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EXISTENCE AND UNIQUENESS OF SOLUTION TO A FRACTIONAL

EULER-LAGRANGE EQUATION WITH BOTH RIEMANN-LIOUVILLE AND

CAPUTO DERIVATIVES

MOHAMED A. E. HERZALLAH

Abstract. Existence and uniqueness of mild and strong solutions to the fractional nonlinear bound-
ary value problem, with Riemann-Liouville and Caputo derivatives,

C
t Dα

b
R
0 Dβ

t x(t) = f(t, x(t)), x(b) = xb, 0I
1−β
t x(t)|t=0 = 0, α, β ∈ (0, 1), t ∈ [0, b]

will be discussed. Continuous dependence of solution on the boundary condition will be proved. An
example will be given to illustrate our results.

1. Introduction

The fractional calculus started to be successfully applied in many fields involving the dynamics of
complex systems.

In this case the fractional proposed models may involved left and right fractional derivatives. We
mention here the fractional Euler-Lagrange equations [2, 6] as a particular and important case of
fractional equations with two types of derivatives. These new types of equations required special
attention because of their complex form, therefore the study of the existence, uniqueness and continuous
dependence is still an open problem in the field of fractional calculus. (see [1, 3, 4, 7, 10, 11, 12]).

Our goal is giving the definition of mild and strong solutions with discussing the existence and
uniqueness of them to the problem

C
t D

α
b

R
0 D

β
t x(t) = f(t, x(t)), x(b) = xb, 0I

1−β
t x(t)|t=0 = 0, α, β ∈ (0, 1), t ∈ J := [0, b]. (1)

The rest of this paper is organized as follows: In section 2, principal definitions and theorems used
in this paper will be given. The main results are collected in section 3, The existence results follow
from Schauder fixed point theorem and the uniqueness of solutions is a consequence of the Banach
contraction principle. Finally our conclusions are given in section 4.

2. Preliminaries

Here we collect the definitions and results which will be used in the sequel.
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Left and right Riemann-Liouville fractional integrals to the function f ∈ L1(J), the set of all
integrable functions on the interval J = [a, b] , with α > 0 are defined by (see [9])

aI
α
t f(t) =

1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ,

tI
α
b f(t) =

1

Γ(α)

∫ b

t

(τ − t)α−1f(τ)dτ.

About fractional derivative there are a lot of definitions. In our problem, we use two of them: the
first is the left Riemann-Liouville fractional derivative which is defined by

R
a D

α
t f(t) =

1

Γ(n− α)
Dn

∫ t

a

(t− τ)n−α−1f(τ)dτ, (2)

where n − 1 < α < n and D = d
dt . And the second is the right Caputo fractional derivative which is

defined by

C
t D

α
b f(t) =

1

Γ(n− α)

∫ b

t

(τ − t)n−α−1(−D)nf(τ)dτ (3)

In the following lemma we give some properties of these fractional operators’ spaces (for detail see
[8, 9]).

Lemma 2.1. we have that

(1) If f ∈ AC(J), the set of all absolutely continuous functions from J into R, then aI
α
t f ∈ AC(J);

(2) If f ∈ C(J), the set of all continuous functions from J into R, then aI
α
t f ∈ C(J);

(3) If f is a Riemann integrable function, then aI
α
t f(t) exists for all t ∈ J ;

(4) If f ∈ L1(J), then aI
α
t f(t) exists almost every where and aI

α
t f(t) ∈ L1(J);

(5) The left Riemann-Liouville fractional derivative of f(t) exists if aI
1−α
t f ∈ AC(J) which gives

R
a D

α
t f ∈ L1(J),

(6) The right Caputo fractional derivative of f(t) exists if f ∈ AC(J) which gives C
a D

α
t f ∈ L1(J).

Finally, we recall the Schauder fixed point theorem as follows. (see [5, 11]):

Theorem 2.2. Let X be a Banach space, and E be a nonempty, closed, convex subset of X. If
T : E → E is a continuous mapping, such that T (E) is a relative compact subset of X, then T has at
least one fixed point in E.

3. Main Results

Consider the nonhomogeneous linear problem

C
t D

α
b

R
0 D

β
t x(t) = y(t), x(b) = xb, 0I

1−β
t x(t)|t=0 = 0, α, β ∈ (0, 1), t ∈ J (4)

Firstly, on the basis of the following lemma, we transform problem (4) to a fixed point problem. Then
we give the definition of mild and strong solution to (1), and then the existence and uniqueness results
for the obtained fixed point problem is discussed.

Lemma 3.1. If x(t) is a solution of (4) with y ∈ C(J), then x(t) is a solution of the integral equation

x(t) =
tβ

bβ

(
xb −

∫ b

0

(b− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
y(τ)dτds

)
+

∫ t

0

(t− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
y(τ)dτds

(5)
The converse is satisfied if y ∈ AC(J).

Proof. Operating by tI
α
b on both sides we get

R
0 D

β
t x(t) =t I

α
b y(t) + c1, c1 := R

0 D
β
t x(t)|t=0. (6)
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Operating on both sides by 0I
β
t with using the given conditions we get our problem in the form

x(t) =
tβ

bβ

(
xb −

∫ b

0

(b− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
y(τ)dτds

)
+

∫ t

0

(t− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
y(τ)dτds.

(7)
Conversely, if y ∈ AC(J) then tI

α
b y(t) ∈ AC(J) which gives that x ∈ AC(J). It is easy to see that

x(b) = xb and 0I
1−α
t x(t)|t=0 = 0. Now, operating by R

0 D
β
t on both sides of (5) we get

R
0 D

β
t x(t) =

Γ(β + 1)

bβΓ(β + 1− α)

(
xb −

∫ b

0

(b− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
y(τ)dτds

)
+ tI

α
b y(t). (8)

Operating by C
t D

α
b on both sides gives

C
t D

α
b

R
0 D

β
t x(t) = y(t)

which completes the proof. �

Now we can define mild and strong solution to (1) as follows:

Definition 3.1. Let J = [0, b], the mild solution to (1) on J is a function x ∈ C(J) which satisfies

x(t) =
tβ

bβ

(
xb −

∫ b

0

(b− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
f(τ, x(τ))dτds

)

+

∫ t

0

(t− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
f(τ, x(τ))dτds. (9)

Moreover if the solution to the integral equation 9 satisfies R
0 D

β
t x ∈ AC(J) and (1) holds on J , it is

called a strong solution to problem (1).

Now for the integral equation (9) we define

Fx(t) =
tβ

bβ

(
xb −

∫ b

0

(b− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
f(τ, x(τ))dτds

)

+

∫ t

0

(t− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
f(τ, x(τ))dτds (10)

on the space C(J) with the sup-norm.
Consider the following hypothesis:

(H1) The function f : J × R → R is measurable in t ∈ J for each x ∈ R and continuous in x ∈ R
for almost all t ∈ J ;

(H2) |f(t, z)| ≤ a1(t) + a2(t)|z|, where a1, a2 ∈ L1(J) are nonnegative functions;

Let

M1 =

∣∣∣∣∣xb −
∫ b

0

(b− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
f(τ, x(τ))dτds

∣∣∣∣∣ ,
M2 = sup

t∈J

(∫ t

0

(t− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
a1(τ)dτds

)
and

M3 = sup
t∈J

(∫ t

0

(t− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
a2(τ)dτds

)
.

Theorem 3.2. Let the function f satisfies (H1)-(H2), then if M3 < 1 there exists at least one solution
to the integral equation (9).
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Proof. We prove this theorem in some steps Let Br = {x ∈ C(J) : ∥x∥ ≤ r} where r ≥ M1+M2

1−M3
,

Clearly, B̄r is nonempty, closed, bounded, and convex.
Step 1: F is a uniformly bounded in B̄r.
Let x ∈ B̄r and use (H1) we obtain

|F (x(t))| =

∣∣∣∣∣ tβbβ
(
xb −

∫ b

0

(b− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
f(τ, x(τ))dτds

)

+

∫ t

0

(t− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
f(τ, x(τ))dτds

∣∣∣∣∣
≤ tβ

bβ
M1 +

∣∣∣∣∣
∫ t

0

(t− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
f(τ, x(τ))dτds

∣∣∣∣∣
≤ M1 +

∫ t

0

(t− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
(a1(τ) + a2(τ)|x(τ)|)dτds

≤ M1 +

∫ t

0

(t− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
a1(τ)ds

+

∫ t

0

(t− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
a2(τ)|x(τ)|dτds,

and where ∥Fx∥ = supt∈J |F (x(t))|, we get that

∥Fx∥ ≤ M1 +M2 +M3∥x∥ ≤ r

which proves that F : B̄r → B̄r is uniformly bounded
Step 2: F (B̄r) is relatively compact.
let t1 < t2 ∈ (0, b) and x ∈ B̄r, then we have

|Fx(t2)− Fx(t1)| =

∣∣∣∣∣ tβ2 − tβ1
bβ

[
xb −

∫ b

0

(b− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
f(τ, x(τ))dτds

]

+

∫ t2

0

(t2 − s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
f(τ, x(τ))dτds

−
∫ t1

0

(t1 − s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
f(τ, x(τ))dτds

]∣∣∣∣∣
=

tβ2 − tβ1
bβ

M1 +

∣∣∣∣∣
∫ t1

0

(
(t2 − s)β−1

Γ(β)
− (t1 − s)β−1

Γ(β)

)∫ b

s

(τ − s)α−1

Γ(α)
f(τ, x(τ))dτds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t2

t1

(t2 − s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
f(τ, x(τ))dτds

]∣∣∣∣∣
≤ tβ2 − tβ1

bβ
M1 +M5

bα

Γ(α+ 1)

[
tβ2 − tβ1
Γ(β + 1)

+
2(t2 − t1)

β

Γ(β + 1)

]
,

Which proves that all the functions in F (B̄r) are equicontinuous. According to Arzela-Ascoli theorem,
F (B̄r) is a relatively compact set.
Step 3: F is a continuous operator
Let xn be a sequence in B̄r converges to x ∈ B̄r, then from (H1)

f(t, xn(t)) → f(t, x(t)) as n → ∞



JFCA-2022/13(2) EXISTENCE AND UNIQUENESS OF SOLUTION 263

and (τ−s)α−1

Γ(α) f(τ, xn(τ)) is a sequence of measurable functions such that

(τ − s)α−1

Γ(α)
f(τ, xn(τ)) →

(τ − s)α−1

Γ(α)
f(τ, x(τ)) as n → ∞, a.e. τ ∈ [s, b]

with

| (τ − s)α−1

Γ(α)
f(τ, xn(τ))| ≤

(τ − s)α−1

Γ(α)
(a1(τ) + a2(τ)|xn(τ)|) ∈ L1(J)

Now applying Lebesgue-dominated convergence theorem to obtain∫ b

s

(τ − s)α−1

Γ(α)
f(τ, xn(τ))dτ →

∫ b

s

(τ − s)α−1

Γ(α)
f(τ, x(τ))dτ as n → ∞.

Applying Lebesgue-dominated convergence theorem again to
∫ b

s
(τ−s)α−1

Γ(α) f(τ, xn(τ))dτ , which satisfies

its conditions on [0, b], to obtain as n → ∞∫ b

0

(b− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
f(τ, xn(τ))dτds →

∫ b

0

(b− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
f(τ, x(τ))dτds

and ∫ t

0

(b− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
f(τ, xn(τ))dτds →

∫ b

0

(b− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
f(τ, x(τ))dτds

Which prove that limn→∞ Fxn(t) = Fx(t). Thus F is a continuous operator. Now from Step 1 - Step
3 we can apply the Schauder fixed point theorem, which gives that F has a fixed point in B̄r which is
the required solution. �

Consider the following hypothesis

(H3) |f(t, z1)− f(t, z2)| ≤ h(t)|z1 − z2|, where h ∈ C(J) is a nonnegative function.

Corollary 3.3. Let the function f satisfies (H1) and (H3), then if M3 < 1 there exists at least one
solution to the integral equation (9) (where a2(t) = h(t)).

Proof. Taking a1(t) = |f(t, 0) and a2(t) = h(t) we get by using (H3) that

|f(t, x)| = |f(t, 0)+f(t, x)−f(t, 0)| ≤ |f(t, 0)|+ |f(t, x)−f(t, 0)| ≤ |f(t, 0)|+h(t)|x| = a1(t)+a2(t)|x|

thus (H2) is satisfied, which completes the proof. �

Remark 1. It is noted that the solution to the integral equation (9) given in the previous theorems is
only a continuous function which proves that it is only a mild solution to (1) not a strong one.

Example 3.1. Consider the problem

C
t D

α
b

R
0 D

β
t x(t) =

A

2
t sin(x(t)) + t4, x(b) = xb, 0I

1−β
t x(t)|t=0 = 0, α, β ∈ (0, 1), A = constant. (11)

It is obvious that f(t, x(t)) = A
2 tsin(u(t)) + t4 satisfies the conditions of Theorem 3.2 with a1(t) = t4

and a2(t) =
A
2 t. Then the problem (11) has a mild solution.

Now for uniqueness of solution we get the following theorem which depends on the Banach contraction
principle.

Theorem 3.4. Let the function f satisfies (H1) and (H3), then if M3 < 1 and ∥h∥(2β+α)bβ+α

(β+α)Γ(β+1)Γ(α+1) < 1,

then there exists a unique solution to the integral equation (9).
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Proof. From Corollary 3.3 and step 1 in Theorem 3.2, we get that F : B̄ → B̄. Now for any x, y ∈ B̄
we have

|Fx(t)− Fy(t)| ≤
∫ b

0

(b− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
|f(τ, x(τ))− f(τ, y(τ))|dτds

+

∫ t

0

(t− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
|f(τ, x(τ))− f(τ, y(τ))|dτds

≤
∫ b

0

(b− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
h(τ)|x(τ)− y(τ)|dτds

+

∫ t

0

(t− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
h(τ)|x(τ)− y(τ)|dτds

≤ ∥h∥∥x− y∥

(∫ b

0

(b− s)β+α−1

Γ(β)Γ(α+ 1)
ds+

bα

Γ(α+ 1)

∫ t

0

(t− s)β−1

Γ(β)
ds

)

≤ ∥h∥(2β + α)bβ+α

(β + α)Γ(β + 1)Γ(α+ 1)
∥x− y∥.

Thus we get

∥Fx− Fy∥ ≤ ∥h∥(2β + α)bβ+α

(β + α)Γ(β + 1)Γ(α+ 1)
∥x− y∥.

Thus the operator F is a contraction mapping on a Banach space B̄ then applying Banach fixed point
theorem we get the result. �

Finally, in the following theorem we prove the continuous dependence of the solution on the boundary
condition.

Theorem 3.5. Let the function f satisfies (H1) and (H3), with M3 < 1 and ∥h∥(2β+α)bβ+α

(β+α)Γ(β+1)Γ(α+1) ̸= 1,

then the solution to the integral equation (9) depends continuously on the given boundary condition xb.

Proof. Let x and y are two solutions of (9) with boundary condition xb and yb respectively, then we
have

|x(t)− y(t)| ≤ |xb − yb|+
∫ b

0

(b− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
|f(τ, x(τ))− f(τ, y(τ))|dτds

+

∫ t

0

(t− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
|f(τ, x(τ))− f(τ, y(τ))|dτds

≤ |xb − yb|+
∫ b

0

(b− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
h(τ)|x(τ)− y(τ)|dτds

+

∫ t

0

(t− s)β−1

Γ(β)

∫ b

s

(τ − s)α−1

Γ(α)
h(τ)|x(τ)− y(τ)|dτds

≤ |xb − yb|+
∥h∥(2β + α)bβ+α

(β + α)Γ(β + 1)Γ(α+ 1)
∥x− y∥.

which implies

∥x− y∥ ≤ 1

1− ∥h∥(2β+α)bβ+α

(β+α)Γ(β+1)Γ(α+1)

|xb − yb| (12)

which completes the proof. �
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4. Conclusion

The fractional variational principles played an important role in fractional control problems as well
as in physics. The Euler-Lagrange equations contain different types of fractional derivative. In this
paper we discuss one of them which contains both left Riemann-Liouville and right Caputo fractional
derivatives, we prove the existence of mild solution and give the conditions to obtain a unique solution
with proving that this mild solution depends continuously on the boundary conditions.
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