Journal of Fractional Calculus and Applications

Vol. 12(3). No. 4, pp. 1-8

1st. Inter. E-Conf. in Math. Sciences and Fractional Calculus(ICMSFC Feb 2021).
ISSN: 2090-5858.

http://math-frac.org/Journals/JFCA/

ON THE REACHABLE SET OF A CLASS OF FRACTIONAL
DIFFERENTIAL INCLUSIONS

AURELIAN CERNEA

ABSTRACT. We consider a fractional differential inclusion defined by Caputo-
Fabrizio fractional derivative and we prove that the reachable set of a certain
variational inclusion is a derived cone in the sense of Hestenes to the reach-
able set of the fractional differential inclusion. This result allows to obtain a
sufficient condition for local controllability along a reference trajectory.

1. INTRODUCTION

In the last years one may see a strong development of the theory of differential
equations and inclusions of fractional order ([3} [0} (1T [I2] etc.). The main reason is
that fractional differential equations are very useful tools in order to model many
physical phenomena. In the fractional calculus there are several fractional deriva-
tives. From them, the fractional derivative introduced by Caputo in [4] allows to
use Cauchy conditions which have physical meanings.

Recently, a new fractional order derivative with regular kernel has been intro-
duced by Caputo and Fabrizio [5]. The Caputo-Fabrizio operator is useful for
modeling several classes of problems with the dynamics having the exponential de-
cay law. This new definition is able to describe better heterogeneousness, systems
with different scales with memory effects, the wave movement on surface of shal-
low water, the heat transfer model, mass-spring-damper model ([I3]) etc.. Another
good property of this new definition is that using Laplace transform of the fractional
derivative the fractional differential equation turns into a classical differential equa-
tion of integer order. Properties of this definition have been studied in [II, 5] 6] [13]
etc.. Some recent papers are devoted to qualitative results for fractional differential
equations defined by Caputo-Fabrizio fractional derivative [14], [I5] [16] etc..

In this paper we study the following problem

DZpx(t) € F(t,z(t)) a.e. ([0,T]), =z(0)€ Xy, 2'(0)€ Xy, (1.1)

where F(.,.) : [0,T] x R — P(R) is a set-valued map, DZ denotes Caputo-
Fabrizio’s fractional derivative of order o € (1,2) and Xy, X1 C R are closed sets.
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The aim of this paper is to prove that the reachable set of a certain variational
fractional differential inclusion is a derived cone in the sense of Hestenes to the
reachable set of the problem (1.1). In order to obtain the continuity property in
the definition of a derived cone we shall use a continuous version of Filippov’s
theorem for solutions of fractional differential inclusions (1.1), recently obtained in
[8]. As an application of our main result we obtain a sufficient condition for local
controllability along a reference trajectory.

The notion of derived cone to an arbitrary subset of a normed space introduced by
M.Hestenes in [10] and successfully used to obtain necessary optimality conditions
in control theory; moreover, other properties of derived cones may be used to obtain
controllability and other results in the qualitative theory of control systems. We
note that a similar result for fractional differential inclusions defined by Caputo-
Katugampola fractional derivative may be found in our previous paper [7].

The paper is organized as follows: in Section 2 we present the notations and the
preliminary results to be used in the sequel and in Section 3 we provide our main
results.

2. PRELIMINARIES

In general the reachable set to a control system is, generally, neither a differen-
tiable manifold, nor a convex set, its infinitesimal properties may be characterized
only by tangent cones in a generalized sense, extending the classical concepts of
tangent cones in differential geometry and convex analysis, respectively.

Definition 2.1. ([10]) A subset D C R™ is said to be a derived set to X C R™ at
x € X if for any finite subset {w1, ..., wi} C D, there exist so > 0 and a continuous
mapping a(.) : [0, so]¥ — X such that a(0) = z and «a(.) is (conically) differentiable
at s = 0 with the derivative col[wy, ..., wg] in the sense that

k
L lla() —a0) - S8 el
RE 500 [10]]

We shall write in this case that the derivative of «(.) at s = 0 is given by
E
Da(0)0 = 6;w; V0 = (61,...,6,) € RY = [0,00)".
i=1

A subset C' C R" is said to be a derived cone of X at x if it is a derived set and
also a convex cone.

For the basic properties of derived sets and cones we refer to M.Hestenes [10]; we
recall that if D is a derived set then D[ J{0} as well as the convex cone generated
by D, defined by

k
cco(D) = {Z Ajwi; A >0, keN, w;eD,j=1,..k}
i=1
is also a derived set, hence a derived cone.

The fact that the derived cone is a proper generalization of the classical concepts
in differential geometry and convex analysis is illustrated by the following results
([IQ)): if X c R™ is a differentiable manifold and T, X is the tangent space in the
sense of differential geometry to X at x

T.X = {w e R"; Jc: (—s,5) — R", of class C*, ¢(0) = z, ¢ (0) = w},
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then T, X is a derived cone; also, if X C R"™ is a convex subset then the tangent
cone in the sense of convex analysis defined by

TC, X =c{tly—=x); t>0,yeX}

is also a derived cone. Since any convex subcone of a derived cone is also a derived
cone, such an object may not be uniquely associated to a point x € X; moreover,
simple examples show that even a maximal with respect to set-inclusion derived
cone may not be uniquely defined: if the set X C R? is defined by

X=0C LJC’g7 Cy = {(z,z);2 > 0}, Cy = {(z, —x),z <0},

then C and Cy are both maximal derived cones of X at the point (0,0) € X.

At the same time, the up-to-date experience in nonsmooth analysis shows that for
some problems, the use of one of the intrinsic tangent cones may be preferable. The
most known intrinsic tangent cones in the literature (e.g. [2]) are the contingent,
the quasitangent (intermediate) and Clarke’s tangent cones, defined, respectively,
by

K, X={veX; 3ds,—0+ 3z, — =, meX:%%’U},

Q. X ={veX; Vs, —0+ Iz, -z xmeX:%—H}},

C.X={veX; V(xm,sm)— (x,04+), zm€ X, Iy, € X : In—tn 4y}

Sm

The next property of derived cone, obtained by Hestenes ([10], Theorem 4.7.4)
and stated in the next lemma is essential in the proof of our main result.

Lemma 2.2. ([10]) Let X C R™. Then x € int(X) if and only if C = R" is a
derived cone at x € X to X.

Corresponding to each type of tangent cone, say 7,X one may introduce (e.g.,
[2]) a set-valued directional derivative of a multifunction G(.) : X € R™ —» P(R")
(in particular of a single-valued mapping) at a point (z,y) € Graph(G) as follows

7,G(2;v) = {w € R";  (v,w) € 7(5,4)Graph(G)}, wve.E.

We recall that a set-valued map, A(.) : R® — P(R") is said to be a convex
(respectively, closed convex) process if Graph(A(.)) C R™ xR™ is a convex (respec-
tively, closed convex) cone. For the basic properties of convex processes we refer to
[2], but we shall use here only the above definition.

Let T > 0, I := [0,T] and denote by L£(I) the o-algebra of all Lebesgue measur-
able subsets of I. Denote by P(R) the family of all nonempty subsets of R and by
B(R) the family of all Borel subsets of R.

As usual, we denote by C(I,R) the Banach space of all continuous functions
z(.) : I — R endowed with the norm |z(.)|c = sup,e;|@(t)] and by L'(I,R) the
Banach space of all (Bochner) integrable functions z(.) : I — R endowed with the

T
norm |z(.)|; = [, |z(t)|dt.
In [5] the following notions were introduced.

Definition 2.3. a) Caputo-Fabrizio integral of order a € (0,1) of a function
f € ACj,c([0,00),R) (which means that f’(.) is integrable on [0, T] for any T > 0)
is defined by

I8pf(t) = (1—a)f(t) +a / f(s)ds.



4 A. CERNEA JFCA-2021/12(3)
b) Caputo-Fabrizio fractional derivative of order o € (0,1) of f is defined for
t >0 by

Depf(t) = — / e ().

T 1l-a

¢) Caputo-Fabrizio fractional derivative of order 0 = a+n, a € (0,1) n € N of
f is defined by

Depf(t) = Dep(Depf(t)).

In particular, if o = a + 1, a € (0,1) DZ . f(t) = 2 ft e w79 11 (8)ds.

l—a Ja
Definition 2.4. A mapping z(.) € AC(I,R) is called a solution of problem
(1.1) if there exists a function f(.) € L'(I,R) such that f(t) € F(t,z(t)) a.e. (1),
Dgrx(t) = f(t), t € I and z(0) = ¢ € Xo,2'(0) = 21 € X;.

In this case we say that (z(.),v(.)) is a trajectory-selection pair of (1.1).
Hypothesis 2.5. (i) F(.,.) : I x R — P(R) has nonempty closed values and is
L(I) ® B(R) measurable.

(ii) There ewists L(.) € L'(I,(0,00)) such that, for almost all t € I, F(t,.) is
L(t)-Lipschitz in the sense that

du(F(t,2), F(t,y)) < L(t)]z —y| Va,y € R,
where dg (., .) is the Hausdorff distance
d(A, B) = max{d*(4, B),d*(B, A)},d*(A, B) = sup{d(a, B);a € A}.

Hypothesis 2.6. i) S is a separable metric space and a(.),b(.) : S = R, ¢(.): § —
(0,00) are continuous mappings.

ii) There exists the continuous mappings y(.) : S - AC(I,R) and p(.) : S = R
such that

d(D(y(s)Cr(t), F(t,y(s)(t) <p(s)(t) ae. (I), VseS.
We use next the notations

E(s)(t) = MmO [te(s) + |als) — y(s)(0)] + T|b(s) — (y(s))' (0)]]
—|—fgp(s)(u)eM(m(t)_m(“))du, m(t) = fot L(s)ds.

The main tool in the study of reachable sets of our fractional differential inclusion
is a certain version of Filippov’s theorem for fractional differential inclusion (1.1)
in [g].

Theorem 2.7. ([8]) Assume that Hypotheses 2.5 and 2.6 are satisfied.
Then there exist a continuous mapping z(.) : S — C(I,R), such that for any
s €S, x(s)(.) is a solution of problem

DZpa(t) € F(t,2(1)),  2(0) = als), «'(0) = b(s)

and

[2(s)(t) —y(s) (D) < &(s)(t) V(t,s) € I xS
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3. THE MAIN RESULTS

We study next the reachable set of (1.1) defined by
Rp(T, Xo, X1) :={x(T); «(.)is a solution of (1.1)}.

We consider a certain variational fractional differential inclusion and we shall prove

that the reachable set of this variational inclusion from derived cones Cy C R to X

and C7 C R to X; at time T is a derived cone to the reachable set Rp(T, Xo, X1).
Throughout in this section we assume the folowwing hypotheses.

Hypothesis 3.1. i) Hypothesis 2.5 is satisfied and X, X7 C R are closed sets.
ii) (2(.), f(.)) € AC(I,R) x L*(I,R) is a trajectory-selection pair of (1.1) and a
family A(t,.) : R = P(R), t € I of convex processes satisfying the condition

A(t,u) CQpwyF(t,.)(2(t);u) Vu € dom(Al(t,.)), ae. t el (3.1)
is assumed to be given and defines the variational inclusion
DZrw(t) € A(t,w(t)). (3.2)

Remark 3.2. We mention that for any set-valued map F(.,.), one may find an
infinite number of families of convex process A(t, .), t € I, satisfying condition (3.1);
in fact any family of closed convex subcones of the quasitangent cones, A(t) C
Qz(t),r(1))9raph(F(t,.)), defines the family of closed convex process

Alt,u) ={v eR; (u,v) € A(t)}, wveR, tel
that satisfy condition (3.1). For example, we may take an ”intrinsic” family of
such closed convex process; namely, Clarke’s convex-valued directional derivatives
CrwyF(t,)(2(1);.).
When F'(t,.) is assumed to be Lipschitz a.e. on I an alternative characterization
of the quasitangent directional derivative is (e.g., [2])

Qe F(t,.)((2(t);u)) = {w € R; 91_i>%1+ éd(f(t) + 0w, F(t,z(t) + 6u)) = 0}. (3.3)

Theorem 3.3. Assume that Hypothesis 3.1 is satisfied, let Co C R be a derived
cone to Xo at z(0) and C1 C R be a derived cone to X at 2'(0). Then the reachable
set Ra(T,Co,C1) of (3.2) is a derived cone to Rp(T, Xo, X1) at z(T).

Proof. In view of Definition 2.1, let {w1,...,wn} C Ra(T,Coy,C4), hence such
that there exist the trajectory-selection pairs (v1(.),g1(-))s s (Vm(.), gm(.)) of the
variational inclusion (3.2) such that

’Uj(T) = Wy, Uj(O) € Co, ’U;(O) e (1, 7=12...m (34)

Since Cy C R is a derived cone to Xj at 2(0) and C; C R is a derived cone to X;

at z'(0), there exist the continuous mappings «g : S = [0,6p]™ — Xo, @1 : S = X3
such that

ao(0) = 2(0), Dag(0)s =377, s;v;(0) Vs eRY,

01(0) = #(0),  Day(0)s = S, s;0(0) Vs € R (3.5)
For any s = (s1,...,8m) € S and t € I we set
y(s)(t) = 2(t) + 2272 s5v5(t),
g(s)(t) = f(t) + 2271 5595(t) (3.6)

p(5)() = d(a()(8), F (£, 4(3)(1)))
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and prove that y(.), p(.) satisfy the hypothesis of Theorem 2.7.
From the lipschitzianity of F'(¢,.,.) we have that for any s € S, the measurable
function p(s)(.) in (3.6) it is also integrable.

p(s)(t) = d(g(s) (1), F(t,y(s)(t))) < 32514 85195 ()] + du (F(t, 2(1)),
F(t,y(s)(t))) < 32500 5195 (0] + L) 2250, s5]v; (1))

At the same time, the mapping s — p(s)(.) € L'(I,R) is Lipschitzian (and, in
particular, continuous) since for any s,s’ € S one may write

[p(s)() = p(s) (I = Jy Ip(s)(t) = p(s")()ldt < foTHQ(S)T(t) —g(s")(®)]
+du (F(t,y(s) (X)), F(t,y(s")(t ))))]dt < ls = s"IG25% fo g1+
+L(8)|v; ()])dt)

Define S := S\{(0,...,0)} and ¢(.) : S; — (0,00), c(s) := ||s||?. Tt follows from
Theorem 2.7 the existence of a continuous function z(.) : S; — C(I,R) such that
for any s € S1, x(s)(.) is a solution of (1.1) with the property (2.1).

For s = 0 we define z(0)(¢t) = y(0)(t) = 2(t) Vt € I. Obviously, z(.) : S —
C(I,R) is also continuous.

Finally, we define the function «(.) : S — Rp(T, Xo, X1) by

a(s) =xz(s)(T) VseS.

Obviously, «(.) is continuous on S and verifies a(0) = z(T).
In order to finish the proof we must show that «/(.) is differentiable at so = 0 € S
and its derivative is given by

Da(0)(s) = Z sjw; Vs eRY
j=1
which is equivalent with the fact that:

L (lae(s) Zsjw] (3.7)

11m
50 [|s]]

Taking into account (2.6) we obtain
A71e(s) = (0) = Ty sy < hyla(s)(T) YT <
MTeM™D)[s]| 4 MeMmT) L jag(s) — 2(0) — Y, s505(0) |+

MTeMm(T) 5 |||a1( ) z’(O) _ Z] L5 ](O)| +MT€Mm(T) fT p(ﬁ)f‘u)d

and therefore in view of (3.5), relation (3.7) is implied by the following property of
the mapping p(.) in (3.6)

im 28O o e ), (3.8)

=0 ||s|

In order to prove the last property we note since A(t,.) is a convex process for
any s € S one has

" S “ S - S
ij eAt,ZFjH ) C Qs F(t, ’Z|sj|| a.e. (I).

j=1 Jj=1 j=1
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Therefore, by (3.3) we obtain

m

hgm = +hz TP ||gj ,z(t)—l—hZ”gTj”vj(t))):O. (3.9)

Finally, in order to prove that (3.9) implies (3.8) we take the compact metric
space X7~ = {0 € R;||o|| = 1} and the real function (., .) : (0,60] x T7~ " —
R, defined by

Gi(h,0) = +hZng] F(t,z(t)+h Y ojvi(t)), (3.10)
=1

where 0 = (01, ...,0,) and which according to (3.9) has the property
. —1
91_1}1&_ Pi(0,0) =0 VYoeX  ae. (I) (3.11)

Using the fact that 1:(6,.) is Lipschitzian and the fact that ZTfl is a compact
metric space, from (3.11) it follows easily that

1 =0
By o, il )

which implies the fact that

L e (], 7 )=0 a.e. (I)

and the proof is complete.

We apply now Theorem 3.3 in order to obtain a sufficient condition for local con-
trollability of the fractional differential inclusion (1.1) along a reference trajectory,
z(.) at time T, in the sense that

A(T) € Int(Rp(T, Xo, X1)).

Theorem 3.4. Let z(.), F(.,.) and A(.,.) satisfy Hypothesis 3.1, let Co C R be a
derived cone to Xy at z(0) and C; C R be a derived cone to X; at 2'(0). If, the
variational fractional differential inclusion in (3.2) is controllable at T in the sense
that Ra(T,Co,C1) = R, then the differential inclusion (1.1) is locally controllable
along z(.) at time T.

Proof. The proof follows from Lemma 2.2 and Theorem 3.3.

REFERENCES

[1] T.M. Atanackovié, S. Pilipovié, D. Zorica, Properties of the Caputo-Fabrizio fractional de-
rivative and its distributional settings. Frac. Calc. App. Anal. Vol. 21 (2018), 29-44.

[2] J.P. Aubin, H. Frankowska, Set-valued Analysis. Birkhauser, Basel, (1990).

[3] D. Bileanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical
Methods. World Scientific, Singapore, (2012).

[4] M. Caputo, Elasticita e Dissipazione. Zanichelli, Bologna, (1969).

[5] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel.
Progress Fract. Diff. Appl. Vol. 1 (2015), 1-13.

[6] M. Caputo, M. Fabrizio, Applications of new time and spatial fractional derivatives with
exponential kernels. Progress Fract. Diff. Appl. Vol. 2 (2016), 1-11.

[7] A. Cernea, Local controllability of a class of fractional differential inclusions via derived cones,
Differential and Difference Equations with Applications, SPMS 333, Ed. S. Pinelas, J. Graef,
S. Hilger, P. Kloeden, C. Schinas, Springer, Cham, (2020), 143-152.



(8]
[9]
[10]
(11]

12]
(13]

[14]

[15]

A. CERNEA JFCA-2021/12(3)

A. Cernea, On the solutions of a fractional differential inclusion of Caputo-Fabrizio type. J.
Nonlin. Evol. Equa. Appl. Vol. 2020, no. 9, (2020), 163-176.

K. Diethelm, The Analysis of Fractional Differential Equations. Springer, Berlin, (2010).
M.R. Hestenes, Calculus of Variations and Optimal Control Theory. Wiley, New York, (1966).
A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential
Equations. Elsevier, Amsterdam, (2006).

I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, (1999).

M.A. Refai, K. Pal, New aspects of Caputo-Fabrizio fractional derivative. Progress Fract.
Dijff. Appl. Vol. 5 (2019), 157-166.

A. Shaikh, A. Tassaddiq, K.S. Nisar, D. Baleanu, Analysis of differential equations involving
Caputo-Fabrizio fractional operator and its applications to reaction-diffusion equations. Adwv.
Difference Equations Vol. 2019, no. 178, (2019), 1-14.

S. Toprakseven, The existence and uniqueness of initial-boundary value problems of the
Caputo-Fabrizio differential equations. Universal J. Math. Appl. Vol. 2 (2019), 100-106.

[16] S. Zhang, L. Hu, S. Sun, The uniqueness of solution for initial value problems for fractional

differential equations involving the Caputo-Fabrizio derivative. J. Nonlinear Sci. Appl. Vol.
11 (2018), 428-436.

AURELIAN CERNEA

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF BUCHAREST, ACADEMIEI 14,
010014 BUCHAREST,
ACADEMY OF ROMANIAN SCIENTISTS, SPLAIUL INDEPENDENTEI 54, 050094 BUCHAREST ROMANIA

E-mail address: acernea@fmi.unibuc.ro



	1. Introduction
	2. Preliminaries
	3. The main results
	References

