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UNIQUENESS OF CERTAIN DIFFERENTIAL POLYNOMIALS

WITH FINITE WEIGHT

JAYARAMA H. R∗, GATTI N. B, NAVEENKUMAR S. H AND CHAITHRA C. N

Abstract. Some fundamental terms in Nevanlinna’s value distribution the-
ory m(r, f), N(r, f), T (r, f), etc. and let f(z) and g(z) be two non-constant

meomorphic functions, P (f) and P (g) be a polynomials of degree m, whose

zeros and poles are of multiplicities atleast s, where s is a positive integer,
and let n, k be two positive integers with s(n + m) > 9k + 14. If m ≥ 2

and δ(∞, f) >
2 + d

n+m
, if m = 1 and Θ(∞, f) >

2 + d

n+ 1
, [fnP (f)](k) and

[gnP (g)](k) share 1(1, 0), then either [fnP (f)](k)[gnP (g)](k) ≡ 1 or f(z) and
g(z) satisfy the algebraic equation R(f, g) = 0, where

R(ω1, ω2) = ωm
1 (amωm

1 +am−1ω
m−1
1 +...+a0)−ωm

2 (amωm
2 +am−1ω

m−1
2 +...+a0).

Let f(z) and g(z) be two non-constant entire functions with satisfying inequal-

ity n > 5k + 6m + 7. The present paper deals with the study of uniqueness

of certain differential polynomials with the notion of weighted sharing. The
results of the paper improve and generalize the results of Rajeshwari S, Husna

V and Nagarjun V [6]. We have also exhibited a series of examples satisfying

our results and provided some other examples showing the sharpness of one of
our results.

1. Introduction

Let f(z) be a meromorphic function that is non-constant over the whole complex
plane. We will employ the value distribution theory’s conventional notations as
follows [1],[11],[8].

T (r, f),m(r, f), N(r, f), N(r, f).

We designate any function that satisfies S(r, f) by

S(r, f) = O{T (r, f)}
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as → +∞, perhaps not inside a collection of finite measure. For any constant a,
we define

Θ(a, f) = 1− lim
r→∞

N

(
r, 1

f−a

)
T (r, f)

.

We provide the notations. Let a be a finite complex number, and k a positive

integer. We designate Nk)

(
r,

1

f − a

)
the counting function for zeros of f(z) − a

with multiplicity not greater than k, by Nk)

(
r,

1

f − a

)
the corresponding one for

which multiplicity is not counted. Let N(k

(
r, 1

f−a

)
the counting function for zeros

of f(z)−a with multiplicity a minimum k and N (k

(
r, 1

f−a

)
the corresponding one

for which multiplicity is not counted.

Set Nk

(
r, 1

f−a

)
= N

(
r, 1

f−a

)
+N (2

(
r, 1

f−a

)
+ .....+N (k

(
r, 1

f−a

)
. We define

δk(a, f) = 1− lim
r→∞

sup

Nk

(
r, 1

f−a

)
T (r, f)

.

Let f and g be a two non-constant meromorphic function. If f − a and g − a,
assume the same zeros with the same multiplicities, then we call that f and g share
the value a CM (Counting Multiplicities), we call that f and g share the value a
IM (Ignoring Multiplicity), if we do not consider the multiplicities.

In 2002, C. Y. Fang and M. L. Fann [2] proved the following result.

Theorem 1.1. [2] Let f(z) and g(z) be two nonconstant entire functions, and let

n(≥ 8) be a positive integer. If [fn(z)(f(z) − 1)]f
′
(z) and [gn(z)(g(z) − 1)]g

′
(z)

share 1 CM, then f(z) ≡ g(z).

The following example shows that Theorem 1.1 is not valid when f and g are
two meromorphic functions.

Example 1.1. Let f =
(n+ 2)(h− hn+2)

(n+ 1)(1− hn+2)
,g =

(n+ 2)(1− hn+1)

(n+ 1)(1− hn+2)
, where h = ez.

Then [fn(z)(f(z)−1)]f
′
(z) and [gn(z)(g(z)−1)]g

′
(z) share 1 CM, but f(z) ̸≡ g(z).

In 2002, Fang [10] proved the following result.

Theorem 1.2. [10] Let f(z) and g(z) be two non-constant entire functions, and

let n, k be two positive integers with n > 2k + 8. If [fn(z)(f(z) − 1)]f
′
(z) and

[gn(z)(g(z)− 1)]g
′
(z) share 1CM, then f(z) ≡ g(z).

In 2004, Lin and Yi [12] generalized the above result.

Theorem 1.3. [12] Let f(z) and g(z) be two nonconstant meromorphic functions

with Θ(∞, f) >
2

n+ 1
, and let n(≥ 12) be a positive integer. If [fn(z)(f(z) −

1)]f
′
(z) and [gn(z)(g(z)− 1)]g

′
(z) share 1 CM, then f(z) ≡ g(z).

In 2007, Bhoosnurmath and Dyavanal [4] proved the following results.
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Theorem 1.4. [4] Let f(z) and g(z) be two nonconstant meromorphic functions

satisfying Θ(∞, f) >
3

n+ 1
, and let n, k be two positive integer with n > 3k + 13.

If [fn(z)(f(z)− 1)](k) and [gn(z)(g(z)−)](k) share 1 CM, then f(z) ≡ g(z).

In 2008, L. Liu [3] for some general differential polynomials such as [fn(f −
1)m](k), proved the following result.

Theorem 1.5. [3] Let f(z) and g(z) be two nonconstant entire functions, and let
n,m, k be three positive integer such that n > 5k+4m+9. If [fn(z)(f(z)− 1)m](k)

and [gn(z)(g(z) − 1)m](k) share 1 IM, then either f(z) ≡ g(z) or f and g satisfy
the algebraic equation R(f, g) ≡ 0, where R(ω1, ω2) = ωn

1 (ω1 − 1)m − ωn
2 (ω2 − 1)m.

In 2011, Jin-Dong Li [9] we improve the above results.

Theorem 1.6. [9] Let f(z) and g(z) be two nonconstant mermomorphic func-
tions, and let n, k be two positive integers with n > 3k + 11. If Θ(∞, f) >
2
n , [fn(z)(f(z) − 1)]k, and [gn(z)(g(z) − 1)]k share 1(1, 2), then f(z) ≡ g(z) or

[fn(z)(f(z)− 1)]k.[gn(z)(g(z)− 1)]k ≡ 1.

Theorem 1.7. [9] Let f(z) and g(z) be two nonconstant mermomorphic func-
tions, and let n, k be two positive integers with n > 5k + 14. If Θ(∞, f) >
2
n , [fn(z)(f(z) − 1)]k, and [gn(z)(g(z) − 1)]k share 1(1, 1), then f(z) ≡ g(z) or

[fn(z)(f(z)− 1)]k.[gn(z)(g(z)− 1)]k ≡ 1.

In 2022, Rajeshwari S, Husna V and Nagarjun V. [6] proving the following the-
orem.

Theorem 1.8. [6] Let f(z) and g(z) be two non-constant meromorphic functions.
P (f) and P (g) be a polynomials of degree m and let n, k be two positive integers
with t(n + m) > 3k + 8. If Θ(∞, f) > 2

n+m , [fnP (f)](k) and [gnP (g)](k) share

1(1, 2), then either [fnP (f)](k)[gnP (g)](k) ≡ 1 or f(z) and g(z) satisfy the algebraic
equation R(f, g) = 0 where

R(ω1, ω2) = ωm
1 (amωm

1 +am−1ω
m−1
1 + ...+a0)−ωm

2 (amωm
2 +am−1ω

m−1
2 + ...+a0).

Theorem 1.9. [6] Let f(z) and g(z) be two non-constant meromorphic functions.
P (f) and P (g) be a polynomials of degree m and let n, k be two positive integers
with t(n + m) > 5k + 10. If Θ(∞, f) > 2

n+m , [fnP (f)](k) and [gnP (g)](k) share

1(1, 1), then either [fnP (f)](k)[gnP (g)](k) ≡ 1.

For certain difference polynomial of meromorphic functions and its certain prop-
erties, we refer to the article [[20]]. For recent developments in difference polyno-
mials and different aspects of it, we refer to the articles [[21], [22], [23], [24]].

Now the following question come naturally.

Question 1.1. If we consider the sharing value 1(1,0) in Theorem 1.8 or Theorem
1.9, then what happens?

Question 1.2. Can we take non-constant meromorphic functions in place of non-
constant entire functions in Theorem 1.8 or Theorem 1.9 ?

In this paper we try to solve Question 1.1 and Question 1.2 prove the following
theorems.
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2. Main Results

Theorem 2.1. Let f(z) and g(z) be two non-constant meomorphic functions, P (f)
and P (g) be a polynomials of degree m, whose zeros and poles are of multiplicities
atleast s, where s is a positive integer. and let n, k be two positive integers with

s(n+m) > 9k+14. If m ≥ 2 and δ(∞, f) >
2 + d

n+m
, if m = 1 and Θ(∞, f) >

2 + d

n+ 1
,

[fnP (f)](k) and [gnP (g)](k) share 1(1, 0), then either [fnP (f)](k)[gnP (g)](k) ≡ 1 or
f(z) and g(z) satisfy the algebraic equation R(f, g) = 0, where

R(ω1, ω2) = ωm
1 (amωm

1 +am−1ω
m−1
1 + ...+a0)−ωm

2 (amωm
2 +am−1ω

m−1
2 + ...+a0).

Theorem 2.2. Let f(z) and g(z) be two non-constant entire functions, P (f) and
P (g) be a polynomials of degree m and let n, k be two positive integers with n > 5k+
6m+7. If [fnP (f)](k) and [gnP (g)](k) share 1(1, 0), then either [fnP (f)](k)[gnP (g)](k) ≡
1 or f(z) and g(z) satisfy the algebraic equation R(f, g) = 0, where

R(ω1, ω2) = ωm
1 (amωm

1 +am−1ω
m−1
1 + ...+a0)−ωm

2 (amωm
2 +am−1ω

m−1
2 + ...+a0).

Example 2.1. P (z) = z5 − 1, f(z) =
π2

sin2πz
, g(z) =

π2

cos2πz
, k = 0, and s = 1.

It is easy to see that n + m > 14 and P (f(z))fn(z) = P (g(z))gn(z). Therefore
P (f(z))fn(z) and P (g(z))gn(z) share 1(1, 0). It is also clear that though f and g
satisfy R(f, g) = 0, where R(ω1, ω2) = P (ω1)ω1(z)− P (ω2)ω2(z)

Example 2.2. A polynomial P (z) = amzm + .... + a0 with am ̸= 0 has a pole of
order m at infinity. In fact, conversely, ever entire function P (z) with a pole of
order m at infinity is a polynomial of degree m.

3. Auxiliary definitions

Definition 3.1. [7] A meromorphic function b(z) ( ̸≡ 0,∞) defined in C is called
a “small function” with respect to f(z) if T (r, b(z)) = S(r, f).

Definition 3.2. [7] Let k be a positive integer, for any constant a in the complex
plane C.
We denote

(i) by Nk)

(
r, 1

f−a

)
the counting function of a-pints of f(z) with multiplicity ≥ k.

(ii)by N(k

(
r, 1

f−a

)
the counting function of a-pints of f(z) with multiplicity ≤ k.

Definition 3.3. Let a be an any value in the extended complex plane and let k be
an arbitrary non-negative integer. we define

Θ(a, f) = 1− lim
r→∞

sup

N

(
r, 1

f−a

)
T (r, f)

,

δk(a, f) = 1− lim
r→∞

sup

Nk

(
r, 1

f−a

)
T (r, f)

,

where

Nk

(
r,

1

f − a

)
= N

(
r,

1

f − a

)
+N (2

(
r,

1

f − a

)
+ ...+N (k

(
r,

1

f − a

)
.
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Remark 3.1. By Definition 1.3 we have

0 ≤ δk(a, f) ≤ δk−1(a, f) ≤ δ1(a, f) ≤ θ(a, f) ≤ 1.

4. Lemmas

Lemma 4.1. [1] Let an ̸̸= 0 and the a0, a1, ...., an be finite complex number, and
Let f(z) be a non-constant mermorphic function. Then

T (r, anf
n + an−1f

n−1 + ...+ a0) = nT (r, f) + S(r, f).

Lemma 4.2. [1]Let k be a positive integer, c a non-zero finite complex number,
and f(z) be a non-constant meromorphic function. Then

T (r, f) ≤N(r, f) +N

(
r,

1

f

)
+N

(
r,

1

f (k) − c

)
−N

(
r,

1

f (k+1)

)
+ S(r, f).

≤N(r, f) +Nk+1

(
r,

1

f

)
+N

(
r,

1

f (k) − c

)
−N0

(
r,

1

f (k+1)

)
+ S(r, f).

where N0

(
r,

1

f (k+1)

)
is the counting function which only counts those points such

that f (k+1) = 0, but note that f(f (k+1) − c) ̸= 0.

Lemma 4.3. [3]Let k be a positive integer and let f(z) be a non-constant mero-
morphic function. If f (k) ̸≡ 0 is true, then

N

(
r,

1

f (k)

)
≤ N

(
r,

1

f

)
+ kN(r, f) + S(r, f).

Lemma 4.4. [5]Let t, k be any two positive integers and let f(z) be a non-constant
meromorphic function.

Ns

(
r,

1

f (k)

)
≤ kN(r, f) +Nt+s

(
r,

1

f

)
+ S(r, f).

Clearly, N

(
r,

1

f (k)

)
= N1

(
r,

1

f (k)

)
.

Lemma 4.5. [1]Let f(z) be a transcendental meromorphic function and let b1(z),
b2(z) be two meromorphic functions such that T (r, bj) = S(r, f), j = 1, 2, ...., n.
Then

T (r, f) ≤ N(r, f) +N

(
r,

1

f − b1

)
+N

(
r,

1

f − b2

)
.

Lemma 4.6. Let f(z) and g(z) be two non-constant meromorphic functions, let
k ≥ 1, l ≥ 0 be two positive integers. Suppose that f (k) and g(k) share (1, l), if l = 0
and

∆ = (2k+4)Θ(∞, f)+(2k+3)Θ(∞, g)+Θ(0, f)+Θ(0, g)+3δk+1(0, f)+2δk+1(0, g) > 4k+13.
(1)

Then either f (k)g(k) ≡ 1 or f(z) ≡ g(z)

Proof. Let

h(z) =
f (k+2)

f (k+1)
− 2

f (k+1)

f (k) − 1
− g(k+2)

g(k+1)
+ 2

g(k+1)

g(k) − 1
. (2)

Assume that h ̸≡ 0.
By replacing their Taylaor series at z0, if z0 is common simple 1-point of f (k) and
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g(k), equation (2). We observe that z0 is an integer zero of h(z).
As a result, we have

N11

(
r,

1

f (k) − 1

)
= N11

(
r,

1

g(k) − 1

)
≤ N

(
r,

1

h

)
≤ T (r, f)+0(1) ≤ N(r, h)+S(r, f)+S(r, g)

(3)
According to our hypothesis, h(z) have poles exclusively at the zeros of f (k+1)

and g(k+1), poles of f and g and those 1-point of f (k) and g(k) whose multiplici-
ties are different from the multiplicities of correspond to 1-point of f (k) and g(k),
respectively, we draw conclusion from

N(r, h) ≤N(r, f) +N(r, g) +N

(
r,

1

f

)
+N

(
r,
1

g

)
+N0

(
r,

1

f (k+1)

)
+N0

(
r,

1

g(k+1)

)
+NL

(
r,

1

f (k) − 1

)
+NL

(
r,

1

g(k) − 1

)
.

(4)

Here N0

(
r,

1

f (k+1)

)
has the same meaning as in Lemma 4.2

By Lemma 4.2 we have

T (r, f) ≤ N(r, f)+Nk+1

(
r,

1

f

)
+N

(
r,

1

f (k) − 1

)
−N0

(
r,

1

f (k+1)

)
+S(r, f). (5)

T (r, g) ≤ N(r, g) +Nk+1

(
r,
1

g

)
+N

(
r,

1

g(k) − 1

)
−N0

(
r,

1

g(k+1)

)
+ S(r, g). (6)

Since f (k) and g(k) share (1, 0), we get

N

(
r,

1

f (k) − 1

)
+N

(
r,

1

g(k) − 1

)
=2N11

(
r,

1

f (k) − 1

)
+ 2NL

(
r,

1

f (k) − 1

)
+ 2NL

(
r,

1

g(k) − 1

)
+ 2N

(2)
E

(
r,

1

f (k) − 1

)
.

(7)

By (3)-(7), we have

T (r, f) + T (r, g) ≤N11

(
r,

1

f (k) − 1

)
+ 2N

(2)
E

(
r,

1

f (k) − 1

)
+N0

(
r,

1

f (k+1)

)
+N0

(
r,

1

g(k+1)

)
+ 3NL

(
r,

1

f (k) − 1

)
+ 3NL

(
r,

1

g(k) − 1

)
+ 2N(r, f) + 2N(r, g) +N

(
r,

1

f

)
+N

(
r,
1

g

)
+ S(r, f) + S(r, g).

(8)

Since

N

(
r,

1

g(k) − 1

)
≤T (r, g(k)) + S(r, f) = m(r, g(k)) +N(r, f) + S(r, g)

≤m(r, g) +m

(
r,
g(k)

g

)
+N(r, f) + kN(r, g) + S(r, f)

≤T (r, g) + kN(r, g) + S(r, g).

(9)
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By lemma 4.3, we have

NL

(
r,

1

f (k) − 1

)
≤N

(
r,

1

f (k) − 1

)
+N

(
r,

1

f (k) − 1

)
≤ N

(
r,

f (k)

f (k+1)

)
≤N

(
r,
f (k+1)

f (k)

)
+ S(r, f)

≤N

(
r,

1

f (k)

)
+N(r, f) + S(r, f)

≤(k + 1)N(r, f) +Nk+1

(
r,

1

f

)
+ S(r, f).

(10)

Similarly (10), we have

NL

(
r,

1

g(k) − 1

)
≤ (k + 1)N(r, g) +Nk+1

(
r,
1

g

)
+ S(r, g). (11)

If l = 0, it is easy to see that

N11

(
r,

1

f (k) − 1

)
+ 2N

2)
E

(
r,

1

f (k+1)

)
+NL

(
r,

1

f (k) − 1

)
+ 2NL

(
r,

1

g(k) − 1

)
≤N

(
r,

1

g(k) − 1

)
+ S(r, f) + S(r, g).

(12)

From (5), (6), (8) and (9)-(11), we get

T (r, f) ≤3Nk+1

(
r,

1

f

)
+ 2Nk+1

(
r,
1

g

)
+N

(
r,

1

f

)
+N

(
r,
1

g

)
+ (2k + 4)N(r, f) + (2k + 3)N(r, g) + S(r, f) + S(r, g).

Without loss of generality, we suppose that there exists a set I with infinite measure
such that
T (r, g) ≤ T (r, f) for r ∈ I:

T (r, f){[4k + 14− (2k + 4)Θ(∞, f)− (2k + 3)Θ(∞, g)−Θ(0, f)−Θ(0, g)

− 3δk+1(0, f)− 2δk+1(0, g)] + ϵ}T (r, f) + S(r, f)

For r ∈ I and

0 < ϵ < (2k+4)Θ(∞, f)+(2k+3)Θ(∞, g)+Θ(0, f)+Θ(0, g)+3δk+1(0, f)+2δk+1(0, g)−4k−13.

Thus we obtain from (1), that T (r, f) ≤ S(r, g) for r ∈ I, by a contradiction.
Hence, we get h(z) ≡ 0, that is

f (k+2)

f (k+1)
− 2

f (k+1)

f (k) − 1
=

g(k+2)

g(k+1)
− 2

g(k+1)

g(k) − 1
.

By solving this equation, we obtain

1

f (k) − 1
=

bg(k) + a− b

g(k) − 1
.

Where a, b are two constants. By using the argument of as in [4], we can obtain
f (k)g(k) ≡ 1 or f ≡ g, we here omit the detail.
The proof the Lemma 4.6 is completed. □
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Let f and g be an entire function; we have Θ(∞, f) = 1 and Θ(∞, g) = 1 Using
the same argument as above Lemma 4.6, we can easily obtain the following lemma.

Lemma 4.7. Let f(z) and g(z) be a two non-constant entire functions, let k ≥ 1,
l ≥ 1 be two positive integers. Suppose that f (k) and g(k) share (1, l), if l = 0 and

∆ = Θ(0, f) + Θ(0, g) + 3δk+1(0, f) + 2δ(0, g) > 6.

Then either f (k)g(k) ≡ 1 or f(z) = g(z).

5. Main Results Proof

Theorem 2.1.

Proof. Let F (z) = fnP (f) and G(z) = gnP (g). We have from Lemma 4.6

∆ = (2k+4)Θ(∞, f)+(2k+3)Θ(∞, g)+Θ(0, f)+Θ(0, g)+3δk+1(0, f)+2δk+1(0, g).
(13)

N

(
r,

1

F

)
= N

(
r,

1

fnP (f)

)
≤ 1

s(n+m)
N

(
r,

1

F

)
≤ 1

s(n+m)
(T (r, F ) +O(1)).

(14)
Since

Θ(0, F ) =1− lim
r→∞

N

(
r, 1

F

)
T (r, F )

= 1− lim
r→∞

N

(
r, 1

fnP (f)

)
s(n+m)T (r, f)

≥1− lim
r→∞

N

(
r,

1

fn

)
+N

(
r,

1

P (f)

)
s(n+m)T (r, f)

i.e,

Θ(0, F ) ≥ 1− 1

s(n+m)
. (15)

Similarly

Θ(0, G) ≥ 1− 1

s(n+m)
. (16)

Θ(∞, F ) =1− lim
r→∞

N(r, F )

T (r, F )
= 1− lim

r→∞

N(r, fnP (f))

s(n+m)T (r, f)

≥1− lim
r→∞

T (r, f)

s(n+m)T (r, f)

i.e,

Θ(∞, F ) ≥ 1− 1

s(n+m)
. (17)

Similarly

Θ(∞, G) ≥ 1− 1

s(n+m)
. (18)

Moreover

δk+1(0, F ) =1− lim
r→∞

Nk+1

(
r, 1

F

)
T (r, f)

≥1− k + 1

s(n+m)
.

(19)
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Similarly

δk+1(0, G) = 1− k + 1

s(n+m)
. (20)

From the inequalities (15)-(20), we get,

∆ ≥ (2k+4)

(
1− 1

s(n+m)

)
+(2k+3)

(
1− 1

s(n+m)

)
+2

(
1− 1

s(n+m)

)
+5

(
1− k + 1

s(n+m)

)
On simplyfying, the above expression, we get

∆ ≥ 4k + 14− 9k + 14

n+m
.

Since n > 9k+14, we get ∆ ≥ 4k+13. Considering that F (k) and G(k) share (1,0),
then by Lemma 4.6, we deduce that either F (k)G(k) ≡ 1 or F ≡ G.
Next we consider the following two cases.
Case 1. F (k)G(k) ≡ 1, that is

[fnP (f)][gnP (g)] ≡ 1. (21)

Case 2. F ≡ G, that is

fnP (f) = gnP (g). (22)

Suppose that f ≡ g, then we consider following two cases:

i . Let h =
f

g
be a constant. Then from (22), we get

fn[amfm + am−1f
m−1 + .....+ a1z] = gn[amgm + am−1g

m−1 + .....+ a1z].

i.e,

[amgn+m(hm+n − 1) + am−1g
m+n−1(hm+n−1 − 1) + .....+ a1g

n(hn − 1) = 0]. (23)

If follow that, hn ̸= 1, hn+m ̸= 1, hm+n−1 ̸= 1 and
amgn+m(hn+m − 1) + ......+ a1g

n(hn − 1) = 0.
Which implies, that hd1 = 1.
Where d1 = GCD(n+m,n+m− i, ..., n), am−i ̸= 0 for i = 0, 1, 2, ....,m.

ii . Let h =
f

g
be a not constant.

Eq (23), given as

gn+m(hn+m − 1) = −gn(hn − 1). (24)

Assume that h is a non-constant meromorphic function that is not constant.
By (24), we have

gm = − hn − 1

hn+m − 1
(25)

If h ̸≡ 1, if d = gcd(n,m). Then clearly hd = 1 is the common factor of
hn − 1 and hn+m − 1.
As result (25), we have

gm = − 1 + h+ ....+ hn−d

1 + h+ ....+ hn+m−d
. (26)

Then substituting f = hg, if m ≥ 2, then from above, we get that every
poles of

fm = − (1 + h+ ....+ hn−d)hm

1 + h+ ....+ hn+m−d
.
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If follow that,

T (r, f) =
n+m

m
T (r, h) + S(r, f).

On the other hand, every poles of f of order p must be a zero hn+m − 1 of
order mp. Hence

N(r, f) =
1

m

N∑
i=1

N

(
r,

1

h− λi

)
≥ 1

m
[n+m− d− 2]T (r, h) + S(r, f).

As r → ∞. Here λ1, λ2, ....., λn+m−d are (n+m−d) distinct finite complex

numbers satisfying λi ̸= 1 and λn+m−d
i = 1 for 1 ≤ i ≤ n+m−d. We have

δ(∞, f) = 1− lim
r→∞

N(r, f)

T (r, f)
≤1− lim

r→∞

n+m− d− 2

m
T (r, h) + S(r, f)

n+m

m
T (r, h) + S(r, f)

≤1− n+m− d− 2

n+m

≤ 2 + d

n+m
.

Which contradicts the assumption δ(∞, f) >
2 + d

n+m
.

If m = 1 (26), we get

g =
1 + h+ .....+ hn−d

1 + h+ .....+ hn+1−d

From f = hg, we have

f =
(1 + h+ .....+ hn−d)h

1 + h+ .....+ hn+1−d

It follow that T (r, f) = T (r, gh) = (n+ 1− d)T (r, h) + S(r, f).
On the hand, by the second fundamental theorem we have

N(r, f) =

N∑
j=1

N

(
r,

1

h− λj

)
≥ (n− d− 1)T (r, h) + S(r, f).

As r → ∞. Here λ1, λ2, ....., λn+1−d are (n+ 1− d) distinct finite complex

numbers satisfying λj ̸= 1 and λn+1−d
j = 1 for 1 ≤ j ≤ n+ 1− d. We have

Θ(∞, f) = 1− lim
r→∞

N(r, f)

T (r, f)
≤1− lim

r→∞

(n− d− 1)T (r, f) + S(r, f)

(n+ 1)T (r, f) + S(r, f)

≤1− n− d− 1

n+ 1

≤ 2 + d

n+ 1
.

Which contradicts to the assumption that Θ(∞, f) >
2 + d

n+ 1
Thus h ≡ 1, that is, F ≡ G. Hence the proof of Theorem 2.1.

□
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Theorem 2.2.

Proof. Let F (z) = fnP (f) and G(z) = gnP (g).
where F and G are two entire functions. We have from Lemma 4.7

∆ = Θ(0, f) + Θ(0, g) + 3δk+1(0, f) + 2δk+1(0, g). (27)

Since

Θ(0, F ) =1− lim
r→∞

N

(
r, 1

F

)
T (r, F )

= 1− lim
r→∞

N

(
r, 1

fnP (f)

)
(n+m)T (r, f)

≥1− lim
r→∞

N

(
r,

1

fn

)
+N

(
r,

1

P (f)

)
(n+m)T (r, f)

i.e,

Θ(0, F ) ≥ 1− m+ 1

n+m
. (28)

Similarly

Θ(0, G) ≥ 1− m+ 1

n+m
. (29)

Moreover,

δk+1(0, F ) =1− lim
r→∞

Nk+1

(
r, 1

F

)
T (r, f)

≥
(k + 1)N

(
r, 1

fn

)
+Nk+1

(
r,

1

P (f)

)
(n+m)T (r, f)

i.e,

δk+1 ≥ 1− k + 1 +m

n+m
. (30)

Similarly

δk+1(0, G) = 1− k + 1 +m

n+m
(31)

From the inequalities (28)-(31), we get,

∆ ≥ 2

(
1− m+ 1

n+m

)
+ 5

(
1− k + 1 +m

n+m

)
On simplyfying, the above expression, we get

∆ ≥ 7− 5k + 7m+ 7

n+m

Since n > 5k + 6m+ 7, we get ∆ ≥ 6. Considering that F (k) and G(k) share (1,0),
then by Lemma 4.7 we deduce that either F (k)G(k) ≡ 1 or F ≡ G.
Next we consider the following two cases.
Case 1. F (k)G(k) ≡ 1, that is

[fnP (f)][gnP (g)] ≡ 1.

Case 2. F ≡ G, that is

fnP (f) = gnP (g), (32)
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we also say

fn[amfm + am−1f
m−1 + .....+ a1z] = gn[amgm + am−1g

m−1 + .....+ a1z]. (33)

Let h =
f

g
. If h is a constant, then substituting f = gh into (33) we deduce

amgn+m(hm+n − 1) + am−1g
m+n−1(gm+n−1 − 1) + .....+ a1g

n(hn − 1) = 0.

Which implies, that hd1 = 1.
Where d1 = GCD(n + m,n + m − i, ..., n), am−i ̸= 0 for i = 0, 1, 2, ....,m. Thus
f(z) ≡ g(z). If h is not a constant, then we know by (32) that f and g satisfy the
algebraic equation R(f, g) = 0, where

R(ω1, ω2) = ωm
1 (amωm

1 +am−1ω
m−1
1 + ...+a0)−ωm

2 (amωm
2 +am−1ω

m−1
2 + ...+a0).

This completes the proof of Theorem 2.2. □
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