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A NOTE ON THE LOCAL STABILITY THEORY FOR CAPUTO
FRACTIONAL PLANAR SYSTEM

MARVIN HOTI

ABSTRACT. In this manuscript a new approach into analyzing the local sta-
bility of equilibrium points of non-linear Caputo fractional planar systems is
shown. It is shown that the equilibrium points of such systems can be a stable
focus or unstable focus. In addition, it is proposed that previous results re-
garding the stability of equilibrium points have been incorrect, the results here
attempt to correct such results. Lastly, it is proposed that a Caputo fractional
planar system cannot undergo a Hopf bifurcation, contrary to previous results
prior.

1. INTRODUCTION

Fractional Differential Equations (FDE) have been growing in popularity in the
field of applied mathematics, in particular in the field of mathematical modeling,
see [1, 5, 12, 13, 15, 16, 18]. The primary modelling approach in the references
is via Dynamical Systems with o € (0, 1), where « is the order of the derivative.
Such models are particularly popular in modelling disease spread of Predator-Prey
interactions (ecosystems), see [2, 8, 17, 20]. Traditionally, the authors in those
papers are interested in determining the qualitative behavior of the system near
its equilibria points, by employing the classical theory of local stability analysis
or bifurcation theory. Similarly, for the fractional case, authors attempt to do the
same.

However, due to the complexity of the fractional derivative, the results obtained
are not always as strong as the classical. non-fractional, case. That is to say, for
the classical case the local stability theory is well developed and it is easy to justify
the qualitative behavior of a system near its equilibria point, as well as provide a
complete characterization of the solutions. However, for the fractional case this is
not the case.

In [19] Corollary 2, it was shown that a Caputo autonomous fractional order
system, with order « € (0, 1), cannot have a non-constant smooth periodic solu-
tion. This result leads to Proposition 1. In which, it is concluded that a Caputo
autonomous system cannot undergo a Hopf bifurcation. Contrary to the results
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mentioned in, for example, [18]. Additionally, it is shown that, under suitable con-
ditions, that an equilibrium point of a Captuo fractional system can be a stable
focus or unstable focus. The condition is given in terms of «, indicating that the
fractional order influences the qualitative behaviour.

Additionally, in Theorem 2 and its proof we show that the results obtained by
the authors in [6] Theorem 4 (a), and (f) are incorrect, see remark 2

In summary:

(1) Tt is shown that the local stability of hyperbolic equilibrium points of a Ca-
puto fractional planar system can be analyzed by studying the asymptotic
behavior of the Mittag-Leffler function defined in Definition 3.

(2) Tt shown that, depending on « € (0,1), that the hyperbolic equilibrium
point can be an unstable focus, stable focus or locally asymptotically stable,
provided that the eigenvalues are complex with a positive real part. The
results for unstable focus and stable focus are new.

(3) It is concluded that a Caputo autonomous fractional order system of order
a € (0,1) cannot undergo a Hopf bifurcation.

2. PRELIMINARIES

Definition 1 Let 0 < a < 1. The operator J¢, defined on L![a,b] by

T ) = e [ =0 @ 1)
for a <t <b, is called the Riemann-Liouville fractional integral operator of order
a. Here, and in what follows T (-) is the Gamma function.

Definition 2 Let 0 < o < 1. Then, we define the Caputo fractional differential
operator cDy as

eDg f(t) = J,~f'(t) (2)
whenever f, f' € L[a, b].
Defintion 3 Let a > 0, § > 0. The function F,, defined by

Fasld) = 2 T T ot (3)

whenever the series converges is called the two parameter Mittag-Leffler function
with parameters o and S.
Lemma 1 If0<a <1, €Cand p € R such that

s
a§<u<a7r,

then for a arbitrary integer p > 1 the following expansion holds:

1 1/a L 27k

AT SR g - ~1-p s o0 <

EO&(Z) Oéz € P F(B _ Oék) + O<|Z ) |Z| ) |arg(z)| — /1’
(4)

or
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Ea) ==Y iz +O(H) oz largal <o 6)

k=1
Remark 1 Note, that the terms

o)
2 T(5 — ah)
become arbitrary small as |z| — oo. Fix 8 =1, then

1 [e3
E.(z) = —e

e 2] > 00, larg(2)| < 4

3. LOCAL STABILITY THEORY OF PLANAR FRACTIONAL SYSTEM

In this section we provide the stability theory that we will use in the paper for
Planar Fractional Systems. Specifically, we build on the the classical theory and
extend the results to the fractional case. We only consider the case when o € (0,1).

{cDgxm = f(z,y),
cDgy(t) = g(z,y),

subject to the initial condition:

(6)

(‘T(O)> y(O)) = (l'o, y0)7
where z, (¢), and y(t) are assumed to be in AC(0,T] for every T > 0, and f,g €
C1(R?).
Since, f, g € C*(R?), it is well known that for any (zo,yo) € R? the initial value
problem (6) has a unique solution, see[14].
We denote by A(z,y) the Jacobian matrix of f and g at (x,y), that is,

Alz,y) =99 a9 > (7)

ox Jy

and by |A(z,y)| and tr(A(z,y)) the determinant and trace of A(x,y), respectively.

Below we provide the definitions for a cycle or periodic orbit, and Hopf bifurca-
tion.

Definition 3 A point (2*,y*) € R? is called an equilibrium point of (6) if f(x*,y*) =
0 and g(z*,y*) = 0.

Below we define the linearized system of (6) about the equilibrium point (z*, y*).
Defintion 4 Let A be the matrix defined in (7) is evaluated at the equilibrium point
(z*,y*). Then,

DX = AX, (8)
where X = (x,9)7, is the linearization of system (6) at the equilibrium point
(@*,y").

Definition 5 A cycle or periodic orbit of (6) is any closed trajectory curve of
(6) which is not an equilibrium point of (6). A limit cycle ® of a planar system is
a cycle of (6) which belongs to the o or w limit set of some trajectory of (6) other
than ®@. If a cycle ® is the w limit set of every trajectory in some neighborhood of
®, then ® is a stable limit cycle.
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Definition 6 Hopf bifurcation is a local bifurcation in which a steady state of a
dynamical system changes its stability, so that the appearance or disappearance of
a periodic orbit occurs.

The following Lemma can be found in [19] as Corollary 2.

Lemma 2 The Caputo fractional order system defined in (6), where a € (0,1),
cannot have any non-constant smooth periodic solutions.

As a direct consequence of Lemma 2 above, we obtain the following result.
Proposition 1 (1) The Caputo fractional order system defined in (6), where a €
(0,1), cannot have a limit cycle.

(2) The Caputo fractional order system defined in (6), where « € (0, 1), cannot
undergo a Hopf bifurcation.

The following Lemma is a special case (n = 2) of Lemma 3.2 in[18].

Lemma 3 Let (z*,y*) be an equilibrium point of (6) and A be defined as in (7).
Let A1 and Ay be the eigenvalues of A. Then, the following assertions hold.

(1) The equilibrium point (z*,y*) is locally asymptotically stable if and only if
larg(A1,2)| > %5

(2) The equilibrium point (z*,y*) is stable if and only if |arg(A12)| > % and
the eigenvalues with |arg(A12)| = 9 have the same geometric multiplicity and
algebraic multiplicity.

(3) The equilibrium point (z*,y*) is unstable if and only if |arg(A12)] < &F.

Lemma 4 If the origin (0, 0) is a hyperbolic equilibrium point of (6), then vector
field (f(x,y),g(z,y)) is topologically equivalent with its linearization vector field
given by the linear system ¢D§X = AX in the neighborhood of the origin (0,0).

The following Theorem follows from Lemma 3, where the conditions are ex-
pressed in terms of tr(A(z*,y*)), and |A(z*,y*)|.

Theorem 1 If (2*,y*) is a equilibrium point of (6), then the following assertions
hold.

(i) If |A(z*,y*)| < 0, then (x*,y*) is unstable. (6).
(i) TE[A(z*,y*)| > 0, tr(A(a*, 57)) > 0 and (tr(A(z*,5°)))2 — 4| Az, y*)| > 0,
then (z*,y*) is unstable.
(iii) If JA(z*,y*)| > 0, tr(A(z*,y*)) < 0, then (z*,y*) is Locally Asymptotically
stable.

The Theorem below is new.
Theorem 2 Let (z*,y*) be an equilibrium point of (6). Let A\; and Ag be eigen-
values of the matrix A defined in (7) and suppose that A\; = a+ b and Ay = a — ib,
with b # 0.

(i) If[A(2*,y")| > 0, tr(A(z*, y*)) > 0 and (tr(A(z*,y")))* — 4| A(z",y")| <0,
then (z ,y*) is an unstable focus of (6) for a € (a*,1); stable focus of (6)
for o € (0, ).

(i) TE | A2, y*)| > 0, tr(A(a*, 57)) < 0 and (tr(A(z*,y*))? — 4|A(2*,y*)| <0,
then (z*,y*) is a stable focus of (6) for o € (4, 1); locally asymptotically
stable for a € (0, 1].

Proof. By Lemma 4 we can study (8) to determine the qualitative behavior of
the equilibrium point (z*,y*). If (z*,y*) # (0,0), then we can use the following
substitution

_ * _ *
i =x—x, nNn=y—-vy,
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to translate the equilibrium point (z*,y*) to the origin.

Define |arg(A1,2)| to be the argument of the eigenvalues A1, and Ao, which are
equal since the eigenvalues are complex conjugates. Additionally, since b # 0, then
there exists a p € (¢, am) such that |arg(A;2)| < p. Moreover, A1 # Az, thus the
general solution, X, to (8) can be expressed as follows

X(t) = crur Eq(Mt?) + coug o (A2t®), (9)

where X (t) = (z(t),y(t)), c1 and ¢z are constants and u; and usy are eigenvectors

corresponding to the eigenvalues A\; and Ay, respectively. Since, we are interested

in the qualitative behaviour solutions about the equilibrium points, instead of tran-
sient dynamics, we can consider the behaviour of the solution

X (t) = caur Eo (Mt%) 4+ caua Eo (Aat®), ast — oo.

T

Since there exists a u € (%, an) such that [arg(A2)] < p, by Lemma 1 we
have,

E,(\t*) = (1/a)e(’\1ta)l/a as t — oo and |arg(A12)] < p. (10)
Define oy := é, then oy € Z .

(1/0[)6(,\1#)1/” _ ale(a+ib)“1t

(z;“o () <ib>a1—f>t
= Qe

((“ol)a“1+(011)a"11<ib>+--<+(ib)"1>t

= Q€

((%l)aa1+(“f)a"‘11(ib>+--.+(ib)a1>t

=ae
= o @t — g et (cos (Bt) + isin (ﬁt)) , (11)
where
<OE)1>aa1 + <011>aa1(ib) + .4 (ib)* =w+iB  for some w, B € R.

Note that, the qualitative behaviour of (10) is the same the qualitative behaviour
of (11), which depend only on the eigenvalues and «. See Lemma 3.
Similarly,

(1/a)e(’\2ta)l/a = et (cos (Bt) — isin (ﬁt))

Thus, (9) can be expressed as

X(t) =crug [ale“’t(cos (Bt) + isin (ﬁt))} (12)

+ cotin [ale“’t(cos (Bt) — isin (ﬁt))}
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ast — oo and |arg(A12)| < p.

Thus, from (12) we can see that the solutions, can be expressed strictly as real
valued solutions, similarly as the classical case. In addition, the solutions behave
in an oscillatory manner, similarly as the classical case, qualitatively.

Next, recall that the eigenvalues for a planar system can can be represented as

tr(A(e,y)) + \/tr(A(e,y))® — 4det(A(z, y)

)\1 = 2 )
| trA) (A )? - ddet (A(r.p))
2 — 2 .

(1) If tr(A(z,y)) > 0, and tr(A(z,y))* — 4det (A(z,y)) < 0, then the eigenval-
ues are complex conjugates. Note that the eigenvalues are independent of «, so
|arg(A1,2)| is fixed. Specifically, the term a* = 2|arg(A1 )] is fixed.

() Suppose that o € (a*,1), then |arg(A12)| < G < p < an. From (12) the
solution has a oscillatory behaviour. This together with Lemma 3 allows us to
conclude that (x*,y*) is an unstable focus.

(i) Suppose that o € (0,a*), then there exists a p € (%, ) such that &F <
|arg(A1,2)] < p < am. From (12) the solution has a oscillatory behavior. This
together with Lemma 3 allows us to conclude that (z*,y*) is a stable focus.

(2) If tr(A(z, y)) < 0, and tr(A(z,y))* —4det (A(z, y)) < 0, then the eigenvalues
are complex conjugates, and |arg(A12)] > Z. Let a € (3,1) and p € (%F,am).
Then, there exists a € (%, am) such that ¢ < 7 < |arg(A12)| < p < ar. From
(12) the solution has a oscillatory behaviour. This together with Lemma 3 allows
us to conclude that (z*,y*) is a stable focus.

O

Remark 2 In Theorem 2 we provide a new method for determining the quali-
tative behavior of solutions near equilibrium point (x*,y*). In particular, we use
the asymptotic expansion properties of the Mittag-Leffler functions to achieve the
results. Furthermore, it is noted that under the condition a = a*, we cannot
conclude that the equilirium point (z*,y*) undergoes a Hopf bifurcation, under
suitable conditions, see proposition 1.

In fact, the condition o = «*, has been misrepresented in the literature, see
[18, 11, 6]. The authors in [18, 11] claimed that equilibrium point (z*,y*) of (6)
is a Hopf bifurcation if & = a*. However, this is not correct, if the claim is to be
true, then it is to follow that (6) undergoes a limit cycle, which from Proposition 1
(1) cannot be the case. Thus, it is not possible to treat « as bifurcation parameter
in this case. Nor, is it correct to claim that this leads to (6) undergoing a Hopf
bifurcation. It only follows that the equilibrium point (x*,y*) is stable under this
case. The authors in [6] claimed that the equilibrium point (z*,y*) is a stable node,
if @ = ™. This claim is also not correct, in fact this would require an additional
constraint on the equilibrium point. namely, that it is locally asymptotically stable,
from Lemma 3 this is not the case. Additionally, Theorem (4) (f) in [6] is not
correct. In fact, the author states that if all the eigenvalues are complex and
satisfy |arg(A12)] > F, then the equilibrium point (z*,y*) is a stable focus of

2
(6). However, this can only be concluded in its entirety for the linear system (8),
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provided that the equilibrium point is hyperbolic ((8) has no zero eigenvalues).

Indeed, consider the case when the complex eigenvalues have a zero real part,

then |arg(A12)] = § > %°. However, since the eigenvalues zero real parts, then

this equilibrium point is a non hyperbolic equilibrium point, and the linearization
Lemma 4 does not apply.

Lastly, due to the conditions associated with the asymptotic expansion of the
Mittag-Leffler function, we cannot conclude that under (iz) the equilibrium point
(z*,y*) is a stable focus for o € (0, 1].

4. CONCLUSION

In this manuscript a new method for analyzing the local stability of hyperbolic
equilibrium points for a Caputo fractional planar system was presented, see the
proof of Theorem 2. It was shown that the equilibrium point could be an unstable
focus, stable focus or locally asymptotically stable, under suitable conditions. In ad-
dition, it is concluded in Proposition 1 that (6) can not undergo a Hopf bifurcation.
The future work in this area would be to determine the stability of non-hyperbolic
equilibria points of (6).
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