of (1)-(2) depends continuously on y. □
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Definition 5.3. The solution y ∈ L1[0, T ] of the functional equation (4) depends
continuously on the function f and parameter λ, if ∀ ϵ > 0, ∃ δ(ϵ) > 0 such that

max
{
|f(t, x)− f∗(t, x)|, |λ− λ∗|

}
≤ δ ⇒ ||y − y∗||L1 ≤ ϵ,

where y∗ represents the unique solution of the functional equation

y∗(t) = f∗(t, λ∗ϕ′(t)y∗(ϕ(t))
)
, t ∈ [0, T ]. (8)

Theorem 5.7. If the assumptions of Theorem 3.3 are met, then the solution
y ∈ L1[0, T ] of (4) depends continuously on the function f and parameter λ.

Proof. Suppose y and y∗ are the two solutions of (4) and (8) respectively, then we
obtain

|y(t)− y∗(t)| =
∣∣f(t, λϕ′(t)y(ϕ(t))

)
− f∗(t, λ∗ϕ′(t)y∗(ϕ(t))

)∣∣
≤

∣∣f(t, λϕ′(t)y(ϕ(t))
)
− f∗(t, λϕ′(t)y(ϕ(t))

)∣∣
+
∣∣f∗(t, λϕ′(t)y(ϕ(t))

)
− f∗(t, λ∗ϕ′(t)y∗(ϕ(t))

)∣∣
≤ δ + b

∣∣λϕ′(t)y(ϕ(t))− λ∗ϕ′(t)y∗(ϕ(t))
∣∣

= δ + bϕ′(t)|λy(ϕ(t))− λy∗(ϕ(t)) + λy∗(ϕ(t))− λ∗y∗(ϕ(t))|
≤ δ + bλϕ′(t)|y(ϕ(t))− y∗(ϕ(t))|+ b|λ− λ∗|ϕ′(t)|y∗(ϕ(t))|.

Thus

||y − y∗||L1 ≤ δT + bλ||y − y∗||L1 + bδ||y∗||L1 .

Hence

||y − y∗||L1 ≤ δT + bδr1
1− bλ

= ϵ.

As bλ < 1, then the solution of (4) depends continuously on f and λ. □

We now have the following corollary derived from Theorem 5.6.

Corollary 5.1. Let the assumptions of Theorem 5.6 be valid, then the solution
x ∈ AC[0, T ] of (1)-(2) depends continuously on the function f and parameter λ.

Definition 5.4. The solution x ∈ AC[0, T ] of (1)-(2) depends continuously on
the initial data x0 and the function g, if ∀ ϵ > 0, ∃ δ(ϵ) > 0 such that

max
{
|x0 − x∗

0|, |g(t, x, y)− g∗(t, x, y)|
}
≤ δ ⇒ ||x− x∗||C ≤ ϵ,

where x∗ represents the unique solution of the integral equation

x∗(t) = x∗
0 +

∫ T−τ

0

g∗
(
s, x∗(s), y(s)

)
ds−

∫ τ

0

y(s)ds+

∫ t

0

y(s)ds, t ∈ [0, T ]. (9)

Theorem 5.8. If the assumptions of Theorem 3.4 are met, then the solution
x ∈ AC[0, T ] of (1)-(2) depends continuously on the initial data x0 and the function
g.
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Proof. suppose x and x∗ are the two solutions of (3) and (9) respectively, then we
obtain

|x(t)− x∗(t)| =
∣∣∣∣x0 +

∫ T−τ

0

g
(
s, x(s), y(s)

)
ds−

∫ τ

0

y(s)ds+

∫ t

0

y(s)ds

− x∗
0 −

∫ T−τ

0

g∗
(
s, x∗(s), y(s)

)
ds+

∫ τ

0

y(s)ds−
∫ t

0

y(s)ds

∣∣∣∣
≤ |x0 − x∗

0|+
∫ T−τ

0

∣∣g(s, x(s), y(s))− g∗
(
s, x∗(s), y(s)

)∣∣ds
≤ δ +

∫ T

0

∣∣g(s, x(s), y(s))− g∗
(
s, x(s), y(s)

)∣∣ds
+

∫ T

0

∣∣g∗(s, x(s), y(s))− g∗
(
s, x∗(s), y(s)

)∣∣ds
≤ δ + δT + L

∫ T

0

∣∣x(s)− x∗(s)
∣∣ds

≤ δ + δT + LT ||x− x∗||C .

Thus

||x− x∗||C ≤ (1 + T )δ + LT ||x− x∗||C .
Hence

||x− x∗||C ≤ (1 + T )δ

1− LT
= ϵ.

As LT < 1, then the solution of (1)-(2) depends continuously on x0 and g. □

6. Special cases and examples

In this section, we present various special cases and examples to further illustrate
the concepts discussed in the preceding sections.

Corollary 6.2. Suppose the assumptions of Theorem 2.2 are met with ϕ(t) = γt,
where γ ∈ (0, 1], then the equation

dx(t)

dt
= f

(
t, λ

d

dt
x
(
γt
))

, a.e. t ∈ (0, T ],

subject to the internal integro-differential condition (2), possesses at least one so-
lution x ∈ AC[0, T ].
Consequently, under the assumptions of Theorem 3.4, it possesses a unique solution
x ∈ AC[0, T ].

Corollary 6.3. Suppose the assumptions of Theorem 2.2 are met with ϕ(t) = tβ,
where β ≥ 1, then the equation

dx(t)

dt
= f

(
t, λ

d

dt
x
(
tβ
))

, a.e. t ∈ (0, 1],

subject to the condition (2), possesses at least one solution x ∈ AC[0, 1].
Consequently, under the assumptions of Theorem 3.4, it possesses a unique solution
x ∈ AC[0, 1].
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Example 1. Given the functional differential equation

dx(t)

dt
=

3e−2t

t+ 3
+

1

7

d

dt
x

(
1

2
(t+ 1)

)
, a.e. t ∈ (0, 1], (10)

with condition

x(τ) = 1 +

∫ 1−τ

0

((s
5

)4
+

1

7

(
x(s) +

dx(s)

ds

))
ds, τ ∈ (0, 1). (11)

The functional equation is expressed as

y(t) =
3e−2t

t+ 3
+

1

14
y
(1
2
(t+ 1)

)
, t ∈ [0, 1]. (12)

Set

f
(
t, λϕ′(t)y(ϕ(t))

)
=

3e−2t

t+ 3
+

1

14
y
(1
2
(t+ 1)

)
,

and

g
(
t, x(t), y(t)

)
=

( t
5

)4
+

1

7

(
x(t) + y(t)

)
.

We have ϕ(t) = 1
2 (t+ 1) ≤ 1, ϕ′(t) = 1

2 , λ = 1
7 , x0 = 1 and T = 1.

Hence, f(t, 0) = 3e−2t

t+3 ∈ L1[0, 1], g(t, 0, 0) =
(
t
5

)4 ∈ L1[0, 1],
and ∣∣f(t, x)− f(t, y)

∣∣ ≤ 1

14
|x− y|,∣∣g(t, x, y)− g(t, w, z)

∣∣ ≤ 1

7

(
|x− w|+ |y − z|

)
,

then b = 1
14 , L = 1

7 , bλ ≈ 0.01020408 < 1, and LT ≈ 0.14285714 < 1.
Hence, according to Theorem 3.4, the solution x ∈ AC[0, 1] of (10)-(11) is unique.

Example 2. Given the functional differential equation

dx(t)

dt
=

t

t+ 1
+

1

9

d

dt
x

(
1

3
t

)
, a.e. t ∈ (0, 3], (13)

with condition

x(τ) = 2 +

∫ 3−τ

0

(
s

s2 + 1
+

1

9

(
x(s) +

dx(s)

ds

))
ds, τ ∈ (0, 3). (14)

The functional equation is expressed as

y(t) =
t

t+ 1
+

1

27
y
(1
3
t
)
, t ∈ [0, 3]. (15)

Set

f
(
t, λϕ′(t)y(ϕ(t))

)
=

t

t+ 1
+

1

27
y
(1
3
t
)
,

and

g
(
t, x(t), y(t)

)
=

t

t2 + 1
+

1

9

(
x(t) + y(t)

)
.

We have ϕ(t) = 1
3 t, γ = 1

3 , λ = 1
9 , x0 = 2 and T = 3.

Hence, f(t, 0) = t
t+1 ∈ L1[0, 3], g(t, 0, 0) = t

t2+1 ∈ L1[0, 3],
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and ∣∣f(t, x)− f(t, y)
∣∣ ≤ 1

27
|x− y|,∣∣g(t, x, y)− g(t, w, z)

∣∣ ≤ 1

9

(
|x− w|+ |y − z|

)
,

then b = 1
27 , L = 1

9 , bλ ≈ 0.00411523 < 1, and LT ≈ 0.33333333 < 1.
Hence, according to Corollary 6.2, the solution x ∈ AC[0, 3] of (13)-(14) is unique.

Example 3. Given the functional-differential equation

dx(t)

dt
=

1

9− t3
+

1

3

d

dt
x
(
t3
)
, a.e. t ∈ (0, 1], (16)

with condition

x(τ) =
1

3
+

∫ 1−τ

0

(
3s2 + 2s+ 1 +

1

3

(
x(s) +

dx(s)

ds

))
ds, τ ∈ (0, 1). (17)

The functional equation is expressed as

y(t) =
1

9− t3
+ t2y

(
t3
)
, t ∈ [0, 1]. (18)

Set

f
(
t, λϕ′(t)y(ϕ(t))

)
=

1

9− t3
+ t2y

(
t3
)
,

and

g
(
t, x(t), y(t)

)
= 3t2 + 2t+ 1 +

1

3

(
x(t) + y(t)

)
.

We have ϕ(t) = t3, β = 3, λ = 1
3 , x0 = 1

3 and T = 1.

Hence, f(t, 0) = 1
9−t3 ∈ L1[0, 1], g(t, 0, 0) = 3t2 + 2t+ 1 ∈ L1[0, 1],

and ∣∣f(t, x)− f(t, y)
∣∣ ≤ |x− y|,∣∣g(t, x, y)− g(t, w, z)
∣∣ ≤ 1

3

(
|x− w|+ |y − z|

)
,

then b = 1, L = 1
3 , bλ = LT ≈ 0.33333333 < 1.

Hence, according to Corollary 6.3, the solution x ∈ AC[0, 1] of (16)-(17) is unique.

7. Conclusion

This study establishes the existence and uniqueness of solutions x ∈ AC[0, T ] for
the nonlocal problem (1)-(2) under specific assumptions by converting it to a fixed
point problem. Our study exposes the Hyers-Ulam stability, which provides insights
into the resilience of the problem to disturbances. Most significantly, it reveals the
continuous dependence of the unique solution on certain factors. Furthermore, To
demonstrate the applicability of our work, we provided a range of instances and
special cases. In summary, this paper is a great resource for researchers exploring
the existence and stability of nonlocal problems of functional differential equations.
It suggests a promising avenue for future research, especially looking into how
Hyers-Ulam stability applies to the problem.
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