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GENERALIZED FRACTIONAL ECONOMIC MODELS BY

MARKET EQUILIBRIUM

BELKACEM CHAOUCHI, MARKO KOSTIĆ, DANIEL VELINOV

Abstract. The main goal of this paper is to use non-local fractional oper-

ators, specifically the generalized proportional fractional Caputo derivatives,
to analyze certain economic problems. The paper also compares the results

obtained using these fractional operators with already established results using

many other different kinds of the fractional derivatives. At the end, a more
comprehensive view of considered economic problems in the market, which

includes simulation analysis, is provided.

1. Introduction and preliminaries

The use of fractional calculus is highly significant in the modeling of complex
systems across various scientific and engineering disciplines. Fractional differential
equations, offer an alternative approach to modeling with ordinary differential equa-
tions. This methodology finds applications in a wide range of fields, including non-
linear oscillations, viscoelastic systems, dielectric polarization, electrode–electrolyte
polarization, electromagnetic waves, earthquake modeling, study of phenomena in
biology, physics, and engineering, such as seepage flow in porous media and fluid
dynamic traffic models (see [11], [16]-[17], [20]-[22]). These applications highlight
the importance and practical value of this theory in the analysis of dynamical sys-
tems.

Generalized proportional Caputo fractional derivatives are an important tool in
the field of fractional calculus, which deals with derivatives and integrals of non-
integer order. These derivatives generalize the classical Caputo fractional deriva-
tives by allowing the order parameter to take on a wider range of values, including
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non-positive values. There are several generalizations of Caputo fractional deriva-
tives; more information on this topic can be found in [5], [9], [13]-[15], [24] and
[25]. It should be noted that these references do not cover all available literature
on the subject. Moreover, some of the recent results in the asymptotic stability of
generalized Caputo fractional differential systems can be found in [3], [12], [18] and
[26].

In a market with a large number of economic agents competing with each other,
the price is independent of individual behavior and satisfaction. There are various
criteria used to differentiate market structures, such as the number of economic
agents, suppliers, demanders, and turnover rates, among others. Each economic
model has its own elements, such as goods, companies, and individuals, and aims
to maximize utility for buyers and profit for sellers while maintaining pricing free-
dom within an equilibrium model. Economics deals with the interactions between
price, supply, and demand, and how the equilibrium point is reached on supply and
demand curves. Mathematical economics, on the other hand, aims to formulate
economic processes mathematically using economic concepts, allowing for a better
understanding of economic behavior and interactions.

The description of economic processes leans heavily on differentiation and in-
tegration, which are fundamental tools in constructing economic phenomena and
models. In economic theory, the behavior of economic agents often depends on past
fluctuations, making the utilization of fractional differentiation and integration, as
opposed to integer order ones, crucial. This allows for the incorporation of memory
effects, enabling a comprehensive observation of the economic history. The modern
stage of mathematical economics, which aligns with existing economic principles,
involves expressing economic concepts in terms of fractional operators, giving rise
to fractional mathematical economics. Traditional derivatives have limitations in
accurately describing economic concepts, thus constructing economic models using
non-local fractional operators, which do not have restrictions within a small neigh-
borhood, offers distinct advantages over models based on integer-order derivatives.
Consequently, this study aims to leverage the memory effect of non-local operators
to enhance the understanding and observation of past changes in the economy.

Our research paper centers on the investigation of economic models that incor-
porate the utilization of generalized proportional Caputo fractional derivatives. By
harnessing the potential of the generalized proportional Caputo fractional deriva-
tive, scientists and economists can delve into the intricacies of economic models with
greater flexibility. This approach empowers us to comprehensively examine diverse
facets of economic behavior and analyze the repercussions of modifying parameters
on the dynamics of the system. The capacity to closely approximate solutions de-
rived from other fractional derivatives presents a valuable tool for comprehending
the interconnected nature and resemblances between various economic phenomena.

The paper’s organization can be succinctly described as follows. The prelimi-
nary subsection provides definitions of Mittag-Leffler functions, various fractional
derivatives mentioned in this paper, and the generalized Laplace transform. Addi-
tionally, this section outlines the economic problems under investigation. Section
2 is dedicated to established economic models within different fractional derivative
frameworks. The subsequent two sections present the primary results: first, obtain-
ing solutions for the economic model employing generalized proportional Caputo
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fractional derivative, and then comparing these solutions with previously estab-
lished ones for economic problems utilizing different types of fractional differential
operators through graphical analysis. The paper concludes with a summary of the
obtained results in the Conclusion section.

1.1. Preliminaries. In this subsection, we revisit some important notations and
useful results from the theory of fractional differential equations.

We recall the definitions of one parameter and two parameters Mittag-Leffler
functions. For more details, the interested reader is referred to [1] and [16].

The Mittag-Leffler function with one parameter α is given by the formula

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
,

for ℜα > 0, z ∈ C.
The generalized Mittag-Leffler function with two parameters α, β is defined as

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
,

where ℜα > 0, ℜβ > 0 and z ∈ C. Note that Eα(z) = ez, for α = 1 and
Eα,1(z) = Eα.
The Mittag-Leffler function, with two additional variable λ is defined as

Eα(λ, z) =

∞∑
k=0

λkzαk

Γ(αk + 1)
,

where λ ∈ R, λ ̸= 0, z, α ∈ C, ℜα > 0. Define

Eα,β(λ, z) =

∞∑
k=0

λkzαk+β−1

Γ(αk + β)
,

for λ ∈ R, λ ̸= 0, z, α, β ∈ C, ℜα > 0.
Note that Eα,1(λ, z) = Eα(λ, z). Moreover, the modified Mittag-Leffler function
with three parameters of the special functions is defined as

Eρ
α,β(λ, z) =

∞∑
k=0

λkzαk+β−1(ρ)k
Γ(αk + β)k!

,

for λ ∈ R, λ ̸= 0, z, α, β, ρ ∈ C, ℜα > 0, where (ρ)k is the Pochhammer symbol
introduced by Prabhakar such that (ρ)k = ρ(ρ+ 1) · . . . · (ρ+ k − 1) and (1)k = k!.
Note that E1

α,β(λ, z) = Eα,β(λ, z).

The Riemann-Liouville fractional integral of the function f(t), of order α > 0,
is defined by (see [16])

(0+I
α
t f)(t) =

1

Γ(α)

t∫
0

f(s)

(t− s)1−α
ds, t > 0,

where f(t) is an absolutely integrable function and Γ(·) is the Gamma function.
The left–sided Riemann-Liouville fractional derivative of the function f(t), of
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order α ∈ (0, 1), is given by (see [16])

(RL
0+ Dαf)(t) =

1

Γ(1− α)

d

dt

t∫
0

f(s)

(t− s)α
ds, t > 0,

where f(t) is an absolutely integrable function.
The left–sided Caputo fractional derivative of the function f(t), of order α ∈

(0, 1), with absolute integrable first derivative is given by (see [16])

(C0+D
αf)(t) =

1

Γ(1− α)

t∫
0

f ′(s)

(t− s)α
ds, t > 0.

The left–sided Caputo-Fabrizio fractional derivative of f(t) in the sense of Ca-
puto approach (shortly (CFC)) is defined by (see [10])

(CFC
0 Dαf)(t) =

M(α)

1− α

t∫
0

eλ(t−s)f ′(s) ds,

where α ∈ (0, 1), M(α) is a normalization function and λ = − α
1−α .

The left–sided Atangana–Baleanu fractional derivative of f(t) in the sense of
Caputo approach (shortly (ABC)) is presented as following (see [6]-[7])

(ABC
0 Dαf)(t) =

B(α)

1− α

t∫
0

Eα

(
λ(t− s)α

)
f ′(s) ds,

where α ∈ (0, 1), B(α) is a normalization function and λ = − α
1−α .

The left–sided Atangana–Baleanu fractional derivative of f(t), (shortly general-
ized (ABC)) with generalized Mittag–Leffler function Eρ

α,β(λt
α), such that ρ ∈ R,

ℜβ > 0, α ∈ (0, 1) and λ = − α
1−α is defined as (see [1])

(ABC
0 Dα,β,ρf)(t) =

B(α)

1− α

t∫
0

Eρ
α,β

(
λ(t− s)α

)
f ′(s) ds.

The constant proportional Caputo (shortly (CPC)) derivative of f(t) is given by
(see [8])

(CPC
0 Dαf)(t) =

1

Γ(1− α)

t∫
0

(
k1(α)f(s) + k0(α)f

′(s)
)
(x− s)−α ds,

where α ∈ (0, 1) and k0 and k1 are functions of α such that k0(α) ̸= 0, k1(α) ̸= 0,
for α ∈ (0, 1), limα→0+ k0(α) = 0, limα→1+ k0(α) = 1, limα→0+ k1(α) = 1 and
limα→1− k1(α) = 0.

The basic definitions and properties of generalized proportional fractional Ca-
puto derivatives and generalized Laplace transform will be recalled in the sequel
(see [13]).

Here, we suppose that g(t) is strictly increasing function with continuous deriv-
ative g′(t) on (0,∞). The generalized Riemann-Liouville fractional integral of f(t),
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with the respect to the function g(t) of order α > 0, is given by

(0I
α,g
t f)(t) =

1

Γ(α)

t∫
0

(g(t)− g(s))α−1f(s)g′(s) ds.

We note that by putting g(t) = t the above fractional integral becomes the classical
Riemann-Liouville fractional integral and by putting g(t) = ln t, the above frac-
tional integral becomes Hadamarad fractional integral. The left Riemann-Liouville
fractional derivative of function f(t) of order α > 0, with the respect to the function
g(t), is given by the following formula ([13])

(RL
0 Dα

g f)(t) =

(
1

g′(t)
d
dt

)n
Γ(1− α)

t∫
0

(g(t)− g(s))−αf(s)g′(s) ds,

where n = [α] + 1, when α is not positive integer and n = α, when α ∈ N,
g(i) ̸= 0, i = 2, 3, ..., n. The generalized left–sided Caputo fractional derivative of
the function f(t) of order α > 0, with the respect to the function g(t), is given by
([5], [25])

(C0 D
α
g f)(t) =

1

Γ(n− α)

t∫
0

(g(t)− g(s))n−α−1
( 1

g′(t)

d

dt

)n
f(s)g′(s) ds,

where n = [α] + 1, when α is not positive integer and n = α, in case when α ∈ N.
The generalized proportional Caputo fractional derivative is given by (see [14]–

[15] and [23])

(C0 D
α,ξ,gf)(t) =

1

ξ1−αΓ(1− α)

×
t∫

0

e
ξ−1
ξ (g(t)−g(0))(g(t)− g(0))−α

(
(1− ξ)f(s) + ξ

f ′(s)

g′(s)

)
g′(s) ds,

where α ∈ (0, 1], g′(t) > 0 for t > 0 and ξ ∈ (0, 1]. For ξ = 1 and g(t) = t
the generalized proportional Caputo fractional derivative is reduced to the classical
Caputo fractional derivative.

For the sequel, we invoke the definition of the generalized convolution. Suppose
that u, g : [0,∞) → R, g(t) be continuous function and g′(t) > 0 on [0,∞). The
generalized Laplace transform of u (g-Laplace transform) is given by

Lg(u(f))(s) =

∞∫
0

e−s(g(t)−g(0))u(t)g′(t) dt,

if the integral for all values of s is valid.
Under the above assumptions of the functions u and g, we have the following

Lemma 1.1. ([9], [13]-[15], [19]) Let α, β > 0, A be an arbitrary square matrix of
order m and I be the identity matrix of the same order as A.

i) Lg

(
u(t)

)
(s) = L

(
u
(
g−1(t+ g(0))

))
(s), where L is the usual Laplace trans-

form of u;



6 B. CHAOUCHI, M. KOSTIĆ, D. VELINOV JFCA-2023/14(2)

ii) Suppose a1 and a2 are constants. Let u1, u2 : [0,∞) → R and the gener-
alized Laplace transform exists for u1 and u2, for all s > c1 and s > c2,
respectively. Then

Lg

(
a1u1(t) + a2u2(t)

)
(s) = a1Lg(u1(t))(s) + a2Lg(u2(t))(s), for s > max{c1, c2};

iii) Lg(1)(s) =
1
s , s > 0;

iv) Lg

(
(g(t)− g(0))β

)
(s) = Γ(β+1)

sβ+1 , s, β > 0;

v) Lg

(
ecg(t)

)
(s) = ecg(0)

s−c , s > c;

vi) Lg

(
Eα(A(g(t)− g(0))α)

)
= sα−1(sαI −A)−1;

vii) Lg

(
(g(t)− g(0))β−1Eα,β

(
A(g(t)− g(0))α

))
(s) = sα−β(sαI −A)−1;

viii) Lg

(
0I

α
g u(t)

)
(s) =

Lg(u(t))
sα ;

ix) Suppose that there exist constants K,C, T ≥ 0 such that |u(i)(t)| ≤ KeCg(t),
for all t ≥ T , i = 0, 1, ..., n, where n = [α]+1, when α is not positive integer
and n = α, for α ∈ N. We have

Lg

((
C
0 D

α
g u
)
(t)
)
(s) = sα

(
Lg(u(t))−

n−1∑
k=0

s−k−1
(
u(k)

)
(0+)

)
;

x) Lg

(
C
0 D

α,ξ,gf(t)
)
(s) = (ξs + 1 − ξ)αLg(f(t))(s) − ξ(ξs + 1 − ξ)α−1, for

α ∈ (0, 1), ξ ∈ (0, 1], g′(t) > 0 for t > 0.

Proof. We will prove only vi) and vii). The proofs of the other statements can be
found in [9] and [13]. First we prove vi). Using the definition of the generalized
Laplace transform, Mittag-Leffler function and iv), we obtain

Lg

(
Eα(A(g(t)− g(0))α)

)
(s) =

∞∑
k=0

Ak

Γ(kα+ 1)
Lg

(
(g(t)− g(0))kα

)
(s)

=

∞∑
k=0

Ak

Γ(kα+ 1)

Γ(kα+ 1)

skα+1
=

1

s

∞∑
k=0

Ak

skα
= sα−1(sαI −A)−1.

Now, we prove vii). We have

Lg

(
(g(t)− g(0))β−1Eα,β

(
A(g(t)− g(0))α

))
(s) =

∞∑
k=0

AkLg

(
(g(t)− g(0))kα+β−1

)
Γ(kα+ β)

=

∞∑
k=0

Ak

Γ(kα+ β)

Γ(kα+ β)

skα+β
=

1

sβ

∞∑
k=0

Ak

skα
= sα−β(sαI −A)−1.

□

The generalized convolution (g-convolution) of two functions u and v, which are
piecewise continuous at each interval [0, T ] and of exponential order, is given by
the following formula

(u∗gv)(t) =
t∫

0

u(s)v
(
g−1

(
g(t) + g(0)− g(s)

))
g′(s) ds.
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The generalized convolution of two functions is commutative and it holds (see [13])

Lg(u∗gv) = Lg(u)Lg(v).

The rest of this subsection will be used for description of the economic models
that we are going to investigate. A competitive market is closely linked to the
idea of competitive equilibrium, which refers to a state where the amount of goods
demanded by buyers is equal to the amount of goods supplied by sellers. This
balance can be expressed using the demand function qa and the supply function qb,
given by the following formulas:

qa(t) = a0 − a1p(t),

qb(t) = −b0 + b1p(t),

where p is the price of goods, a0, a1, b0 and b1 are positive constants, denoting the
factors affecting the demanded and supplied quantity. When qa(t) = qb(t), i.e. the
demanded and supplied quantities are equal, the equilibrium price p∗ = a0+b0

a1+b1
is

obtained. This means that the price tends to stay stable and there is no shortage
and surplus in economics. In [21], the following price adjustment

p′(t) = k(qa − qb),

where by k > 0 is denoted the speed of adjustment constant, is considered. More-
over, if we insert the upper equations for qa and qb in this differential equation, we
obtain the following

p′(t) + k(a1 + b1)p(t) = k(a0 + b0),

having a solution given by

p(t) =
a0 + b0
a1 + b1

+
(
p(0)− a0 + b0

a1 + b1

)
e−k(a1+b1)t.

Considering the expectation agents, the functions of demand and supply, involve
additional factors a2 and b2, having the following form

qa(t) = a0 − a1p(t) + a2p
′(t), qb(t) = −b0 + b1p(t)− b2p

′(t),

and similar like above, we obtain the following differential equation

p′(t)− a1 + b1
a2 + b2

p(t) =
a0 + b0
a2 + b2

.

The solution of this linear differential equation is given by

p(t) =
a0 + b0
a1 + b1

+
(
p(0)− a0 + b0

a1 + b1

)
e

a1+b1
a2+b2

t.

When the prices of goods increase, buyers exhibit a higher demand to make pur-
chases before prices escalate further, while sellers tend to offer fewer goods to cap-
italize on the anticipated higher prices in the future. The examined models incor-
porate the condition of qa(t) = qb(t). Additionally, in a changing economy where
p′(t) = 0 holds true for all t > 0, the market reaches a dynamic equilibrium state.
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2. Established economic models in fractional derivative framework

This section will showcase recent findings related to the discussed economic prob-
lems, utilizing various kinds of fractional operators. More precisely, we will recall
results from [2] and [4] about the solutions of the mentioned economic problems
in the previous section, by means of Caputo, Caputo-Fabrizio in the sense of Ca-
puto approach (CFC), Atangana-Baleanu in the sense of Caputo approach (ABC),
generalized Atangana-Baleanu in the sense of Caputo approach (ABC) including
Mittag-Leffler function with three parameters, constant proportional Caputo and
generalized Caputo proportional fractional derivatives.

The equation about the price adjustment, by means of Caputo fractional deriv-
ative, without considering the expectation of agents is given as following

C
0 D

αp(t) + k(a1 + b1)p(t) = k(a0 + b0), α ∈ (0, 1). (1)

The solution of (1) is given by

p(t) = p(0)Eα(−k(a1 + b1)t
α) +

a0 + b0
a1 + b1

(
1− Eα(−k(a1 + b1)t

α)
)
.

If we take into account the expectations of agents, the price adjustment equation
incorporating the Caputo fractional derivative can be formulated as follows

C
0 D

αp(t)− a1 + b1
a2 + b2

p(t) = −a0 + b0
a2 + b2

. (2)

The solution of (2) is given by the equation

p(t) = p(0)Eα

(a1 + b1
a2 + b2

tα
)
− a0 + b0

a1 + b1

(
1− Eα

(a1 + b1
a2 + b2

tα
))

.

The price adjustment equation with the Caputo–Fabrizio fractional derivative
in the Caputo sense, without accounting for the expectations of agents, can be
expressed as follows

CFC
0 Dαp(t) + k(a1 + b1)p(t) = k(a0 + b0), α ∈ (0, 1),

and its solution is given by

p(t) =
p(0)M(α)e

αk(a1+b1)t

−M(α)+(α−1)k(a1+b1)

M(α)− (α− 1)k(a1 + b1)

− (a0 + b0)(M(α)(−1 + e
αk(a1+b1)t

−M(α)+(α−1)k(a1+b1) ) + (α− 1)k(a1 + b1))

(a1 + b1)(−M(α) + (α− 1)k(a1 + b1))
,

where p(0) = a0+b0
a1+b1

.
If we incorporate the expectations of agents, the price adjustment equation in-

cluding the Caputo–Fabrizio fractional derivative in the Caputo sense in the fol-
lowing manner

CFC
0 Dαp(t)− a1 + b1

a2 + b2
p(t) = −a0 + b0

a2 + b2
. (3)
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The solution of (3) stated as follows

p(t) =
p(0)M(α)e

α(a1+b1)t

(α−1)a1+(α−1)b1+M(α)(a2+b2) (a2 + b2)

(α− 1)a1 + (α− 1)b1 +M(α)(a2 + b2)

+
(a0 + b0)((α− 1)a1 + (α− 1)b1 −M(α)(−1 + e

α(a1+b1)t

(α−1)a1+(α−1)b1+M(α)(a2+b2) (a2 + b2)))

(a1 + b1)((α− 1)a1 + (α− 1)b1 +M(α)(a2 + b2))
,

where p(0) = a0+b0
a1+b1

.
If we do not consider the expectations of agents, the price adjustment equa-

tion with the Atangana-Baleanu fractional derivative in the Caputo sense can be
represented by the following equation

ABC
0 Dαp(t) + k(a1 + b1)p(t) = k(a0 + b0), α ∈ (0, 1). (4)

The solution of (4) is given by

p(t) =
p(0)B(α)

B(α) + k(a1 + b1)(1− α)
Eα

(
− k(a1 + b1)α

B(α) + k(a1 + b1)(1− α)
tα
)

+
k(a0 + b0)(1− α)

B(α) + k(a1 + b1)(1− α)
Eα

(
− k(a1 + b1)α

B(α) + k(a1 + b1)(1− α)
tα
)

+
a0 + b0
a1 + b1

(
1− Eα

(
− k(a1 + b1)α

B(α) + k(a1 + b1)(1− α)
tα
))

,

where p(0) = a0+b0
a1+b1

.
On the other hand, when we consider the expectations of agents, the price ad-

justment equation, by means of Atangana–Baleanu fractional derivative in the sense
of Caputo approach, can be given as

ABC
0 Dαp(t)− a1 + b1

a2 + b2
p(t) = −a0 + b0

a2 + b2
. (5)

The solution of (5) is given by

p(t) =
B(α)p(0)(a2 + b2)

(α− 1)a1 + (α− 1)b1 +B(α)(a2 + b2)

× Eα

( α(a1 + b1)

(α− 1)a1 + (α− 1)b1 +B(α)(a2 + b2)
tα
)

− (α− 1)(a0 + b0)

(α− 1)a1 + (α− 1)b1 +B(α)(a2 + b2)

× Eα

( α(a1 + b1)

(α− 1)a1 + (α− 1)b1 +B(α)(a2 + b2)
tα
)
+

(α− 1)(a0 + b0)

α(a1 + b1)

×
(
1− Eα

( α(a1 + b1)

(α− 1)a1 + (α− 1)b1 +B(α)(a2 + b2)
tα
))

,

where p(0) = a0+b0
a1+b1

.
The following equation represents the price adjustment equation with the Atangana-

Baleanu fractional derivative in the sense of Caputo approach, with generalized
Mittag–Leffler function, when the expectations of agents are not taken into ac-
count:

ABC
0 Dα,β,ρp(t) + k(a1 + b1)p(t) = k(a0 + b0), α ∈ (0, 1). (6)
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The solution of (6) is given by

p(t) = p(0)

∞∑
j=0

(−k(a1 + b1))
j
(1− α

B(α)

)j
E−ρj

α,(1−β)j+1(λ, t)

+ k(a0 + b0)

∞∑
j=0

(−k(a1 + b1))
j
(1− α

B(α)

)j+1

E
−ρ(j+1)
α,(1−β)(j+1)+1(λ, t).

If we take into account the expectations of the agents, we have

ABC
0 Dα,β,ρp(t)− a1 + b1

a2 + b2
p(t) = −a0 + b0

a2 + b2
. (7)

The solution of (7) is given by

p(t) = p(0)

∞∑
j=1

(
−a1 + b1
a2 + b2

)j(1− α

B(α)

)j
E−ρj

α,(1−β)j+1(λ, t)

− a0 + b0
a2 + b2

∞∑
j=0

(
−a1 + b1
a2 + b2

)j(1− α

B(α)

)j+1

E
−ρ(j+1)
α,(1−β)(j+1)+1(λ, t).

When the expectations of agents are not considered, the price adjustment equa-
tion incorporating the constant proportional Caputo fractional derivative, can be
expressed by the following equation:

CPC
0 Dαp(t) + k(a1 + b1)p(t) = k(a0 + b0), α ∈ (0, 1). (8)

The solution of (8) is given by

p(t) =
a0 + b0
a1 + b1

E1
1−α,−α,1

( −k1(α)

k(a0 + b0)
t1−α,

−k0(α)

k(a0 + b0)
t−α
)

+ p(0)E1
1,α,a

(−k1(α)

k0(α)
t,
−k(a1 + b1)

k0(α)
tα
)
.

When we take into account the expectations of agents, the price adjustment
equation, by means of the constant proportional Caputo fractional derivative, can
be expressed as follows:

CPC
0 Dαp(t)− a1 + b1

a2 + b2
p(t) = −a0 + b0

a2 + b2
. (9)

The solution of (9) is given by

p(t) =
a0 + b0
a1 + b1

E1
1−α,−α,1

(a2 + b2
a1 + b1

t1−α,
(a2 + b2)k0(α)

a1 + b1
t−α
)

+ p(0)E1
1,α,1

(−k1(α)

k0(α)
t,

a1 + b1
k0(α)(a2 + b2)

tα
)
,

where k0 and k1 are functions of α ∈ [0, 1], satisfying certain conditions given in
the preliminaries.

3. Economic models in the framework of generalized proportional
Caputo fractional derivatives

We will examine now the first model that incorporates the generalized propor-
tional Caputo derivative, represented as follows:

C
0 D

α,ξ,gp(t) + k(a1 + b1)p(t) = k(a0 + b0), (10)



JFCA-2023/14(2) GENERALIZED FRACTIONAL ECONOMIC MODEL 11

where α ∈ (0, 1) and ξ ∈ (0, 1]. Taking the generalized Laplace transform on the
both sides of (10), we have

Lg

(
C
0 D

α,ξ,gp(t)
)
(s) + k(a1 + b1)Lg(p(t))(s) = Lg

(
k(a0 + b0)

)
.

Using Lemma 1.1, we obtain

(ξs+ 1− ξ)αLg(p(t))(s)− ξ(ξs+ 1− ξ)α−1p(0) + k(a1 + b1)Lg(p(t))(s) =
k(a0 + b0)

s
.

Now,

Lg(p(t))(s)
(
(ξs+ 1− ξ)α + k(a1 + b1)

)
= ξ(ξs+ 1− ξ)α−1p(0) +

k(a0 + b0)

s
,

i.e.

Lg(p(t))(s) =
ξ(ξs+ 1− ξ)α−1

(ξs+ 1− ξ)α + k(a1 + b1)
p(0) +

k(a0 + b0)

s
(
(ξs+ 1− ξ)α + k(a1 + b1)

) .
Taking the inverse generalized Laplace transform, we obtain

p(t) = L−1
g

(
ξ(ξs+ 1− ξ)α−1

(ξs+ 1− ξ)α + k(a1 + b1)

)
p(0)

+
a0 + b0
a1 + b1

L−1
g

(
k(a0 + b0)

s
(
(ξs+ 1− ξ)α + k(a1 + b1)

)),
or equivalently

p(t) = Eα

(−k(a1 + b1)

ξα
(g(t)− g(0))α

)
e

ξ−1
ξ (g(t)−g(0))p(0)

+
a0 + b0
a1 + b1

L−1
g

(
A

s
+

B(
s− ξ−1

ξ

)α
+ k(a1+b1)

ξα

)
,

where A = ξαk(a1+b1)
(1−ξ)α+k(a1+b1)

and B = ξk(a1+b1)

(ξ−1)(−k(a1+b1))
1
α
. Hence,

p(t) = Eα

(−k(a1 + b1)

ξα
(g(t)− g(0))α

)
e

ξ−1
ξ (g(t)−g(0))p(0)

+
a0 + b0
a1 + b1

( ξαk(a1 + b1)

(1− ξ)α + k(a1 + b1)

+
ξk(a1 + b1)

(ξ − 1)(−k(a1 + b1))
1
α

(
g(t)− g(0)

)α−1
e

ξ−1
ξ (g(t)−g(0))

× Eα,α

(
−k(a1 + b1)

ξα
(g(t)− g(0))α

))
.

Next, we consider the following equation about the price adjustment equation with
generalized proportional Caputo fractional derivative, employing the expectation
of agents,

C
0 D

α,ξ,gp(t)− a1 + b1
a2 + b2

p(t) = −a0 + b0
a2 + b2

. (11)
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Applying the generalized Laplace transform on the both sides of the equation, we
have

Lg(
C
0 D

α,ξ,gp(t))(s)− a1 + b1
a2 + b2

Lg(p(t))(s) = −Lg

(a0 + b0
a2 + b2

)
.

Hence,

(ξs+ 1− ξ)αLg(p(t))(s)− ξ(ξ + 1− ξ)α−1p(0)− a1 + b1
a2 + b2

Lg(p(t))(s) = − a0 + b0
s(a2 + b2)

,

Lg(p(t))(s)
(
(ξs+ 1− ξ)α − a1 + b1

a2 + b2

)
= ξ(ξs+ 1− ξ)α−1p(0)− a0 + b0

s(a2 + b2)

and

Lg(p(t))(s) =
ξ(ξs+ 1− ξ)α−1p(0)

(ξs+ 1− ξ)α − a1+b1
a2+b2

− a0 + b0
a2 + b2

· 1

s
(
(ξs+ 1− ξ)α − a1+b1

a2+b2

) .
Taking the generalized inverse Laplace transform of the both sides of the last equa-
tion, we obtain

p(t) = L−1
g

( ξ(ξs+ 1− ξ)α−1

(ξs+ 1− ξ)α − a1+b1
a2+b2

)
p(0)− a0 + b0

a2 + b2
L−1
g

( 1

s
(
(ξs+ 1− ξ)α − a1+b1

a2+b2

))

p(t) = L−1
g

( (
s− ξ−1

ξ

)α−1(
s− ξ−1

ξ

)α
− a1+b1

ξα(a2+b2)

)
p(0)

− a0 + b0
a2 + b2

L−1
g

(
1

ξαs
((

s− ξ−1
ξ

)α
− a1+b1

ξα(a2+b2)

)).
We have

p(t) = Eα

( a1 + b1
ξα(a2 + b2)

(g(t)− g(0))α
)
e

ξ−1
ξ (g(t)−g(0))p(0)

− a0 + b0
ξα(a2 + b2)

L−1
g

(
A

s
+

B(
s− ξ−1

ξ

)α
− a1+b1

ξα(a2+b2)

)
,

where A = 1(
1−ξ
ξ

)α

− a1+b1
ξα(a2+b2)

and B = 1

ξ−1
ξ +

(
a1+b1

ξα(a2+b2)

) 1
α
. Finally,

p(t) = Eα

( a1 + b1
ξα(a2 + b2)

(g(t)− g(0))α
)
e

ξ−1
ξ (g(t)−g(0))p(0)

− a0 + b0
ξα(a2 + b2)

(
1(

1−ξ
ξ

)α
− a1+b1

ξα(a2+b2)

+
1

ξ−1
ξ +

(
a1+b1

ξα(a2+b2)

) 1
α

(
g(t)− g(0)

)α−1
e

ξ−1
ξ (g(t)−g(0))

× Eα,α

( (a1 + b1)

ξα(a2 + b2)
(g(t)− g(0))α

))
.
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4. Comparison of the different frameworks of the economic models

This section focuses on conducting simulation analysis of six significant non-local
fractional operators: Caputo, Caputo–Fabrizio, Atangana–Baleanu in the sense of
Caputo approach, generalized Atangana–Baleanu in the sense of Caputo approach,
constant proportional Caputo and generalized Caputo proportional. A compara-
tive assessment is performed between these fractional derivatives and the classical
derivative. Through illustrative examples, we demonstrate the actions of these op-
erators for various values of α, and for generalized Atangana–Baleanu in Caputo
sense, different values of β are also utilized when ρ = 1. Furthermore, by assigning
specific values to constants a0, b0, a1, b1, a2 and b2, which influence market equi-
librium, we take into account the expectations of agents. The graphics exhibit
profound changes in curve behavior as arbitrary orders are altered.

Here we put a0 = 10, b0 = 100, a1 = 14, b1 = 97, a2 = 18 and b2 = 94. The
solution curves of price adjustment equation, in the case of consideration of expec-
tation of agents are given in the following ten figures. Given our primary focus on
economic models utilizing generalized proportional Caputo fractional derivatives, as
well as the versatility observed in the cases involving constant proportional Caputo
fractional operators, which are determined by the functions k0(α) and k1(α), we
have chosen not to include graphical representations of these specific solution types
in this paper. In Figure 1, expectation curves for generalized proportional Caputo
fractional operator for fixed α = 0.93, ξ = 0.7 and the cases of g(t) = t, g(t) = t2,

g(t) = et, g(t) =
√
t, g(t) = t

1
3 in are showed. As it can been seen from Figure

1, and also intuitively by the obtained formulas, the biggest growth in the price
adjustment equations has in the case when g(t) = et. The Figure 2 shows how the
solutions of (11), varied over the value of ξ, for fixed values of α and the function
g(t). The next figure considers the variation of the graphs of the solutions of (11),
for g(t) = t, ξ = 0.5 and various values of α. On figures 4-6, comparisons between
the solutions in the case of generalized proportional Caputo fractional derivative
for given g(t), ξ and α, Caputo fractional, Caputo–Fabrizio fractional in the sense
of Caputo, Atangana–Baleanu fractional in the Caputo sense and classical deriva-
tive, are given. On Figures 7-8, comparisons between the solutions in the case of
generalized proportional Caputo fractional derivative for given g(t) = et, ξ = 0.7
and α = 0.8 and previously mentioned cases of fractional and classical differential
operators are showcased. The last two figures are displaying the comparisons in
the cases when the solutions of (11) in the case when g(t) =

√
t, α = 0.97, ξ = 0.6,

with the cases of the solutions with considered differential operators.
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Figure 1. Comparison for generalized proportional Caputo frac-
tional derivative for α = 0.93, ξ = 0.7 and cases of g(t) = t,

g(t) = t2, g(t) = et, g(t) =
√
t, g(t) = t

1
3 .
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Figure 2. Comparison for generalized proportional Caputo frac-
tional derivative for g(t) = t, α = 0.93 and cases of ξ = 0.3, ξ = 0.5,
ξ = 0.7, ξ = 0.8, ξ = 1.
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Figure 3. Comparison for generalized proportional Caputo frac-
tional derivative for g(t) = t, ξ = 0.5 and cases of α = 0.42,
α = 0.71, α = 0.86, α = 0.93.
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Figure 4. Comparison for generalized proportional Caputo frac-
tional derivative for g(t) = t, α = 0.85, ξ = 0.5, Caputo fractional,
Atangana–Baleanu fractional in the sense of Caputo approach and
classical derivative.
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Figure 5. Comparison for generalized proportional Caputo frac-
tional derivative for g(t) = t2, α = 0.97, ξ = 0.5, Caputo fractional,
Caputo–Fabrizio fractional in the sense of Caputo approach and
classical derivative.
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Figure 6. Comparison for generalized proportional Caputo frac-
tional derivative for g(t) = t, α = 0.97, ξ = 0.5, Atangana–
Baleanu fractional in the sense of Caputo approach, Atangana–
Baleanu fractional in the sense of Caputo approach with general-
ized Mittag–Leffler function with β = 0.95, ρ = 1 and classical
derivative.
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Figure 7. Comparison for generalized proportional Caputo frac-
tional derivative for g(t) = et, α = 0.8, ξ = 0.7, Caputo fractional,
Caputo–Fabrizio fractional in the sense of Caputo approach and
classical derivative.
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Figure 8. Comparison for generalized proportional Caputo frac-
tional derivative for g(t) = et, α = 0.8, ξ = 0.7, Atangana–Baleanu
fractionalin the sense of Caputo approach, Atangana–Baleanu frac-
tional in the sense of Caputo approach with generalized Mittag–
Leffler function with β = 0.95, ρ = 1 and classical derivative.
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Figure 9. Comparison for generalized proportional Caputo frac-
tional derivative for g(t) =

√
t, α = 0.97, ξ = 0.6, Caputo–Fabrizio

fractional in the sense of Caputo approach, Atangana–Baleanu
fractional in the sense of Caputo approach and classical deriva-
tive.
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Figure 10. Comparison for generalized proportional Caputo frac-
tional derivative for g(t) =

√
t, α = 0.97, ξ = 0.6, Caputo frac-

tional, Atangana–Baleanu fractional in the sense of Caputo ap-
proach with generalized Mittag–Leffler function with β = 0.95,
ρ = 1 and classical derivative.

5. Conclusion

In this paper using non-local fractional operators, specifically generalized pro-
portional Caputo fractional derivatives, we investigate certain economic problems
and compare the obtained results with those ones using other fractional opera-
tors such as Caputo, Caputo-Fabrizio in the sense of Caputo approach, Caputo
type Atangana-Baleanu, Caputo type Atangana–Baleanu with generalized Mittag-
Leffler kernel and constant proportional in the sense of Caputo approach.

These fractional operators are applied beyond traditional differentiation and in-
tegration to improve our understanding of supply, demand, and price interactions
in an equilibrium market. To gain deeper insights into the controversial issues in
the market, we also conduct simulation analysis. Our study yields several find-
ings. First, we present the economic models using non-local fractional operators
such as Caputo, Caputo-Fabrizio in the sense of Caputo, Caputo type Atangana-
Baleanu, Caputo type Atangana–Baleanu with generalized Mittag-Leffler kernel
and constant proportional in Caputo sense, with or without expectation of agents.
Second, we solve the price adjustment equation, which is crucial for achieving mar-
ket equilibrium, using generalized proportional Caputo fractional derivatives while
considering and not considering agents’ expectations. Thus, we obtain two sepa-
rate solutions for each fractional operator, which are quite general comparing to
the previous consideration in this types of economic models. Third, this types of
models are important, since they capture past fluctuations in the economy, and
provide a more detailed representation of the interactions between the factors that
strongly influence market equilibrium.

The constant proportional Caputo fractional derivative plays a significant role
in analyzing various economic models. The functions k0(α) and k1(α) introduce
distinct cases in the solutions of these models, leading to different economic phenom-
ena. These functions, dependent on the fractional order α, influence the behavior
and dynamics of the solutions, providing insights into the underlying economic pro-
cesses.

In the realm of the generalized proportional Caputo fractional derivative, we
encounter the most comprehensive scenario. With adjustments to the parameters
ξ and g(t), the solution graphs can closely resemble those obtained from employing
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other types of fractional derivatives. This flexibility allows for a wide range of mod-
eling possibilities and facilitates the comparison and analysis of various economic
systems.

By leveraging the generalized proportional Caputo fractional derivative, researchers
can explore the dynamics of economic models in a more versatile manner. This ap-
proach enables us to capture different aspects of economic behavior and investigate
the impacts of varying parameters on the system’s dynamics. The ability to closely
approximate solutions obtained from other fractional derivatives provides a valu-
able tool for understanding the interconnectedness and similarities among different
economic phenomena.
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