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LAKSHMI NARAYAN MISHRA AND VISHNU NARAYAN MISHRA

ABSTRACT. In this paper, we consider the setting of quasi b—metric spaces to
establish results regarding the fixed point theorems with help of new notion
(¥, P)s—rational type quasi b—metric spaces with application. An example is
presented to support our results comparing with existing ones.

1. INTRODUCTION

The classical Banach contraction principle [1] is one of the most popular funda-
mental tool in fixed point theory. There are lots of generalizations and extensions
in many directions by many researchers. Berinde in [2, 3] introduced the con-
cept of almost contractions and proved several attracting results for a Ciric strong
almost contraction. The concept of b—metric spaces was introduced by Czerwik
(1993) [4]. Shah and Hussain [5] initiated the concept of quasi b—metric spaces
and proved some fixed point results in quasi b—metric spaces. Also, in recent years
several papers have been published in new results that are connected with the fixed
point results of various classes of b—metric spaces (refer some similar works on,
[6, 7, 8,9, 10]). The aim of this paper is to prove common fixed point theorems for
generalized (¥, ®);—rational type contraction mappings satisfying an ordered quasi
b—metric spaces.

2. PRELIMINARIES

Definition 1 The function & : Rt — RT is said to be an altering distance
function if the following conditions are satisfied:

(i) @ is continuous and increasing
(ii) @(a) =0 if and only if a =0

2010 Mathematics Subject Classification. 33E20.

Key words and phrases. fixed point theorem, partially ordered, quasi b—metric spaces, altering
distance function, generalized contractions.

Submitted Feb. 2021.



2 J. UMA MAHESWARI, M. RAVICHANDRAN, A. ANBARASAN,... JFCA-2021/12(3)

Definition 2 Let B be a nonvoid set and s > 1 be a given real number. A function
gy : B x B— R* is called quasi b—metric space if for all , X\, x € X, the following
condition hold:
(i) gp(n,A) =0 if and only if n = A

(i) gs(m, A) = qv (A, m)

(iii) gb(n, A) = slgp(n, &) + g (K, A)]-
In this case, the pair (B, g;) is called a quasi b—metric space.
It should be noted that, the class of quasi b—metric spaces is effectively large than
the class of metric space, since a quasi b—metric is a metric, when s = 1.
Definition 3 Let B be a non void set. Then (B, ¢, =) is called an ordered quasi
b—metric space iff:

(i) (B,q) is a quasi b—metric space,
(ii) (B, =) is partial ordered

Definition 4 Let (B, ¢, X) is partial ordered set. n, A\ € B are called comparable
if n < XA or A < holds.

Definition 5 Let (B, <) partially ordered set. A mapping T : B — B is said to be
strictly weakly increasing if ng < T, for all ny € B.

Definition 6 Let (B, g5) be a quasi b—metric space. Then a sequence {n,} is called:

(i) quasi b—convergent if and only if there exists n € B such that g,(7,,n) — 0,
as n — co. In this case, we write lim 7, =n.
n—oo

(ii) quasi b—Cauchy if and only if Um ¢(9n, 7m) = 0 as m,n — oo.
n,m—00

Proposition 1 In a quasi b—metric space (B, ¢;) the following assertions hold:

(p1) A quasi b—convergent sequence has a unique limit.
(p2) Each quasi b—convergent sequence is quasi b—Cauchy.
(ps) In general, a quasi b—metric is not continuous.

Definition 7 The quasi b—metric space (B, ¢,) is quasi b—complete if every quasi
b—Cauchy sequence in B quasi b—converges.

Khan, Swaleh, and Sessa [11] introduced the concept of an altering distance func-
tions and established some fixed point theorems in self-maps of a complete metric
spaces. Several authors have studied fixed point results which are based on alerting
distance functions. Here we introduce new notion of generalized (¥, ®);— rational
type quasi b—metric spaces where ¥ and @ are the altering distance functions.

3. MAIN THEOREMS

In this section, we give our main results.
Definition 8 Let (B, =,q5) be an ordered quasi b—metric space. Let ¥ and &
be altering distance functions. Then the mapping T : B — B is a generalized
(¥, @) s—rational contraction mapping if there exists C' > 0 and two altering distance
functions ¥ and @ such that

U(sqp(Tn, TA)) 2W(Es(n,A)) — D(Es(n; A)) + C¥(F(n, A)) (1)

where

Bl A) = maz {qb(%)\),%(A,TA),S 0 (1, TN) g (A, TA) }

(1 + Qb<na )‘) + Qb<)‘a T)‘))
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and

av(n, Tn)gs (N, T) Qb(an)‘)Qb()‘an)}

F(n,\) =min )
(. 4) { T @m0 T @Y

for all comparable n, A € B.
Lemma 1 Let (B, g5) be a quasi b—metric space with s > 1, and suppose that {n, }
and {\,} quasi b—converge to n, A respectively. Then, we have

1 o .
2B, A) < Hminf gy (1, An) < m sup gy (1, An) < s%qu(n, N).

In particular, if n = A, then, lim ¢y(9,, Am) = 0. Moreover, for each k € X we
n,m— 00

have
1 o .
;qb(n, k) < lim inf g, (1, 5) < Tm_sup gp(nn, ) < sqs(n, ).

Proof Suppose assume that {n,} and {\,} are quasi b—convergent sequence, then
using triangle inequality we may write

(1, A) < squ(1, 1) + 3G (10, A)

(2)
= 5q5(1,1n) + 5% (s An) + 52 (A, A)

and

@ (Mns M) < 8q6(10n, 1) + 5q6(1, An)

= sqv (1) + 5° @ (1, A) + 2q5 (X, An) ©
Letting the lower limit as n approaches to infinity in (2) and upper limit as n
approaches to infinity in (3) we wish the first inequality. Similarly, using again the
same argument the second inequality follows.
Theorem 1 Let (B, =) be a partially ordered set and suppose that there exists a
quasi b—metric g, on B such that (B, ¢,) is a quasi b—complete b—metric space. Let
T : B — B be an increasing continuous mapping with respect to <. Suppose that T
is an (¥, ®)—rational contractive mapping for all comparable n, A € B, there exits
1o € B such that 19 < T, then T has a fixed point.
Proof To prove that T is a fixed point.
Let 1o be an arbitrary point in B. We define a sequence {n,} in B such that
Mnt1 = Iy for allm > 0. Sinceng X Ty =n1 =Tno 2 ne =T T, is an increasing
sequence. Again, as 71 < 72 and T is an increasing, we have 1, = T <13 = T1;s.
By induction, we have

If 9, = npy1 for some n € N, then n, = T'n, and hence 7, is a fixed point of 7"
Consider 7, # 1p41 for every n € N. By equation (1), we have

(g (Mns Mnt1)) = (5G6(Mns Mnt1))
= U(5qp(Tn—1,Tn)) (4)
j W(Es<nnflv77n)> - ¢(Es(nn71ann)) + CW(F(nnq, nn))
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where
Es (nn— 1, nn)

Qb(nn—h TU?L)Qb(nna Tnn) }
L+ go(n—1,Mn) + @6 (1n, T1n))
Qb<77n—1777n+1)Qb(77m 77n+1) }
1+ qb(nn—la nn) + qb(nna 77n+1))
(806 (Mn—1,Mn) + 88N, Mnt1)) @ (M, Mt1) }
$(1+ go(Mn—1,Mn) + @ (M, Mn+1))

= max {qb(nn_l,nn),%(an%), o

j max {C]b<77n1777n)>%(77n>77n+1)7 S(

= max {qb(nnhnn),qb(nn,nn+1),

= max {qb(nn—h nn)a Qb(nna 77n+1)}

()
Since 1+ gy (Mn—1,7n) + @ (s a1)| > @6 (n—1,710) + @b (00 111
Now, let us take,
F(n—1,1n)
— in { @ (=1, T0) G (s Tin—1) @ (=1, T )@ (s T 1) }
1+ gy (n—1,7n) ’ 1+ gy (Tn—1,7m) (©)

< min{Qb(nn—lann-&-l)%(nmnn)7 qb(nn—lann+1)%(77na7]n)} _o.
14+ g(Mn—1,7n) L+ gp(Mn—1,Mn)
Taking (4) and (6) into account, (4) yields
P (qy(1ns Nnt1)) 2 ¥ (maz{qy(Mn—1,, 1), $q(1ns Nnt1)})
— ®(maz{qo(Nn—1,1n)s 54 (s Nnt1)}) (7)
=W (maz{qs(Mn—1,Mn)s 54 (s M+1)}) -
Suppose

max{qs(Nn—1,7n), @ (s Mnr1)} = @ (N Nt1),
then (7) becomes,

W(Qb(ﬂm 777L+1)) = v (max{%(nnq» nn)u Qb(nna 77n+1)}) < W%(Wm 77n+1)7
which gives a contradiction. Therefore,
maz{qy(1Mn—1,1n): @M, Mmt1)} = @ (Nn—1,7n).
Thus, inequality (7) becomes

W<Qb(nnvnn+l)> = Lp<(117(77n717 nn)) - é(qb(ﬁn—hfin)) = Lp<(117(77n717 nn)) (8)

Since ¥ is an increasing mapping, therefore {qy(7n, Mn+1) : n € N U {0}} is an
increasing sequence of positive numbers. So, there exists 7 > 0 such that

Jim gy (1, Ng1) = T
Letting n approaches to infinity in (8), we get
V(1) <¥(1)—P(1) < ¥(1).
Therefore ¢(7) = 0, hence, 7 = 0. Thus, we have
Jim gy (13, Np41) = 0. (9)

Now, we show that {n,} is a quasi b—Cauchy sequence in B. Suppose conversely
assume that {7,} is not a quasi b—Cauchy sequence. Then there exists v > 0 for
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which we find that two subsequence’s {n,,} and {n,,} of the sequence 7,, such that
v; 1s the smallest index for which

v - U - 4 ab(Muy s Moy ) = - (10)
which shows that
@b (Nuis Moi—1) <7 (11)
From (10) and (11) implies that
Y 246N Mo,
=8 (s My —1) + 50 (1 —1, 70, )
=50y (1 Mg —1) + 82q6 (ui—1, Mo, —1) + 874 (10, -1. 770,
Using (9) and taking the upper limit as 7 approaches to infinity, we get

ol )
— = lim sup g (Mu;—1,M0;-1)-
S i—00

On the other hand, we have
Qb(nuiflv 771)1-71) = qu(nuifla nvi) + qu(nuwnvifl)'
Using (9), (11) and taking the upper limit as ¢ tends to infinity, we get

hm qb(nuq‘,—lan’ui—l) j vSs.

1—> 00
So, we have
512 = lim sup gy (1u; -1, 70, -1) = 75 (12)

Again, using the triangular inequality, we have

B (Mui—1,M0;) = @My —15 Mo —1) + G (10, M, )
Y 2@ (Muss o;) = 8G(Nus s Mos—1) + 5G6(Tu;—15Mw;)

and
Y 2@ (Mus Nor) =8 (Mg Mo —1) + G0 (10,—15 M0, )-

Taking the upper limits as 7 approaches to infinity in the first and second inequalities
above, and using (9) and (12) we get

L= lim sup gy (s —1,m0,) < 75> (13)
S 1—>00

Likewise, taking the upper limit as ¢ approaches to infinity in the third inequality
above, and using (9) and (11) we get

T < lim gy (s Do—1) <7 (14)
S 71— 00

From (1), (¥, ®)s;—rational contraction mapping, we have

P (8qb(NuisMv;)) = Y (a6 (T1u;—1, To;—1))
< W(Es(flu,:—hm,-—l)) - Qj(ES(nui—lvnqu—l))
+CLD(F(77U1‘*1377171’*1))7 (15)
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where
ES(nui—h 77v,1—1)

= max{qb(nuihnvil)u Qb(nvithT]mfl),

qb(nui*17T/’/I’Uifl)qb(nvi717T77’uifl)
8(1 + Qb(nui—la 77’07:—1) + qb(nvi—h Tnv,i—l))

qb i—1s i ) i—1s i
= maz {qb(nuil,mil),qb(nvi1,771)1-), = (i1, 0. )G s 1, o) }

1+ Qb(nui—l,ﬂvi—l) + Qb(nvi—lvnvi)z

and

)

12 T oo 1, Tl
F 1,70, 1) = min @ (1 =15 T, 1) @b (Mo, 15 Thu; 1)
1+Qb<nu171777vlfl>

qb(nui,—la Tnvi—l)qb(nw,—la Tnui—l)
1 + Qb(/r]’u,i717 nvifl)

@M —1,mu) @ (M 15 )
=mwn
]- + qb(nuiflvnvifl)

(17)

@ (M 15 M0,) 46 (Mo, 15 M)
1+ Qb(nuiflv 77111'*1)

Taking the upper limit as ¢ approaches to infinity in (16) and (17) and using (9),
(12), (13) and (14), we get

Y . Y
G {30

= lim sup Es(qy(Nu, -1, Mw;—1))

1—00

= max {hm sup Qb(nuiflan'uiflLov }
1—>00

=< mazx {vs,0}
= 7s.
So, we have
0 = Jim sup By(@(1a,-1,70,-1)) % 95, (18)
and
Jim F(ru; 1,70, -1) = 0. (19)

Likewise, we can obtain

512 < lm inf E(gs (-1, m0i-1)) 275 (20)
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Now, taking the upper limit as ¢ approaches to infinity in (15) and (10), (18) and
(19), we have

U(ys) =¥ (s lim sup (T, Ty, ))
71— 00
< LP(hm sup F (nui—lanvi—l)) - hm an QS(Es(Uui—h 77111;—1))
11— 00 71— 00
< QI(’YS) - Qi)('lim inf Es(nui—hnvi—l)):
1— 00
which further implies that
Q(zllzgo an Es(nu,-—la 77111'—1)) = Oa

So, lim; 00 inf Eg(Nu,—1,Mv;—1) = 0, which is contradiction to (20). Thus 7,41 =
Tny, is a quasi b—Cauchy sequence in B. As B is a quasi b—complete space, there
exists v € B such that 1, — v as n — oo, and

lim 7,41 = lim T, = v.
n— o0 n—oo

Now, If T is continuous. Using the triangular inequality, we get
qp(v, Tv) =< sqp(v, Trpn) + 3q (T, TV).
Letting n approaches to infinity, we get
ap(v, Tv) < snlin;o (v, Tny) + Snlggo a (T, Tv) = 0.

So, we have Tv = v. Hence, v is fixed point.

Without assuming the continuous the Theorem 1 we have the following fixed point
theorem.

Theorem 2 Let (B, <) be a partially ordered quasi b—metric spaces such that the
quasi b—metric is quasi b—complete. Let T : B — B be an increasing mapping with
respect to <. Suppose that T is an (¥, ®);—rational contractive mapping for all
comparable elements 1, A € B. Assume that whenever 7, is an increasing sequence
in B such that n, — n € B implies n,, < n for all n € N, then T has a fixed point.
proof The similar argument followed from the Theorem 1, we construct an increas-
ing sequence {n,} in B such that 7, — v for some v € B. Using the assumption
of B, we have n,, < v for all n € N. Now, it is enough to show that T has a fixed
point. By (¥, §),—rational contraction mapping, we have

V(595 (nt1, Tv)) = ¥ (sqp(T1m, T))
S U (Es (M, v)) = P(Es(nn, v)) + CE(F(nn,0)),  (21)

where

@ (1, TV)qp (v, T) } 7 (22)

Es(nn"[}) = max {qb(ﬁmv)7Qb(’U,TU)» 8(1 + %(77 U) —+ qb(’l] TU))

and

T m ,T . 7j“ ,T
F(nn’ 1}) — min { Qb(Tln, U L)Qb(’U 7’]n)7 qb(n . U)Qb(’U nn) }
1+qb(77mv) 1+qb(77n7v)
ny 'In s Mn T“T .
= mm{qb(n Nnt1)q6(V, 1) +1)7 aw(n 0)qp (Vs Mt1) } (23)
1+Qb(7]n,’0) 1+Qb(77n,7))
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Letting n approaches to infinity in (22) and (23) and using Lemma 1, we get
0 =min{0, g (v,Tv)}.
< sup lim Fq(n,,v)
n—oo
= max {0, gp(v, Tv)}

= q(v, Tv). (24)
and
F(np,v) =0.
Likewise, we can obtain
Ey(,0) = i inf Ey(,, ) < (0, T0). (25)

Again, taking the upper limit as n approaches to infinity in (21) and using Lemma
1 and (24) we get

1 .
V(ap(v, Tw)) =¥ (s-ap(v,Tv)) 2 ¥(s lim sup go(nnt1,T0)
< U(lim sup Es(n,v) — lim inf &(sqy(nns1, T0)
n— o0 n— o0
2 (qp(v,Tv)) — @( lim inf Es(n,v)).
n—oo

Therefore @(lim,, o0 inf Es(nn,v)) < 0, equally, lim,,_,o inf Es(n,,v)) = 0. Thus,
from (25) we get v = Tw and hence v is a fixed point of T.

Corollary 1 Let (B, <) be a partially ordered quasi b—metric spaces such that
the quasi b—metric is b—complete. Let T : B — B be an increasing continuous
mapping with respect to <. Suppose that r € [0,1) and C > 0 such that

qb(an)‘)Qb()‘vTA) }
{qb(n,Tn)qb(/\,Tn) qb(n,TA)qb(/\,Tn)}

1+ Qb(n7 )‘) ’ 1+ qb(n’ )‘)
for all comparable elements 17, A € B. Suppose there exist 19 € B such that ng < T
then T has a fixed point.
Proof It follows from the Theorem 1 let us consider ¥(t) =t and &(t) = (1 — r)t
for every t € RT and noticing that T is generalized (¥, ®)s—rational contraction
mapping and hence it shows that 7" has a fixed point.
Without assuming continuity of 7" in the corollary 1.

,
T ) < & maa {auln N LT,

C
+ —man
S

Corollary 2 Let (B, <) be a partially ordered quasi b—metric spaces such that
the quasi b—metric is quasi b—complete. Let T': B — B be an increasing continuous
mapping with respect to <. Suppose that r € [0,1) and C > 0 such that

av(n, TA)gp (N, T'A) }
(I+a(n, M) + (A, TA))
+ Conin { qb(n,Tn)qb(A,Tn)’ Qb(777T)‘)Qb()‘7T77)}
s L+ gp(n,A) L+ gv(n, )
for all comparable elements n, A € B, and assume that 7, is increasing sequence in
B such that n, — n € B implies n,, < 7 for all n € N, then T has a fixed point.

r
Qb(T77» T)\) S ; max {qb(na )‘>7 Qb()‘7 T)\)> S
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Proof It follows from the Theorem 2 let us consider ¥(¢) =t and &(t) = (1 —r)t
for every t € R hence it shows that T has a fixed point.
Example 1 Let B = {0,1,2} be furnish with the quasi b—metric. Define g :

B x B — R such that
0, n=A
Qb(ﬁv )‘) = { A |2

|27 — 3 otherwise.

Note that g5(n,A) = 0 for all k,l € B and ¢,(n,\) = 0 iff n = X\. we also note it
av(n, A) = gp(N\,m) iff p = X so it is not symmetric.
Ifn=0,A=1,k =2 then

qb(nﬂi) = %a Qb(777>\) = %a ql)(>\a KZ) = %6
So that the usual triangle inequality not satisfied. Therefore the metric is a quasi

b—metric on B. Thus (B, <, q) is a partially ordered quasi b—metric space with
costant s > 2.

4. APPLICATIONS
Let 2 be the set of all functions @ : RT — RT satisfying in the following
hypotheses:

(i) Every @ € {2 is a Lebesgue integrable function on each compact subset of
Rt
(ii) For all € 2 and w > 0.

/w P(t)dt >0
0

Let the function ¥ : RT — R* be defined by

wuy:AT@wﬁ>o

is an altering distance functions. Therefore, we consider the following result.
Corollary 1 Let (B,=) be a partially ordered quasi b—metric spaces such that
the quasi b—metric is b—complete. Let T : B — B be an increasing continuous
mapping with respect to <. Suppose that r € [0,1) and C > 0 such that

ap (1, TX)qp (N, TX)

g5(Tn,TX) ppma{anA)a (AT, st I e LD
P(t)dt < -
0

B(t)dt

ap (1, Tn)ap (N, Tn) ap(n,TXN)gp (N, Tn)

$Jo

C min{ T+ap () ’ 1+q,(n,A)
+ J—

s Jo

B(t)dt

for all comparable elements n,A € B. Suppose there exists 79 € B such that
No = T'ng, then T has a fixed point.
Proof It follows from the Theorem 1 by taking

and (1) = (1 —r)7, for all T € RT.
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