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A MODIFIED WAVELET MULTIGRID METHOD FOR THE

NUMERICAL SOLUTION OF CONVECTION-DIFFUSION

PROBLEM

M. H. KANTLI

Abstract. A modified wavelet multigrid method to solve convection-diffusion

problem is proposed with new prolongation and restriction intergrid operators

based on Daubechies high pass and low pass filter coefficients. The proposed
method is the robust technique for faster convergence with low computational

cost which is acceptable through operator complexity, grid complexity, rate
of convergence, condition number and error analysis. Also, we discussed the

different set of parameters for the nature of the solutions. We compare the

modified method to standard methods namely multigrid and wavelet multigrid.
It is concluded that the modified wavelet multigrid method easily outperforms

over existing standard multigrid methods.

1. Introduction

Convection-diffusion problems arise in the modelling of many physical processes.
Their typical solutions exhibit boundary and interior layers. In spite of the linear
nature of the differential operator, these problems pose still-unanswered questions
to the numerical analysis. Accurate modelling of the interaction between convective
and diffusive processes is the most universal and challenging task in the numerical
approximation of partial differential equations Morton’s [1]. This paper is devoted
to the application of the wavelet multigrid method to the numerical solution of the
convection-diffusion equation

− ε(∂
2u

∂x2
+
∂2u

∂y2
) + a

∂u

∂x
= f, on Ω, u = ua on ∂Ω. (1)

where Ω is a bounded two-dimensional domain with a polygonal boundary ∂Ω, f
is a given outer source of the unknown scalar quantity u, ε > 0 is the constant dif-
fusivity, a is the flow velocity and ua is a given condition. We are interested in the
strongly convection-dominated cases in which the solution of (1) typically contains
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narrow inner and boundary layers. It is well known that the application of the clas-
sical methods is inappropriate in these cases since the discrete solution is usually
globally polluted by spurious oscillations. Therefore, various stabilization strate-
gies have been developed during the last three decades, recently reviewed paper
by John and Knobloch [2]. Linear systems of algebraic equations are related with
many problems, as well as with applications of mathematics. Direct methods are
used to solve a linear system of N equations with N unknowns. Direct methods are
theoretically produce the exact solution to the system in a finite number of steps.
In practice, of course, the solution obtained will be polluted by the round-off error
that is involved with the arithmetic being used. To minimize such round-off error
iterative methods are infrequently used for solving linear systems. Since the time
required for sufficient accuracy exceeds that required for direct methods. For large
systems with a high amount of 0 entries, however, these methods are efficient in
terms of both computer storage and computation cost. This type of system stands
up frequently in numerical analysis of convection-diffusion problems. The multigrid
method is largely applicable in increasing the efficiency of iterative methods used
to solve large system of algebraic equations Burden and Faires [3].
The multigrid (MG) method is a well-founded numerical method for solving sparse
linear system of equations approximating convection-diffusion equations. In the
historical three decades the development of effective iterative solvers for systems
of algebraic equations has been a significant research topic in numerical analysis
and computational science and engineering. Nowadays it is recognized that multi-
grid iterative solvers are highly efficient for convection-diffusion problems and often
have optimal complexity. For a detailed treatment of multigrid methods we re-
fer Hackbusch [4]. An introduction of multigrid methods is found in Wesseling
[5], Briggs [6] and Trottenberg et al. [7]. Authors, Griebel and Knapek [8] used
matrix-dependent interpolations, where the coarse grid operator is determined to
be a Schur complement using a Galerkin approach. However, when met by certain
convection-diffusion problems, the standard multigrid procedure converges slowly
with larger computational time. Whereas wavelet multigrid methods solves the sys-
tem of equations in faster convergence with lesser computational cost refer article
De Leon [9].
The mathematical theory of wavelets is more than two decades, yet already wavelets
have become an important tool in many areas, such as image processing and time
series analysis. In recent years, wavelet analysis is fast extensive kindness in the
numerical solution of elliptic problems. The smooth orthogonal basis is obtained by
the dilation and shift of a single special function, called “mother wavelet”. Recently,
many authors (De Leon [9], Kantli and Shiralashetti [10], Mundewadi et al. [11],
Bujurke and Kantli [12-14] and Shiralashetti et al. [15-17]) have developed wavelet
multigrid methods. These methods use a choice of the filter operators obtained from
wavelets to define the prolongation and restriction operators. Avudainayagam and
Vani [18] used wavelet-based interpolation and restriction operators for their multi-
grid approaches, and Vasilyev and Kevlahan [19] used a wavelet-collocation-based
multigrid method. This paper outspreads the new approach of modified wavelet
multigrid method (MWMG) to solve convection-diffusion problems. Thus, the pro-
posed method can be applied to a wide range of science and engineering problems.
The organization of this paper is as follows. Wavelet multigrid operators are given
in section 2. Section 3, deals with the method of solution. Section 4, presents
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numerical experiments and results. Finally, conclusion of the MWMG is discussed
in section 5.

2. Wavelet multigrid operators

The scaling functions, which are both compactly supported and continuous, were
first constructed by Daubechies [20, 21] that created great excitement among math-
ematicians and scientists performing research in the area of wavelets. Daubechies
low pass and high pass filter coefficients are described in [11, 15-17] and are used
in the wavelet intergrid operators (prolongation and restriction).
The matrix formulation of the discrete signals and discrete wavelet transforms
(DWT), which play an important part in the wavelet method. This is highly expe-
dient and informative, particularly for the numerical computations. As we already
know about the DWT matrix and its applications in the wavelet method and is
given in [15-17] as,

W1(2J × 2J) =



h0 h1 h2 h3 0 0 ... 0 0
g0 g1 g2 g3 0 0 ... 0 0
0 0 h0 h1 h2 h3 ... 0 0
0 0 g0 g1 g2 g3 ... 0 0
.. .. .. .. .. .. ... .. ..
.. .. .. .. .. .. ... .. ..
h2 h3 0 0 0 0 ... h1 h2
g2 g3 0 0 0 0 ... g1 g2


(2)

Using this matrix authors used restriction and prolongation operators W and WT

respectively given in section 3.2, alike to multigrid operators.
Here, we developed modified DWT matrix similar to DWT matrix in which we
have added rows and columns consecutively with diagonal element as 1, which is
built as,

W2(2J × 2J) =



h0 0 h1 0 h2 0 h3 0 ... 0
0 1 0 0 0 0 0 0 ... 0
g0 0 g1 0 g2 0 g3 0 ... 0
0 0 0 1 0 0 0 0 ... 0
.. .. .. .. .. .. .. .. ... ..
.. .. .. .. .. .. .. .. ... ..
g2 0 g3 0 ... 0 g0 0 g1 0
0 0 0 .. .. ... .. 0 0 1


(3)

where h0 = 1+
√
3

4
√
2
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√
3

4
√
2
, h2 = 3−

√
3

4
√
2
, h3 = 1−

√
3

4
√
2

are low pass filter coefficients
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√
3

4
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√
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2

are the high pass filter coeffi-

cients. Using W2 matrix, we developed restriction and prolongation operators WP
and WPT respectively alike to wavelet multigrid operators given in section 3.3.

3. Method of solutions

Consider the differential equation, after discretizing the differential equation
through the finite difference method (FDM), we get system of algebraic equations.
Through this system we can write the system as

Au = f. (4)
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where A is 2J × 2J coefficient matrix, b is 2J × 1 matrix and u is 2J × 1 matrix to
be determined. Where J is the maximum level of resolution. Solve the equation
(4) through the iterative method, we get the approximate solution v of u. i.e.
u = e + v ⇒ v = u − e, where e is (2J × 1 matrix) error to be determined.
In the computation of numerical analysis, approximate solution containing some
error. There are many approaches known to minimize the error. Some of them
are Multigrid (MG), Wavelet multigrid (WMG) and modified wavelet multigrid
(MWMG) Methods etc. Now we are deliberating about the method of solution of
these mentioned methods as below.

3.1. Multigrid (MG) method. From equation (4), we get the approximate so-
lution v for u. Now we find the residual as

r2J−η×1 = [f ]2J−η×1 − [A]2J−η×2J−η [v]2J−η×1. (5)

where η = 0, 1, 2, ..., J
We reduce the matrices in the finer (J th) level to coarsest level using Restriction
operator, i.e.

R(2J−1−η × 2J−η) =
1

4


1 2 1 0 0 ... 0 0
0 0 1 2 1 ... 0 0
.. .. .. .. .. ... .. ..
0 0 0 0 0 ... 1 2

 (6)

and then construct the matrices back to finer level from the coarsest level using
Prolongation operator, i.e.

P (2J−η × 2J−1−η) =
1

2



1 0 0 ... 0 0
2 0 0 ... 0 0
1 1 0 ... 0 0
0 2 0 ... 0 0
0 1 1 ... 0 0
.. .. .. ... .. ..
0 0 0 ... 0 1
0 0 0 ... 0 2


(7)

From (5),

r2J−1×1 = [R]2J−1×2J [r]2J×1. (8)

and [A]2J−1×2J−1 = [R]2J−1×2J [A]2J×2J [P ]2J×2J−1 . Residual equation becomes,
[A]2J−1×2J−1 [e]2J−1×1 = [r]2J−1×1 where e2J−1×1 is to be determined. Solve e2J−1×1
with initial guess ’0’.
From (8),

r2J−2×1 = [R]2J−2×2J−1 [r]2J−1×1. (9)

and [A]2J−2×2J−2 = [R]2J−2×2J−1 [A]2J−1×2J−1 [P ]2J−1×2J−2 . Then residual equation
becomes, [A]2J−2×2J−2 [e]2J−2×1 = [r]2J−2×1. Solve e2J−2×1 with initial guess ’0’.
The procedure is continuing up to the coarsest (η = J) level, we have,

r1×1 = [R]1×2[r]2×1. (10)

and [A]1×1 = [R]1×2[A]2×2[P ]2×1. Residual equation is, [A]1×1[e]1×1 = [r]1×1.
Solve e1×1 exactly.
Now correct the solution

u2×1 = [e]2×1 + [P ]2×1[e]1×1.
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Solve [A]2×2[u]2×1 = [r]2×1 with initial guess u2×1.
Similarly, correct the solution

u4×1 = [e]4×1 + [P ]4×2[u]2×1.

Solve [A]4×4[u]4×1 = [r]4×1 with initial guess u4×1. Continue the procedure up to
the finer (η = 0) level, Finally, correct the solution

u2J×1 = [e]2J×1 + [P ]2J×2J−1 [u]2J−1×1.

Solve [A]2J×2J [u]2J×1 = [f ]2J×1 with initial guess u2J×1.
u2J×1 is the required solution of system (4).

3.2. Wavelet multigrid (WMG) method. The same procedure is applied as
explained in the MG method (section 3.1). Instead of using R and P matrices, we
used as

W (2J−1 × 2J) =


h0 h1 h2 h3 0 0 ... 0 0
g0 g1 g2 g3 0 0 ... 0 0
0 0 h0 h1 h2 h3 ... 0 0
0 0 g0 g1 g2 g3 ... 0 0
.. .. .. .. .. .. ... .. ..
0 ... g0 g1 g2 g3 ... 0 0

 (11)

and WT respectively.

3.3. Modified wavelet multigrid (MWMG) method. Here also the same pro-
cedure is applied as explained in the above methods (section 3.1). Instead of using
Instead of using R and P matrices, we used as

WP (2J−1 × 2J) =


h0 0 h1 0 h2 0 h3 0 ... 0
0 1 0 0 0 0 0 0 ... 0
g0 0 g1 0 g2 0 g3 0 ... 0
0 0 0 1 0 0 0 0 ... 0
.. .. .. .. .. .. ... .. .. ..
0 ... g0 0 g1 0 g2 0 g3 ...

 (12)

and WPT respectively.

4. Numerical experiments

In this section, we present convection-diffusion problem which show the efficiency
of MWMG based new prolongation and restriction operators in multigrid methods
in the place of conventional prolongation and restriction operators. The error will
be considered by L∞ = max|ue − ua|, where ue and ua are exact and approximate
solution respectively. The grid complexity (Gc) and operator complexity (Oc) of
the methods are given as follows,

Gc =
Tg
Fg

and Oc =
Tn
Fn

. (13)

where, Tg- Total number of all grid points, Fg- Number of grid points on the finest
grid, Tn- Total number of non-zero entries in all matrices (Ak) and Fn- Number of
non-zero entries in the finest grid matrix (A0 = A).
Consider the Convection-Diffusion problem on the unit square

Ω = (x, y) : 0 < x < 1, 0 < y < 1



6 M. H. KANTLI JFCA-2021/12(2)

− ε(∂
2u

∂x2
+
∂2u

∂y2
) + a

∂u

∂x
= f(x, y), on Ω, with u = 0 on ∂Ω. (14)

where, f(x, y) = δsin(lπy)(C2x
2 + C1x + C0), ε > 0, δ ∈ R, a ∈ R, l is an

integer, C2 = −εl2π2, C1 = εl2π2 − 2a and C0 = a+ 2ε. It has the exact solution
u(x, y) = δx(l − x)sin(lπy). After discretizing the Eqn. (14) through the finite
difference method, we get system of equations, for ε = 0.1, a = 0.1, l = 1, δ = 0.1
and J = 4 of the form

[A]16×16[u]16×1 = [f ]16×1. (15)

Solve (15) through the iterative method, we get the approximate solution v of u.
i.e. u = e+ v ⇒ v = u− e, where e is (16× 1 matrix) error to be determined. The
implementation of the problem is given as the MWMG method discussed in section
3.3, as follows,
From equation (15), we find the residual as

r16×1 = [f ]16×1 − [A]16×16[v]16×1. (16)

We reduce the matrices in the finer level to coarsest level using WP Restriction
operator and then construct the matrices back to finer level from the coarsest level
using Prolongation operator WPT .
From (16),

r8×1 = [WP ]8×16[r]16×1. (17)

and [A]8×8 = [WP ]8×16[A]16×16[WPT ]16×8. Residual equation becomes, [A]8×8[e]8×1 =
[r]8×1. where e8×1 to be determine. Solve e8×1 with initial guess ’0’.
From (17),

r4×1 = [WP ]4×8[r]8×1. (18)

and [A]4×4 = [WP ]4×8[A]8×8[WPT ]8×4. Then residual equation becomes, [A]4×4[e]4×1 =
[r]4×1. where e4×1 to be determine. Solve e4×1 with initial guess ’0’.
From (18),

r2×1 = [WP ]2×4[r]4×1. (19)

and [A]2×2 = [WP ]2×4[A]4×4[WPT ]4×2. The residual equation becomes, [A]2×2[e]2×1 =
[r]2×1. Solve e2×1 with initial guess ’0’.
From (19),

r1×1 = [WP ]1×2[r]2×1. (20)

and [A]1×1 = [WP ]1×2[A]2×2[WPT ]2×1. Finally, residual equation is, [A]1×1[e]1×1 =
[r]1×1. Solve e1×1 exactly.
From e1×1, now correct the solution

u2×1 = [e]2×1 + [WPT ]2×1[e]1×1.

Solve [A]2×2[u]2×1 = [r]2×1 with initial guess u2×1.
Similarly, correct the solution from u2×1,

u4×1 = [e]4×1 + [WPT ]4×2[u]2×1.

Solve [A]4×4[u]4×1 = [r]4×1 with initial guess u4×1.
From u4×1, correct the solution,

u8×1 = [v]8×1 + [WPT ]8×4[u]4×1.

Solve [A]8×8[u]8×1 = [r]8×1 with initial guess u8×1.
From u8×1, correct the solution,

u16×1 = [v]16×1 + [WPT ]16×8[u]8×1.
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Table 1. Comparison with numerical solutions of Eq. (14) and
exact solution for ε = 0.1, a = 0.1, l = 1, δ = 0.1, J = 4

x y MWMG Exact
0.2 0.2 0.00954 0.0094
0.4 0.2 0.01544 0.01522
0.6 0.2 0.01544 0.01522
0.8 0.2 0.00954 0.0094
0.2 0.4 0.01434 0.01411
0.4 0.4 0.0232 0.02283
0.6 0.4 0.0232 0.02283
0.8 0.4 0.01434 0.01411
0.2 0.6 0.01435 0.01411
0.4 0.6 0.02322 0.02283
0.6 0.6 0.02322 0.02283
0.8 0.6 0.01435 0.01411
0.2 0.8 0.00957 0.0094
0.4 0.8 0.01548 0.01522
0.6 0.8 0.01548 0.01522
0.8 0.8 0.00957 0.0094

Solve [A]16×16[u]16×1 = [f ]16×1 with initial guess u16×1. where, u16×1 is the required
solution of system (14).
The numerical solutions of the given equation is obtained through the methods as
explained in section 3 and are presented in comparison with the exact solution,
in the tables 1 and 2 for ε = 0.1, a = 0.1, l = 1, δ = 0.1, J = 4 and J = 8
respectively. In the figure 1 for ε = 0.1, a = 0.1, l = 1, δ = 0.1, J = 10. Similarly we
presented numerical solutions with exact solution for different set of parameters for
ε = 0.01, a = 1, l = 3, δ = 0.2, J = 10 in figure 2 and for ε = 0.01, a = 10, l = 16, δ =
0.3, J = 10 in figure 3. The grid complexity and operator complexity of example as
shown in the table 3, maximum error with the computational time given in the table
4 and advantage of the wavelet matrices give the well-conditioned system through
the condition number of the matrices, which is defined by K(A) =‖ A ‖‖ A−1 ‖.
We have presented the experimental rate of convergence Rc(2

J) which is defined
as,

Rc(2
J) =

log[max(E(2J−2))]/max(E(2J))

log2
. (21)

The condition number of A and rate of convergence for different grid points are
expressed in table 5.
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Fig. 1. Comparison with numerical solutions of Eq. (14) and exact solution for
ε = 0.1, a = 0.1, l = 1, δ = 0.1, J = 10.

Fig. 2. Comparison with numerical solutions of Eq. (14) and exact solution for
ε = 0.01, a = 1, l = 3, δ = 0.2, J = 10.
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Table 2. Comparison with numerical solutions of Eq. (14) and
exact solution for ε = 0.1, a = 0.1, l = 1, δ = 0.1, J = 8

x y MWMG Exact x y MWMG Exact
0.1111 0.1111 0.00339 0.00338 0.5555 0.1111 0.00849 0.00844
0.1111 0.2222 0.00637 0.00635 0.5555 0.2222 0.01595 0.01587
0.1111 0.3333 0.00859 0.00855 0.5555 0.3333 0.0215 0.02138
0.1111 0.4444 0.00977 0.00973 0.5555 0.4444 0.02444 0.02432
0.1111 0.5555 0.00977 0.00973 0.5555 0.5555 0.02444 0.02432
0.1111 0.6666 0.00859 0.00855 0.5555 0.6666 0.02150 0.02138
0.1111 0.7777 0.00637 0.00635 0.5555 0.7777 0.01595 0.01587
0.1111 0.8888 0.00339 0.00338 0.5555 0.8888 0.00849 0.00844
0.2222 0.1111 0.00594 0.00591 0.6666 0.1111 0.00764 0.00760
0.2222 0.2222 0.01116 0.01111 0.6666 0.2222 0.01436 0.01428
0.2222 0.3333 0.01504 0.01497 0.6666 0.3333 0.01935 0.01925
0.2222 0.4444 0.01710 0.01702 0.6666 0.4444 0.02200 0.02188
0.2222 0.5555 0.01710 0.01702 0.6666 0.5555 0.02200 0.02188
0.2222 0.6666 0.01504 0.01497 0.6666 0.6666 0.01935 0.01925
0.2222 0.7777 0.01116 0.01111 0.6666 0.7777 0.01436 0.01428
0.2222 0.8888 0.00594 0.00591 0.6666 0.8888 0.00764 0.00760
0.2222 0.1111 0.00764 0.00760 0.7777 0.1111 0.00594 0.00591
0.3333 0.2222 0.01435 0.01428 0.7777 0.2222 0.01117 0.01111
0.3333 0.3333 0.01934 0.01925 0.7777 0.3333 0.01505 0.01497
0.3333 0.4444 0.02199 0.02188 0.7777 0.4444 0.01711 0.01702
0.3333 0.5555 0.02199 0.02188 0.7777 0.5555 0.01711 0.01702
0.3333 0.6666 0.01934 0.01925 0.7777 0.6666 0.01505 0.01497
0.3333 0.7777 0.01435 0.01428 0.7777 0.7777 0.01117 0.01111
0.3333 0.8888 0.00764 0.00760 0.7777 0.8888 0.00594 0.00591
0.4444 0.1111 0.00849 0.00844 0.8888 0.1111 0.00340 0.00338
0.4444 0.2222 0.01595 0.01587 0.8888 0.2222 0.00638 0.00635
0.4444 0.3333 0.02149 0.02138 0.8888 0.3333 0.00860 0.00855
0.4444 0.4444 0.02444 0.02432 0.8888 0.4444 0.00978 0.00973
0.4444 0.5555 0.02444 0.02432 0.8888 0.5555 0.00978 0.00973
0.4444 0.6666 0.02149 0.02138 0.8888 0.6666 0.00860 0.00855
0.4444 0.7777 0.01595 0.01587 0.8888 0.7777 0.00638 0.00635
0.4444 0.8888 0.00849 0.00844 0.8888 0.8888 0.00340 0.00338

Table 3. Operator and Grid complexity of linear systems for ε =
0.1, a = 0.1, l = 1, δ = 0.1, J = 10

Methods Operator complexity Grid complexity
MG 2.74 1.94

WMG 2.67 1.94
MWMG 2.41 1.94
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Table 4. Linear systems (J = 10) for (ε = 0.1, a = 0.1, l = 1, δ =
0.1), (ε = 0.01, a = 1, l = 3, δ = 0.2) and (ε = 0.01, a = 10, l =
16, δ = 0.3) respectively. The comparison of Error (L∞) and CPU
time of the methods

Methods Error(L∞) Setup time Running time Total time
FDM 1.38E-05 0.07 4.80 4.87
MG 9.89E-06 0.06 0.31 0.37

WMG 9.75E-06 0.07 0.16 0.23
MWMG 9.61E-06 0.01 0.09 0.10

FDM 1.98E-04 0.07 3.51 3.58
MG 1.76E-04 0.01 0.30 0.31

WMG 1.71E-04 0.01 0.13 0.14
MWMG 1.60E-04 0.01 0.12 0.13

FDM 1.67E-02 0.08 3.80 3.88
MG 1.65E-02 0.01 0.46 0.47

WMG 1.65E-02 0.01 0.22 0.23
MWMG 1.62E-02 0.01 0.10 0.11

Fig. 3. Comparison with numerical solutions of Eq. (14) and exact solution for
ε = 0.01, a = 10, l = 16, δ = 0.3, J = 10.

Conclusions

In this paper, we introduced the modified wavelet multigrid method for the nu-
merical solution of convection-diffusion problem using new intergrid operators of



JFCA-2020/12(2) A MODIFIED WAVELET MULTIGRID METHODS 11

Table 5. Linear systems for (ε = 0.1, a = 0.1, l = 1, δ = 0.1).
Condition number K(A) and rate of convergence for different grids
points

J FDM WMG MWMG MWMG Rate of convergence Rc(2
J)

4 9.43E+00 1 1 -
6 3.20E+01 1 1 1.63
8 1.16E+02 1 1 1.82
10 4.38E+02 1 1 1.98

prolongation and restrictions based on Daubechies filters coefficients. In many of
those problems where the standard multigrid and other wavelet multigrid methods
are converges slowly with larger computational time whereas the modified wavelet
multigrid method does ensure such slower convergence with lesser computational
cost. This method is efficiently applied in such cases, the results are presented in
this paper have demonstrated that it is worthwhile to further explore the effective-
ness of improved wavelet multigrid method.
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