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EXISTENCE AND UNIQUENESS OF THE SOLUTION OF THE

FRACTIONAL DIFFERENTIAL EQUATION VIA A NEW THREE

STEPS ITERATION

HARIBHAU L. TIDKE, GAJANAN S. PATIL

Abstract. In this paper, we study the existence, uniqueness, and other prop-
erties of solution of differential equation of fractional order involving the Ca-

puto fractional derivative. The tool employed in the analysis is based on the
application of a new three steps iteration process introduced by V. Karakaya,

Y. Atalan, K. Dogan, and NH. Bouzara [26]. Furthermore, the study of var-

ious properties such as dependence on initial data, the closeness of solutions,
and dependence on parameters and functions involved therein. The results

obtained are illustrated through an example.

1. Introduction

We consider the following differential equation of fractional order involving the
Caputo fractional derivative of the type:(

Dα
∗a
)
x(t) = F

(
t, x(t), x(a), x(b)

)
, (1)

for t ∈ I = [a, b], n− 1 < α ≤ n (n ∈ N), with the given initial conditions

x(j)(a) = cj , j = 0, 1, 2, · · · , n− 1, (2)

where F : I×X×X×X → X is continuous function and cj (j = 0, 1, 2, . . . , n− 1)
are given elements in X.

The theory of iterative approximation of fixed points plays a significant role in
the progress of differential and integral equations, and their applications. In this
context, several researchers have introduced many iteration methods for certain
classes of operators in the sense of their convergence, equivalence of convergence
and rate of convergence etc. (see [2, 3, 7, 8, 12, 14, 15, 20, 21, 22, 23, 24, 25,
27, 29, 33, 34]). The most of iterations devoted for both analytical and numerical
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approaches. The new three steps iteration method, due to simplicity and fastness,
has attracted the attention and hence, it is used in this paper.

The problems of existence, uniqueness and other properties of solutions of special
forms of IVP (1)-(2) and its variants have been studied by several mathematicians
under variety of hypotheses by using different techniques, [4, 5, 6, 9, 13, 16, 17, 18,
30, 31] and some of references cited therein.

The main objective of this paper is to use new three steps iteration method
to establish the existence and uniqueness of solution of the initial value problem
(1)-(2) and other qualitative properties of solutions.

2. Preliminaries

Before proceeding to the statement of our main results, we shall setforth some
preliminaries and hypotheses that will be used in our subsequent discussion.

Let X be a Banach space with norm ∥ · ∥ and I = [a, b] denotes an interval of
the real line R. We define B = Cr(I,X) (where r = n for α ∈ N and r = n− 1 for
α /∈ N.) as a Banach space of all r times continuously differentiable functions from
I into X, endowed with the norm

∥x∥B = sup{∥x(t)∥ : x ∈ B}, t ∈ I.

Definition 2.1. [32] The Riemann Liouville fractional integral (left-sided) of a
function h ∈ C1[a, b] of order α ∈ R+ = (0,∞) is defined by

Iαa h(t) =
1

Γ(α)

∫ t

a

(t− s)α−1h(s) ds,

where Γ is the Euler gamma function.

Definition 2.2. [32] Let n− 1 < α ≤ n, n ∈ N. Then the expression

Dα
ah(t) =

dn

dtn
[
In−α
a h(t)

]
, t ∈ [a, b]

is called the (left-sided) Riemann Liouville derivative of h of order α whenever the
expression on the right-hand side is defined.

Definition 2.3. [28] Let h ∈ Cn[a, b] and n − 1 < α ≤ n, n ∈ N. Then the
expression (

Dα
∗a
)
h(t) = In−α

a h(n)(t), t ∈ [a, b]

is called the (left-sided) Caputo derivative of h of order α.

Definition 2.4. [11] Let {an} and {bn} be two sequences of real numbers that
converge to a and b, respectively, and assume that there exists

l = lim
n→∞

|an − a|
|bn − b|

.

(a) If l = 0, then it can be said that {an} converges to a faster than {bn}
converges to b.

(b) If 0 < l < 1, then it can be said that {an} and {bn} have the same rate of
convergence.

Suppose that for two fixed point iteration procedures {un} and {vn}, both converg-
ing to the same fixed point p, the error estimates

∥un − p∥ ≤ an, ∀ n ∈ N, (3)
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∥vn − p∥ ≤ bn, ∀ n ∈ N, (4)

are available, where {an} and {bn} are two sequences of positive numbers (converg-
ing to zero). Then, in view of Definition 2.4, we will adopt the following concept.

Definition 2.5. [11] Let {un} and {vn} be two fixed point iteration procedures
that converge to the same fixed point p and satisfy (3) and (4), respectively. If {an}
converges faster than {bn}, then it can be said that {un} converges faster than {vn}
to p.

Lemma 2.1. [19] If the function f = (f1, · · · , fn) ∈ C1[a, b], then the initial value
problems(

Dαi
∗a
)
xi(t) = fi(t, x1, · · · , xn), x

(k)
i (0) = cik, i = 1, 2, · · · , n, k = 1, 2, · · · ,mi

where mi < αi ≤ mi + 1 is equivalent to Volterra integral equations:

xi(t) =

mi∑
k=0

cik
tk

k!
+ Iαi

a fi(t, x1, · · · , xn), 1 ≤ i ≤ n.

As a consequence of the Lemma 2.1, it is easy to observe that if x ∈ B and
F ∈ C1[a, b], then x(t) satisfies the following integral equation which is equivalent
to (1)-(2) is

x(t) =

n−1∑
j=0

cj
j!

(t− a)j +
1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, x(s), x(a), x(b)

)
ds. (5)

Definition 2.6. ([26], p.626) The self-map T : C → C is called weak-contraction
if there exist δ ∈ (0, 1) and L ≥ 0 such that

∥Tx− Ty∥ ≤ δ∥x− y∥+ L∥y − Ty∥.

Recently, V. Karakaya, Y. Atalan, K. Dogan, and NH. Bouzara [26] introduced
the following new three steps iteration process: xk+1 = Tyk,

yk = (1− ξk)zk + ξkTzk,
zk = Txk, k ∈ N ∪ {0},

(6)

with the real control sequence {ξk}∞k=0 in [0, 1].
To prove existence and uniqueness, we require the following known results:

Theorem 2.1. ([26], p.626) Let (X, d) be a complete metric space and T : X → X
be a weak contraction for which there exist δ ∈ (0, 1) and some L1 ≥ 0 such that

∥Tx− Ty∥ ≤ δ∥x− y∥+ L1∥x− Tx∥. (7)

Then, T has a unique fixed point.

Theorem 2.2. (([26], p.627)) Let C be a nonempty closed convex subset of a
Banach space X and T : C → C be a weak-contraction map satisfying condition
(7). Let {xk}∞k=0 be an iterative sequence generated by the scheme (6) with a real

control sequence {ξk}∞k=0 in [0, 1] satisfying

∞∑
k=0

ξk = ∞. Then {xk}∞k=0 converges

to a unique point x∗ of T .
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Lemma 2.2. (([35], p.4)) Let {βk}∞k=0 be a nonnegative sequence for which one
assumes there exists k0 ∈ N, such that for all k ≥ k0 one has satisfied the inequality

βk+1 ≤ (1− µk)βk + µkγk, (8)

where µk ∈ (0, 1), for all k ∈ N∪{0},
∞∑
k=0

µk = ∞ and γk ≥ 0, ∀k ∈ N∪{0}. Then

the following inequality holds

0 ≤ lim sup
k→∞

βk ≤ lim sup
k→∞

γk. (9)

3. Existence and Uniqueness of Solutions via new three steps
iteration

Now, we are able to state and prove the following main theorem which deals
with the existence of solutions of the equations (1)-(2).

Theorem 3.3. Assume that there exists a function p ∈ C(I,R+) and constants
λ, β, γ > 0 such that for t ∈ I,

∥F
(
t, u1, u2, u3

)
−F

(
t, v1, v2, v3

)
∥

≤ p(t)
[
λ∥u1 − v1∥+ β∥u2 − v2∥+ γ∥u3 − v3∥

]
. (10)

If ∆ = Ia
αp(t)

(
λ+ β + γ

)
< 1 (t ∈ I), then the equations (1)-(2) has a unique

solution x ∈ B, which is the required solution and is obtained by the three steps
iterative method (6) starting with any element x0 ∈ B. Moreover, if xk is the k−th
successive approximation, then one has

∥xk+1 − x∥B ≤ ∆2k+2

e

(
1−∆

)∑k
i=0 ξi

∥x0 − x∥B . (11)

Proof. Let x(t) ∈ B and define the operator

(Tx)(t) =

n−1∑
j=0

cj
j!

(t− a)j

+
1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, x(s), x(a), x(b)

)
ds, t ∈ I. (12)

Let {xk}∞k=0 be iterative sequence generated by new three steps iteration method
(6) for the operator given in (12) with the real control sequence {ξk}∞k=0 in [0, 1].
We will show that xk → x as k → ∞. From (6), (12) and assumptions, we obtain

∥zk(t)− x(t)∥
= ∥(Txk)(t)− (Tx)(t)∥

= ∥
n−1∑
j=0

cj
j!

(t− a)j +
1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, xk(s), xk(a), xk(b)

)
ds

−
n−1∑
j=0

cj
j!

(t− a)j − 1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, x(s), x(a), x(b)

)
ds∥

≤ 1

Γ(α)

∫ t

a

(t− s)α−1∥F
(
s, xk(s), xk(a), xk(b)

)
−F

(
s, x(s), x(a), x(b)

)
∥ds
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≤ 1

Γ(α)

∫ t

a

(t− s)α−1p(s)

×
[
λ∥xk(s)− x(s)∥+ β∥xk(a)− x(a)∥+ γ∥xk(b)− x(b)∥

]
ds. (13)

Now, by taking supremum in the inequality (13), we obtain

∥zk − x∥B ≤ 1

Γ(α)

∫ t

a

(t− s)α−1p(s)
(
λ+ β + γ

)
∥xk − x∥Bds

≤ Ia
αp(t)

(
λ+ β + γ

)
∥xk − x∥B

= ∆∥xk − x∥B , (14)

and

∥yk(t)− x(t)∥ = ∥(1− ξk)zk(t) + ξk(Tzk)(t)− x(t)∥
= ∥(1− ξk)zk(t) + ξk(Tzk)(t)− (1− ξk)x(t)− ξkx(t)∥
= ∥(1− ξk)(zk(t)− x(t)) + ξk

(
(Tzk)(t)− (Tx)(t)

)
∥

≤
[
(1− ξk)∥zk(t)− x(t)∥+ ξk∥(Tzk)(t)− (Tx)(t)∥

]
. (15)

Hence, by taking supremum in the inequality (15) and then use (14) to get

∥yk − x∥B ≤ (1− ξk)∥zk − x∥B + ξk∥Tzk − Tx∥B
≤ (1− ξk)∥zk − x∥B + ξk∆∥zk − x∥B

=
[
1− ξk

(
1−∆

)]
∥zk − x∥B

≤ ∆
[
1− ξk

(
1−∆

)]
∥xk − x∥B . (16)

Therefore, using (14) and (16), we obtain

∥xk+1 − x∥B = ∥Tyk − x∥B
= ∥Tyk − Tx∥B
≤ ∆∥yk − x∥B

≤ ∆2
[
1− ξk

(
1−∆

)]
∥xk − x∥B . (17)

Thus, by induction, we get

∥xk+1 − x∥B ≤ ∆2k+2
k∏

j=0

[
1− ξj

(
1−∆

)]
∥x0 − x∥B . (18)

Since ξk ∈ [0, 1] for all k ∈ N ∪ {0}, the definition of ∆ yields,

⇒ ξk∆ < ξk

⇒ ξk

(
1−∆

)
< 1, ∀ k ∈ N ∪ {0}. (19)

From the classical analysis, we know that 1− x ≤ e−x, ∀ x ∈ [0, 1]. Hence by uti-
lizing this fact with (19) in (18), we obtain

∥xk+1 − x∥B ≤ ∆2k+2e−
(
1−∆

)∑k
j=0 ξj∥x0 − x∥B

=
∆2k+2

e

(
1−∆

)∑k
i=0 ξi

∥x0 − x∥B . (20)
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Thus, we have proved (11). Since

∞∑
k=0

ξk = ∞, then we have

e−
(
1−∆

)∑k
j=0 ξj → 0 as k → ∞. (21)

Hence using this, the inequality (20) implies lim
k→∞

∥xk+1 − x∥B = 0 and therefore,

we get xk → x as k → ∞. □

Remark: It is an interesting to note that the inequality (20) gives the bounds
in terms of known functions, which majorizes the iterations for solutions of the
equations (1)-(2) for t ∈ I.

4. Continuous dependence via new three steps iteration

In this section, we shall deal with continuous dependence of solution of the
problem (1) on the initial data, functions involved therein and also on parameters.

4.1. Dependence on initial data. Suppose x(t) and x(t) are solutions of (1)
with initial data

x(j)(a) = cj , j = 0, 1, 2, · · · , n− 1, (22)

and

x(j)(a) = dj , j = 0, 1, 2, · · · , n− 1, (23)

respectively, where cj , dj are elements of the space X.
Then looking at the steps as in the proof of Theorem 3.3, we define the operator

for the equation (1) with initial conditions (23)

(Tx)(t) =

n−1∑
j=0

dj
j!

(t− a)j

+
1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, x(s), x(a), x(b)

)
ds, t ∈ I. (24)

We shall deal with the continuous dependence of solutions of equation (1) on initial
data.

Theorem 4.4. Suppose the function F in equation (1) satisfies the condition (10).
Consider the sequences {xk}∞k=0 and {xk}∞k=0 generated by new three steps iteration
method associated with operators T in (12) and T in (24), respectively with the real
sequence {ξk}∞k=0 in [0, 1] satisfying 1

2 ≤ ξk for all k ∈ N ∪ {0}. If the sequence
{xk}∞k=0 converges to x, then we have

∥x− x∥B ≤ 5M(
1−∆

) , (25)

where

M =

n−1∑
j=0

∥cj − dj∥
j!

(b− a)j .
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Proof. Suppose the sequences {xk}∞k=0 and {xk}∞k=0 generated by new three steps
iteration method associated with operators T in (12) and T in (24), respectively
with the real control sequence {ξk}∞k=0 in [0, 1] satisfying 1

2 ≤ ξk for all k ∈ N∪{0}.
From iteration (6) and equations (12); (24) and assumptions, we obtain

∥zk(t)− zk(t)∥
= ∥(Txk)(t)− (Txk)(t)∥

= ∥
n−1∑
j=0

cj
j!

(t− a)j +
1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, xk(s), xk(a), xk(b)

)
ds

−
n−1∑
j=0

dj
j!

(t− a)j − 1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, xk(s), xk(a), xk(b)

)
ds∥

≤
n−1∑
j=0

∥cj − dj∥
j!

(b− a)j +
1

Γ(α)

∫ t

a

(t− s)α−1

× ∥F
(
s, xk(s), xk(a), xk(b)

)
−F

(
s, xk(s), xk(a), xk(b)

)
∥ds

≤ M +
1

Γ(α)

∫ t

a

(t− s)α−1p(s)

×
[
λ∥xk(s)− xk(s)∥+ β∥xk(a)− xk(a)∥+ γ∥xk(b)− xk(b)∥

]
ds. (26)

Now, by taking supremum in the inequality (26), we obtain

∥zk − zk∥B ≤ M +
1

Γ(α)

∫ t

a

(t− s)α−1p(s)
(
λ+ β + γ

)
∥xk − xk∥Bds

≤ M + Ia
αp(t)

(
λ+ β + γ

)
∥xk − xk∥B

= M +∆∥xk − xk∥B , (27)

and

∥yk(t)− yk(t)∥ = ∥(1− ξk)
(
zk(t)− zk(t)

)
+ ξk

(
(Tzk)(t)− (Tzk)(t)

)
∥

≤
[
(1− ξk)∥zk(t)− zk(t)∥+ ξk∥(Tzk)(t)− (Tzk)(t)∥

]
. (28)

Hence, by taking supremum in the inequality (28) and then use the idea from (26)
to get

∥yk − yk∥B ≤ (1− ξk)∥zk − zk∥B + ξk∥Tzk − Tzk∥B

≤ (1− ξk)∥zk − zk∥B + ξk

[
M +∆∥zk − zk∥B

]
= ξkM +

[
1− ξk

(
1−∆

)]
∥zk − zk∥B

≤ ξkM +
[
1− ξk

(
1−∆

)][
M +∆∥xk − xk∥B

]
≤ ∆ξkM +M +∆

[
1− ξk

(
1−∆

)]
∥xk − xk∥B . (29)

Therefore, using the idea from (26) and (29) along with hypotheses ∆ < 1, and
1
2 ≤ ξk for all k ∈ N ∪ {0}, the resulting inequality becomes

∥xk+1 − xk+1∥B = ∥Tyk − Tyk∥B
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≤ M +∆∥yk − yk∥B
≤ M + ∥yk − yk∥B

≤ M +∆ξkM +M +∆
[
1− ξk

(
1−∆

)]
∥xk − xk∥B

≤ 2M + ξkM +
[
1− ξk

(
1−∆

)]
∥xk − xk∥B

≤ 2ξk(2M) + ξkM +
[
1− ξk

(
1−∆

)]
∥xk − xk∥B

≤
[
1− ξk

(
1−∆

)]
∥xk − xk∥B + ξk

(
1−∆

) 5M(
1−∆

) . (30)

We denote

βk = ∥xk − xk∥B ≥ 0,

µk = ξk

(
1−∆

)
∈ (0, 1),

γk =
5M(
1−∆

) ≥ 0.

The assumption 1
2 ≤ ξk for all k ∈ N ∪ {0} implies

∞∑
k=0

ξk = ∞. Now, it can be

easily seen that (30) satisfies all the conditions of Lemma 2.2 and hence we have

0 ≤ lim sup
k→∞

βk ≤ lim sup
k→∞

γk

⇒ 0 ≤ lim sup
k→∞

∥xk − xk∥B ≤ lim sup
k→∞

5M(
1−∆

)
⇒ 0 ≤ lim sup

k→∞
∥xk − xk∥B ≤ 5M(

1−∆
) . (31)

Using the assumptions lim
k→∞

xk = x, lim
k→∞

xk = x, we get from (31) that

∥x− x∥B ≤ 5M(
1−∆

) , (32)

which shows that the dependency of solutions of IVPs (1)-(2) and (1) with the
conditions (23) on given initial data. □

4.2. Closeness of solutions. Consider the problem (1)-(2) and the corresponding
problem (

Dα
∗a
)
x(t) = F

(
t, x(t), x(a), x(b)

)
, (33)

for t ∈ I = [a, b], n− 1 < α ≤ n (n ∈ N), with the given initial conditions

x(j)(a) = dj , j = 0, 1, 2, · · · , n− 1, (34)

where F is defined as F and dj (j = 0, 1, 2, . . . , n− 1) are given elements in X.
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Then looking at the steps as in the proof of Theorem 3.3, we define the operator
for the equations (33)- (34)

(Tx)(t) =

n−1∑
j=0

dj
j!

(t− a)j

+
1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, x(s), x(a), x(b)

)
ds, t ∈ I. (35)

The next theorem deals with the closeness of solutions of the problems (1)-(2) and
(33)-(34).

Theorem 4.5. Consider the sequences {xk}∞k=0 and {xk}∞k=0 generated by new
three steps iteration method associated with operators T in (12) and T in (35),
respectively with the real sequence {ξk}∞k=0 in [0, 1] satisfying 1

2 ≤ ξk for all k ∈
N ∪ {0}. Assume that

(i) all conditions of Theorem 3.3 hold, and x(t) and x(t) are solutions of (1)-
(2) and (33)-(34) respectively.

(ii) there exist non negative constant ϵ such that

∥F
(
t, u1, u2, u3

)
−F

(
t, u1, u2, u3

)
∥ ≤ ϵ, ∀ t ∈ I. (36)

If the sequence {xk}∞k=0 converges to x, then we have

∥x− x∥B ≤
5
[
M + ϵ(b−a)α

Γ(α+1)

]
(
1−∆

) . (37)

Proof. Suppose the sequences {xk}∞k=0 and {xk}∞k=0 generated by new three steps
iteration method associated with operators T in (12) and T in (35), respectively
with the real control sequence {ξk}∞k=0 in [0, 1] satisfying 1

2 ≤ ξk for all k ∈ N∪{0}.
From iteration (6) and equations (12); (35) and hypotheses, we obtain

∥zk(t)− zk(t)∥
= ∥(Txk)(t)− (Txk)(t)∥

= ∥
n−1∑
j=0

cj
j!

(t− a)j +
1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, xk(s), xk(a), xk(b)

)
ds

−
n−1∑
j=0

dj
j!

(t− a)j − 1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, xk(s), xk(a), xk(b)

)
ds∥

≤
n−1∑
j=0

∥cj − dj∥
j!

(b− a)j +
1

Γ(α)

∫ t

a

(t− s)α−1

× ∥F
(
s, xk(s), xk(a), xk(b)

)
−F

(
s, xk(s), xk(a), xk(b)

)
∥ds

≤ M +
1

Γ(α)

∫ t

a

(t− s)α−1

× ∥F
(
s, xk(s), xk(a), xk(b)

)
−F

(
s, xk(s), xk(a), xk(b)

)
∥ds

+
1

Γ(α)

∫ t

a

(t− s)α−1∥F
(
s, xk(s), xk(a), xk(b)

)
−F

(
s, xk(s), xk(a), xk(b)

)
∥ds
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≤ M +
1

Γ(α)

∫ t

a

(t− s)α−1ϵds+
1

Γ(α)

∫ t

a

(t− s)α−1p(s)

×
[
λ∥xk(s)− xk(s)∥+ β∥xk(a)− xk(a)∥+ γ∥xk(b)− xk(b)∥

]
ds

≤ M +
ϵ(t− a)α

Γ(α+ 1)
+

1

Γ(α)

∫ t

a

(t− s)α−1p(s)

×
[
λ∥xk(s)− xk(s)∥+ β∥xk(a)− xk(a)∥+ γ∥xk(b)− xk(b)∥

]
ds

≤ M +
ϵ(b− a)α

Γ(α+ 1)
+

1

Γ(α)

∫ t

a

(t− s)α−1p(s)

×
[
λ∥xk(s)− xk(s)∥+ β∥xk(a)− xk(a)∥+ γ∥xk(b)− xk(b)∥

]
ds. (38)

Recalling the derivations obtained in equations (27) and (29), the above inequality
becomes

∥zk − zk∥B ≤ M +
ϵ(b− a)α

Γ(α+ 1)
+ ∆∥xk − xk∥B , (39)

and similarly, it is seen that

∥yk − yk∥B ≤ ∆ξk

[
M +

ϵ(b− a)α

Γ(α+ 1)

]
+
[
M +

ϵ(b− a)α

Γ(α+ 1)

]
+∆

[
1− ξk

(
1−∆

)]
∥xk − xk∥B . (40)

Therefore, using the idea from (38) and (40) along with hypotheses ∆ < 1, and
1
2 ≤ ξk for all k ∈ N ∪ {0}, the resulting inequality becomes

∥xk+1 − xk+1∥B
= ∥Tyk − Tyk∥B

≤ M +
ϵ(b− a)α

Γ(α+ 1)
+ ∆∥yk − yk∥B

≤
[
M +

ϵ(b− a)α

Γ(α+ 1)

]
+ ∥yk − yk∥B

≤
[
M +

ϵ(b− a)α

Γ(α+ 1)

]
+∆ξk

[
M +

ϵ(b− a)α

Γ(α+ 1)

]
+
[
M +

ϵ(b− a)α

Γ(α+ 1)

]
+∆

[
1− ξk

(
1−∆

)]
∥xk − xk∥B

≤ 4ξk

[
M +

ϵ(b− a)α

Γ(α+ 1)

]
+ ξk

[
M +

ϵ(b− a)α

Γ(α+ 1)

]
+

[
1− ξk

(
1−∆

)]
∥xk − xk∥B

≤
[
1− ξk

(
1−∆

)]
∥xk − xk∥B + ξk

(
1−∆

)5[M + ϵ(b−a)α

Γ(α+1)

]
(
1−∆

) . (41)

We denote

βk = ∥xk − xk∥B ≥ 0,

µk = ξk

(
1−∆

)
∈ (0, 1),
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γk =
5
[
M + ϵ(b−a)α

Γ(α+1)

]
(
1−∆

) ≥ 0.

The assumption 1
2 ≤ ξk for all k ∈ N ∪ {0} implies

∞∑
k=0

ξk = ∞. Now, it can be

easily seen that (41) satisfies all the conditions of Lemma 2.2 and hence we have

0 ≤ lim sup
k→∞

βk ≤ lim sup
k→∞

γk

⇒ 0 ≤ lim sup
k→∞

∥xk − xk∥B ≤ lim sup
k→∞

5
[
M + ϵ(b−a)α

Γ(α+1)

]
(
1−∆

)
⇒ 0 ≤ lim sup

k→∞
∥xk − xk∥B ≤

5
[
M + ϵ(b−a)α

Γ(α+1)

]
(
1−∆

) . (42)

Using the assumptions lim
k→∞

xk = x, lim
k→∞

xk = x, we get from (42) that

∥x− x∥B ≤
5
[
M + ϵ(b−a)α

Γ(α+1)

]
(
1−∆

) , (43)

which shows that the dependency of solutions of IVP (1)-(2) on both the function
involved from the right hand side of the given equation and initial data. □

Remark: The inequality (43) relates the solutions of the problems (1)-(2) and
(33)-(34) in the sense that, if F and F are close as ϵ → 0, then not only the solutions
of the problems (1)-(2) and (33)-(34) are close to each other (i.e. ∥x − x∥B → 0),
but also depends continuously on the functions involved therein and initial data.

4.3. Dependence on Parameters. We next consider the following problems(
Dα

∗a
)
x(t) = F

(
t, x(t), x(a), x(b), µ1

)
, (44)

for t ∈ I = [a, b], n− 1 < α ≤ n (n ∈ N), with the given initial conditions

x(j)(a) = cj , j = 0, 1, 2, · · · , n− 1, (45)

and (
Dα

∗a
)
x(t) = F

(
t, x(t), x(a), x(b), µ2

)
, (46)

for t ∈ I = [a, b], n− 1 < α ≤ n (n ∈ N), with the given initial conditions

x(j)(a) = dj , j = 0, 1, 2, · · · , n− 1, (47)

where F : I×X×X×X×R → X is continuous function, cj , dj (j = 0, 1, 2, . . . , n−1)
are given elements in X and constants µ1, µ2 are real parameters.
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Let x(t), x(t) ∈ B and following steps from the proof of Theorem 3.3, define the
operators for the equations (44) and (46), respectively

(Tx)(t) =

n−1∑
j=0

cj
j!

(t− a)j

+
1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, x(s), x(a), x(b), µ1

)
ds, t ∈ I. (48)

and

(Tx)(t) =

n−1∑
j=0

dj
j!

(t− a)j

+
1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, x(s), x(a), x(b), µ2

)
ds, t ∈ I. (49)

The following theorem proves the continuous dependency of solutions on param-
eters.

Theorem 4.6. Consider the sequences {xk}∞k=0 and {xk}∞k=0 generated by new
three steps iteration method associated with operators T in (48) and T in (49),
respectively with the real sequence {ξk}∞k=0 in [0, 1] satisfying 1

2 ≤ ξk for all k ∈
N ∪ {0}. Assume that

(i) x(t) and x(t) are solutions of (44)-(45) and (46)-(47) respectively.
(ii) there exist constants λ, β, γ > 0 such that the function F satisfy the

conditions:

∥F
(
t, u1, u2, u3, µ1

)
−F

(
t, v1, v2, v3, µ1

)
∥

≤ p(t)
[
λ∥u1 − v1∥+ β∥u2 − v2∥+ γ∥u3 − v3∥

]
.

and

∥F
(
t, u1, u2, u3, µ1

)
−F

(
t, u1, u2, u3, µ2

)
∥ ≤ r(t)

∣∣∣µ1 − µ2

∣∣∣,
where p, r ∈ C(I,R+).

If the sequence {xk}∞k=0 converges to x, then we have

∥x− x∥B ≤
5
[
M + |µ1 − µ2|Iaαr(t)

]
(
1−∆

) , (50)

where ∆ = Ia
αp(t)

(
λ+ β + γ

)
< 1 (t ∈ I).

Proof. Suppose the sequences {xk}∞k=0 and {xk}∞k=0 generated by new three steps
iteration method associated with operators T in (48) and T in (49), respectively
with the real control sequence {ξk}∞k=0 in [0, 1] satisfying 1

2 ≤ ξk for all k ∈ N∪{0}.
From iteration (6) and equations (48); (49) and hypotheses, we obtain

∥zk(t)− zk(t)∥
= ∥(Txk)(t)− (Txk)(t)∥

= ∥
n−1∑
j=0

cj
j!

(t− a)j +
1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, xk(s), xk(a), xk(b), µ1

)
ds
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−
n−1∑
j=0

dj
j!

(t− a)j − 1

Γ(α)

∫ t

a

(t− s)α−1F
(
s, xk(s), xk(a), xk(b), µ2

)
ds∥

≤
n−1∑
j=0

∥cj − dj∥
j!

(b− a)j +
1

Γ(α)

∫ t

a

(t− s)α−1

× ∥F
(
s, xk(s), xk(a), xk(b), µ1

)
−F

(
s, xk(s), xk(a), xk(b), µ2

)
∥ds

≤ M +
1

Γ(α)

∫ t

a

(t− s)α−1

× ∥F
(
s, xk(s), xk(a), xk(b), µ1

)
−F

(
s, xk(s), xk(a), xk(b), µ1

)
∥ds

+
1

Γ(α)

∫ t

a

(t− s)α−1

× ∥F
(
s, xk(s), xk(a), xk(b), µ1

)
−F

(
s, xk(s), xk(a), xk(b), µ2

)
∥ds

≤ M +
1

Γ(α)

∫ t

a

(t− s)α−1r(s)|µ1 − µ2|ds+
1

Γ(α)

∫ t

a

(t− s)α−1p(s)

×
[
λ∥xk(s)− xk(s)∥+ β∥xk(a)− xk(a)∥+ γ∥xk(b)− xk(b)∥

]
ds

≤ M + |µ1 − µ2|Iaαr(t) +
1

Γ(α)

∫ t

a

(t− s)α−1p(s)

×
[
λ∥xk(s)− xk(s)∥+ β∥xk(a)− xk(a)∥+ γ∥xk(b)− xk(b)∥

]
ds

≤ M + |µ1 − µ2|Iaαr(t) +
1

Γ(α)

∫ t

a

(t− s)α−1p(s)

×
[
λ∥xk(s)− xk(s)∥+ β∥xk(a)− xk(a)∥+ γ∥xk(b)− xk(b)∥

]
ds. (51)

Recalling the derivations obtained in equations (27) and (29), the above inequality
becomes

∥zk − zk∥B ≤ M + |µ1 − µ2|Iaαr(t) + ∆∥xk − xk∥B , (52)

and similarly, it is seen that

∥yk − yk∥B ≤ ∆ξk

[
M + |µ1 − µ2|Iaαr(t)

]
+
[
M + |µ1 − µ2|Iaαr(t)

]
+∆

[
1− ξk

(
1−∆

)]
∥xk − xk∥B . (53)

Therefore, using the idea from (51) and (53) along with hypotheses ∆ < 1, and
1
2 ≤ ξk for all k ∈ N ∪ {0}, the resulting inequality becomes

∥xk+1 − xk+1∥B
= ∥Tyk − Tyk∥B

≤
[
M + |µ1 − µ2|Iaαr(t)

]
+∆∥yk − yk∥B

≤
[
M + |µ1 − µ2|Iaαr(t)

]
+ ∥yk − yk∥B
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≤
[
1− ξk

(
1−∆

)]
∥xk − xk∥B + ξk

(
1−∆

)5[M + |µ1 − µ2|Iaαr(t)
]

(
1−∆

) . (54)

We denote

βk = ∥xk − xk∥B ≥ 0,

µk = ξk

(
1−∆

)
∈ (0, 1),

γk =
5
[
M + |µ1 − µ2|Iaαr(t)

]
(
1−∆

) ≥ 0.

The assumption 1
2 ≤ ξk for all k ∈ N ∪ {0} implies

∞∑
k=0

ξk = ∞. Now, it can be

easily seen that (54) satisfies all the conditions of Lemma 2.2 and hence we have

0 ≤ lim sup
k→∞

βk ≤ lim sup
k→∞

γk

⇒ 0 ≤ lim sup
k→∞

∥xk − xk∥B ≤ lim sup
k→∞

5
[
M + |µ1 − µ2|Iaαr(t)

]
(
1−∆

)
⇒ 0 ≤ lim sup

k→∞
∥xk − xk∥B ≤

5
[
M + |µ1 − µ2|Iaαr(t)

]
(
1−∆

) . (55)

Using the assumptions, lim
k→∞

xk = x, lim
k→∞

xk = x, we get from (55) that

∥x− x∥B ≤
5
[
M + |µ1 − µ2|Iaαr(t)

]
(
1−∆

) , (56)

which shows the dependence of solutions of the problem (1)-(2) on parameters µ1

and µ2. □

Remark: The result deals with the property of a solution called “dependence
of solutions on parameters”. Here the parameters are scalars and also note that
the initial conditions do not involve parameters. The dependence on parameters is
an important aspect in various physical problems.

5. Example

We consider the following problem:(
Dα

∗
)
x(t) =

3t2

5

[ t2 − sin2(x(t))

2
+

cos(x(0)) + cos(x(1))

3

]
, (57)

for t ∈ [0, 1], 2 < α = 5
2 ≤ 3, with the given initial conditions

x(0) = 0, x′(0) = 0, x′′(0) = 1, (58)
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Comparing this equation with the equation (1), we get F ∈ C(I × R3,R) with
c0 = 0, c1 = 0, c2 = 1 and

F(t, x(t), x(0), x(1)) =
3t2

5

[ t2 − sin2(x(t))

2
+

cos(x(0)) + cos(x(1))

3

]
.

Now, we have∣∣∣F(t, x(t), x(0), x(1))−F(t, x(t), x(0), x(1))
∣∣∣

≤
∣∣∣3t2
5

∣∣∣[∣∣∣ t2 − sin2(x(t))

2
− t2 − sin2(x(t))

2

∣∣∣
+
∣∣∣cos(x(0)) + cos(x(1))

3
− cos(x(0)) + cos(x(1))

3

∣∣∣]
≤ 3t2

5

[2
2

∣∣∣ sin(x(t))− sin(x(t))
∣∣∣+ 1

3

∣∣∣ cos(x(0))− cos(x(0))
∣∣∣

+
1

3

∣∣∣ cos(x(1))− cos(x(1))
∣∣∣]

≤ 3t2

5

[∣∣∣(x(t)− x(t)
∣∣∣+ 1

3

∣∣∣x(0)− x(0)
∣∣∣+ 1

3

∣∣∣x(1)− x(1)
∣∣∣]. (59)

Taking sup norm, we obtain

|F(t, x(t), x(0), x(1))−F(t, x(t), x(0), x(1))| ≤ 3t2

5

(
1 +

1

3
+

1

3

)
|x− x|, (60)

where p(t) =
3t2

5
, λ = 1, β =

1

3
, γ =

1

3
and hence the condition (10) holds.

5.1. Existence and Uniqueness. Therefore, we the estimate ∆ for the given
value of α = 5

2 :

∆ = Ia
αp(t)

(
λ+ β + γ

)
= I0

α 3t
2

5

(
1 +

1

3
+

1

3

)
=

3

5

(
1 +

1

3
+

1

3

)
(I0

α)(t2)

= (I0
α)(t2)

=
2tα+2

Γ(α+ 3)

=
2t

9
2

Γ( 112 )

≤ 2

Γ( 112 )
, (t ≤ 1)

≤ 64

945
√
π

≃ 0.03821

< 1. (61)

We define the operator T : B → B by

(Tx)(t) =
t2

2
+

1

Γ( 52 )

∫ t

0

(t− s)
3
2
3s2

5
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×
[s2 − sin2(x(s))

2
+

cos(x(0)) + cos(x(1))

3

]
ds, t ∈ I. (62)

Since all the conditions of Theorem 3.3 are satisfied and so by its conclusion, the
sequence {xk} associated with the iterative method (6) for the operator T in (62)
converges to a unique solution x ∈ B.

This convergence under a new three steps iteration process is faster than the
S-iteration, Picard, Mann and Ishikawa iteration processes.

Now, we will discuss the simplicity and fastness of the new three steps iteration
method. By refereing [10, 24, 26, 33], the definitions of ak, bk, ck, dk and ek under
S-iteration, Picard iteration, Mann iteration, Ishikawa iteration and a new three
steps iteration are given, respectively:

(a) ak = νk
[
1− (1− ν)αβ

]k
∥u1 − x∗∥,

(b) bk = νk∥u1 − x∗∥,

(c) ck =
[
1− (1− ν)β

]k
∥u1 − x∗∥,

(d) dk =
[
1− (1− ν)2β

]k
∥u1 − x∗∥,

(e) ek = ν2k
[
1− (1− ν)αβ

]k
∥u1 − x∗∥,

where ν ∈ [0, 1) is contracting factor. For given u1 ∈ R, the convergence of
sequences {ak}, {bk}, {ck}, {dk} and {ek} depend only on the factors ∆1 =

νk
[
1 − (1 − ν)αβ

]k
, ∆2 = νk, ∆3 =

[
1 − (1 − ν)β

]k
, ∆4 =

[
1 − (1 − ν)2β

]k
and ∆5 = ν2k

[
1 − (1 − ν)αβ

]k
respectively. Therefore, the following compari-

son table shows the values of the factors ∆1, ∆2, ∆3, ∆4 and ∆5 under respec-
tive iteration processes for the numerical example discussed in this paper with
ν = ∆ = 0.0382096649 and ξk = αk = βk = 1

2 :

Table 1. Comparison Table

Iteration (k) S-iteration (∆1) P-iteration (∆2) M-iteration (∆3) I-iteration (∆4) 3 steps-iteration (∆5)
1 0.029022243 0.038209665 0.519104832 0.537479676 0.00110893
2 0.000842291 0.001459978 0.269469827 0.288884402 0.00000123
3 0.000024445 0.000055785 0.139883089 0.155269495 0.000000001
4 0.000000709 0.000002132 0.072613988 0.083454198 0
5 0.000000021 0.000000081 0.037694272 0.044854935 0
6 0.000000001 0.000000003 0.019567279 0.024108616 0
7 0 0 0.010157469 0.012957891 0
8 0 0 0.005272791 0.006964603 0
9 0 0 0.002737131 0.003743333 0
10 0 0 0.001420858 0.002011965 0
...

...
...

...
...

...
...

...
...

...
...

...
28 0 0 0.000000011 0.000000028 0
29 0 0 0.000000006 0.000000015 0
30 0 0 0.000000003 0.000000008 0
31 0 0 0.000000001 0.000000004 0
32 0 0 0.000000001 0.000000002 0
33 0 0 0 0.000000001 0
34 0 0 0 0.000000001 0
35 0 0 0 0 0
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Hence, observing the above table and Definitions 2.4, 2.5, it is easy to see that

lim
k→∞

ek
ak

= 0, lim
k→∞

ek
bk

= 0, lim
k→∞

ek
ck

= 0 and lim
k→∞

ek
dk

= 0. Therefore, we conclude

that the new three steps iteration process is faster than the S-iteration, Picard,
Mann and Ishikawa iteration processes. The following is the graphical presentations
of the above table:

Figure 1. Comparison of rate of convergence

FIGURE 1 shows that the three-steps iteration scheme reaches a fixed point at
the 4th step, whereas the S, Picard, Mann, and Ishikawa iterations do so at the 7th,
7th, 33rd and 35th steps, respectively.

5.2. Error Estimate. Further, we also have for any x0 ∈ B

∥xk+1 − x∥B ≤ ∆2k+2

e

(
1−∆

)∑k
i=0 ξi

∥x0 − x∥B

≤

[
2

Γ(α+3)

]2k+2

e

[
1− 2

Γ(α+3)

]∑k
i=0 ξi

∥x0 − x∥

≤

(
2

Γ(α+3)

)2k+2

e

(
1− 2

Γ(α+3)

)∑k
i=0

1
1+i

∥x0 − x∥, (63)

where we have chosen ξi =
1

1+i ∈ [0, 1]. The estimate obtained in (63) is called a

bound for the error (due to truncation of computation at the k−th iteration).
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5.3. Continuous dependence. One can check easily the continuous dependence
of solutions of equation (1) on initial data. Indeed, for c0 = c1 = d0 = d1 = 0, c2 =
1, d2 = 1

2 , we have

∥x− x∥B ≤ 5M(
1−∆

)
≤

5
∑2

j=0
∥cj−dj∥

j! (b− a)j(
1−∆

)
≤

5
1− 1

2

2!(
1− 2

Γ( 11
2 )

)
≤

5
4(

1− 0.0382096649
)

≤ 5

3.84716134
≃ 1.2997. (64)

5.4. Closeness of Solutions. Next, we consider the perturbed equation:

cDαx(t) =
3t2

5

[ t2 − sin2(x(t))

2
+

cos(x(0)) + cos(x(1))

3
− t2 +

1

7

]
, (65)

t ∈ [0, 1], 2 < α = 5
2 ≤ 3, with the given initial conditions

x(0) = 0, x′(0) = 0, x′′(0) =
1

2
. (66)

Similarly, comparing it with the equation (33), we have

F(t, x(t), x(0), x(1)) =
3t2

5

[ t2 − sin2(x(t))

2
+

cos(x(0)) + cos(x(1))

3
− t2 +

1

7

]
.

One can easily define the mapping T : B → B by

(Tx)(t) =
t2

4
+

1

Γ( 52 )

∫ t

0

(t− s)
3
2
3s2

5

×
[s2 − sin2(x(s))

2
+

cos(x(0)) + cos(x(1))

3
− s2 +

1

7

]
ds, t ∈ I. (67)

In perturbed equation, all conditions of Theorem 3.3 are also satisfied and so by its
conclusion, the sequence {xk} associated with the new three steps iterative method
(6) for the operator T in (67) converges to a unique solution x ∈ B.
Now, we have the following estimate:

|F(t, x(t), x(0), x(1))−F(t, x(t), x(0), x(1))|

= |3t
2

5

[ t2 − sin2(x(t))

2
+

cos(x(0)) + cos(x(1))

3

]
− 3t2

5

[ t2 − sin2(x(t))

2
+

cos(x(0)) + cos(x(1))

3
− t2 +

1

7

]
|

= |3t
2

5
||t2 − 1

7
|
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≤ 3

5

(
1 +

1

7

)
(t ≤ 1)

=
24

35
= ϵ. (68)

Consider the sequences {xk}∞k=0 with xk → x as k → ∞ and {xk}∞k=0 with xk → x
as k → ∞ generated by new three steps iteration method associated with opera-
tors T in (62) and T in (67), respectively with the real sequence {ξk}∞k=0 in [0, 1]
satisfying 1

2 ≤ ξk for all k ∈ N ∪ {0}. Then we have from Theorem 4.4 that

∥x− x∥B ≤
5
[
M + ϵ(b−a)α

Γ(α+2)

]
(
1−∆

)
≤

5
4 + 5× 24

35
1

Γ( 9
2 )(

1− 2
Γ( 11

2 )

)
≤

5
4 + 5× 24

35
32

105
√
π

3.84716134

≤
5
4 + 768

735
√
π

3.84716134

≤
5
4 + 0.589520545

3.84716134

≤ 1.83952055

3.84716134
≃ 0.4782. (69)

This shows that the closeness of solutions and dependency of solutions on functions
involved therein.

5.5. Dependence on Parameters. Finally, we shall prove the dependency of
solutions on real parameters.
We consider the following integral equations involving real parameters µ1, µ2:

cDαx(t) =
3t2

5

[ t2 − sin2(x(t))

2
+

cos(x(0)) + cos(x(1))

3
+ µ1

]
, (70)

and

cDαx(t) =
3t2

5

[ t2 − sin2(x(t))

2
+

cos(x(0)) + cos(x(1))

3
+ µ2

]
, (71)

t ∈ [0, 1], 2 < α = 5
2 ≤ 3.

Based on the above discussion, one can observe that p(t) = p(t) = r(t) = 3t2

5 and

therefore, we have ∆ = ∆. Hence by making similar arguments and from Theorem
4.6, one can have

∥x− x∥B ≤
5
[
M + |µ1 − µ2|Iaαr(t)

]
(
1−∆

)
≤

5
[
1
4 + |µ1 − µ2|I0αr(t)

]
(
1− 2

Γ(α+3)

)
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≤
5
[
1
4 + |µ1 − µ2|I0

5
2 ( 3t

2

5 )
]

(
1− 2

Γ( 11
2 )

)
≤

[
5
4 + |µ1 − µ2|6 t

9
2

Γ( 11
2 )

]
(
1− 2

Γ( 11
2 )

)
≤

[
5
4 + |µ1 − µ2| 6

Γ( 11
2 )

]
3.84716134

≤

[
5
4 + |µ1 − µ2| 96

945
√
π

]
3.84716134

≤

[
5
4 + |µ1 − µ2| 96

945
√
π

]
3.84716134

. (72)

In particular, if we choose µ1 = 9
4 and µ2 = 9

6 , then the above inequality (72) takes
the form

∥x− x∥B ≤

[
5
4 + 18

24
96

945
√
π

]
3.84716134

≤

[
5
4 + 8

105
√
π

]
3.84716134

≤

[
1.25 + 0.042985873

]
3.84716134

≤ 1.29298587

3.84716134
≃ 0.3361 (73)

6. Conclusions

Firstly, we proved the existence and uniqueness of the solution to the IVP (1)-(2)
by a new three steps iterative approach as the main result. Further, we discussed
various properties of solutions like continuous dependence on the initial data, close-
ness of solutions, and dependence on parameters and functions involved therein.
Finally, we provided an appropriate example to support all of the findings along
with the comparison table and graphical representation showing that a new three
steps iteration method is faster than S-iteration, Picard, Mann and Ishikawa iter-
ation processes.

Acknowledgement: The authors are very grateful to the referees for their
comments and remarks.

References

[1] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formu-

las, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics
Series, 55, 9th printing, Washington, 1970.

[2] R. Agarwal, D. O’Regan, and D. Sahu, Iterative construction of fixed points of nearly asymp-
totically nonexpansive mappings, Journal of Nonlinear and Convex Analysis, 8, 61-79, 2007.



JFCA-2023/14(2) SOLUTION VIA A NEW THREE STEPS ITERATION PROCESS 21

[3] Y. Atalan, On a new fixed Point iterative algorithm for general variational inequalities, Jour-

nal of Nonlinear and Convex Analysis, 20, 11, 2371-2386, 2019.

[4] Y. Atalan and V. Karakaya, Iterative solution of functional Volterra-Fredholm integral equa-
tion with deviating argument, Journal of Nonlinear and Convex Analysis, 18, 4, 675-684,

2017.

[5] Y. Atalan and V. Karakaya, Stability of Nonlinear Volterra-Fredholm Integro Differential
Equation: A Fixed Point Approach, Creative Mathematics and Informatics, 26, 3, 247-254,

2017.

[6] Y. Atalan and V. Karakaya, An example of data dependence result for the class of almost
contraction mappings, Sahand Communications in Mathematical Analysis(SCMA), 17,1, 139-

155, 2020.

[7] Y. Atalan, and V. Karakaya, Investigation of some fixed point theorems in hyperbolic spaces
for a three step iteration process, Korean Journal of Mathematics, 27, 4, 929-947, 2019.

[8] Y. Atalan, and V. Karakaya, On Numerical Approach to The Rate of Convergence and Data
Dependence Results for a New Iterative Scheme, Konuralp Journal of Mathematics, 7, 1,

97-106, 2019.

[9] Y. Atalan, F. Gürsoy and A. R. Khan, Convergence of S-iterative method to a solution of
Fredholm integral equation and data dependency, Facta Universitatis, Ser. Math. Inform.,

36, 4, 685-694, 2021.

[10] G. V. R. Babu and K. N. V. V. Vara Prasad, Mann iteration converges faster than ishikawa
iteration for the class of Zamfirescu operators, Fixed Point Theory and Applications, 1, 1-6,

2006.

[11] V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasicontrac-
tive operators, Fixed Point Theory and Applications, 2004, 97-105, 2004.

[12] V. Berinde and M. Berinde, The fastest Krasnoselskij iteration for approximating fixed points

of strictly pseudo-contractive mappings, Carpathian J. Math., 21,(1-2), 13-20, 2005.
[13] V. Berinde, Existence and approximation of solutions of some first order iterative differential

equations, Miskolc Mathematical Notes, 11, 1, 13-26, 2010.
[14] C. E. Chidume, Iterative approximation of fixed points of Lipschitz pseudocontractivemaps,

Proceedings of the American Mathematical Society, 129, 8, 2245-2251, 2001.

[15] R. Chugh, V. Kumar and S. Kumar, Strong Convergence of a new three step iterative scheme
in Banach spaces, American Journal of Computational Mathematics, 2, 345-357, 2012.

[16] M. Dobritoiu, System of integral equations with modified argument, Carpathian J. Math.,

24, 2, 26-36, 2008.
[17] M. Dobritoiu, A class of nonlinear integral equations, TJMM, 4, 2, 117-123, 2012.

[18] M. Dobritoiu, The approximate solution of a Fredholm integral equation, International Jour-

nal of Mathematical Models and Methods in Applied Sciences, 8, 173-180, 2014.
[19] V. Daftardar-Gejji and H. Jafari, Analysis of a system of nonautonomous fractional differen-

tial equations involving Caputo derivatives, J. Math. Anal. Appl., 328, 1026-1033, 2007.

[20] F. Gürsoy andd V. Karakaya, Some Convergence and Stability Results for Two New
Kirk Type Hybrid Fixed Point Iterative Algorithms, Journal of Function Spaces,

doi:10.1155/2014/684191, 2014.

[21] F. Gürsoy, V. Karakaya and B. E. Rhoades, Some Convergence and Stability Results for
the Kirk Multistep and Kirk-SP Fixed Point Iterative Algorithms, Abstract and Applied

Analysis, doi:10.1155/2014/806537, 2014.
[22] E. Hacioglu, F. Gürsoy, S. Maldar, Y. Atalan, and G. V. Milovanovic, Iterative approximation

of fixed points and applications to two-point second-order boundary value problems and to
machine learning, Applied Numerical Mathematics, 167, 143-172, 2021.
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