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A SURVEY ON FRACTIONAL CALCULUS IN GEOMETRIC

FUNCTION THEORY

HANAA M. ZAYED

Abstract. Recently considerable effort has been devoted to the study of frac-

tional calculus in many branches of mathematics and physics. The main object

of the present investigation is to provide a brief survey concerning fractional

integral and derivative operators in Geometric Function Theory. The general-

izations of these operators are also concerned along with numerous properties

of these generalized operators. We also list some samples which reflect our

recent investigations in the Geometric Function Theory.

1. Introduction

Geometric function theory is a highly developed branch of mathematics which

suggests the significance of geometric ideas and problems in complex analysis. Re-

cently, particular attention has been devoted to fractional integral and differential

operators and its generalizations in Geometric Function Theory. The history of

the theory goes back to seventeenth century, when in 1695 the derivative of order

α = 1/2 was investigated by Leibnitz in his letter to L’Hospital. Since then, the

new theory turned out to be very attractive to mathematicians as well as physicists,

biologists, engineers and economists. The fractional calculus operators have further

been extensively used in describing and solving various problems in applied sciences

and also in the Geometric Function Theory of Complex Analysis (see, for example
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[28] and [33]). There are several types of fractional integral and derivative opera-

tors, we refer the reader principally to [12, 13, 18, 19, 26, 27, 31] and the references

therein for details. One of the important problem in Geometric Function Theory is

univalent functions and how to construct a linear operators that preserves the class

of the univalent functions and some of its subclasses. In [12], Biernacki conjectured

that a certain integral operator maps the class of univalent into itself, but later

Krzyz and Lewandowski provided a counterexample in [20] that the conjecture was

not correct. While, Libera considered another linear integral operator in [21], which

maps each of the subclasses of the starlike, convex and close-to-convex functions

into itself. Among these operators in Geometric Function Theory, the operators

which introduced and studied by Owa and Srivastava in [26, 27] as follows:

Definition 1.1. The fractional integral of order λ is defined, for a function f(z), by

D−λz f(z) =
1

Γ(λ)

∫ z

0

f(ζ)

(z − ζ)1−λ dζ (λ > 0), (1.1)

where f(z) is an analytic function in a simply-connected region of the complex

z−plane containing the origin and the multiplicity of (z − ζ)λ−1 is removed by

requiring log(z − ζ) to be real when z − ζ > 0.

Definition 1.2. The fractional derivative of order λ is defined, for a function

f(z), by

Dλ
z f(z) =

1

Γ(1− λ)

d

dz

∫ z

0

f(ζ)

(z − ζ)λ
dζ (0 ≤ λ < 1), (1.2)

where the multiplicity of (z − ζ)−δ is removed as in Definition 1.1.

Definition 1.3. Under the hypotheses of Definition 1.2, the fractional derivative

of order k + λ is defined by

Dk+λ
z f(z) =

dk

dzk
Dλ
z f(z) (0 ≤ λ < 1; k ∈ N0 = N ∪ {0}; N = {1, 2, ...}). (1.3)

It is worthy of mention to recall here that a general form of the above opera-

tors, that is, the generalized fractional integral and generalized fractional derivative

operators, was developed by Srivastava et al. [34] along the following lines:

Definition 1.4. For µ and η, the generalized fractional integral and derivative

operators Iλ,µ,η0,z for λ > 0 and Jλ,µ,η0,z f(z) for 0 ≤ λ < 1 are defined by

Iλ,µ,η0,z f(z) =
z−λ−µ

Γ(λ)

∫ z

0

(z − ζ)λ−1f(ζ)2F1

(
µ+ λ,−η;λ; 1− ζ

z

)
dζ, (1.4)

where f(z) is an analytic function in a simply-connected region of the complex

z−plane containing the origin with the order f(z) = O(|z|ε), z → 0 when ε >
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max{0, µ−η}−1 and the multiplicity of (z−ζ)λ−1 is removed by requiring log(z−ζ)

to be real when z − ζ > 0 and

Jλ,µ,η0,z f(z) =


d
dz

{
zλ−µ

∫ z
0

(z−ζ)−λf(ζ)2F1(µ−λ,1−η;1−λ;1− ζz )dζ
Γ(1−λ)

}
,

dn

dzn J
λ−n,µ,η
0,z f(z) (n ≤ λ < n+ 1; n ∈ N),

(1.5)

where the multiplicity of (z − ζ)−λ is removed as above and 2F1 (a, b; c; z) is the

Gaussian hypergeometric function defined by

2F1 (a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n(1)n

zn,

for c 6= 0,−1,−2, ..., z ∈ U and (λ)n is the Pochhammer symbol defined by

(λ)n =

{
1 if n = 0,

λ(λ+ 1)(λ+ 2)...(λ+ n− 1) if n ∈ N.

Noting that: Iλ,−λ,η0,z f(z) = D−λz f(z) (λ > 0) and Jλ,λ,η0,z f(z) = Dλ
z f(z) (0 ≤ λ <

1). It is significant to note that [32] and Liouville [22] defined the above operators

associated with a real-valued function. An extension of the fractional calculus has

been introduced by Kılıcman et al. in [17] as inserted below:

Definition 1.5. Let f(z) be analytic in a simply connected region, for all z ∈ U,

containing the origin and 0 < α ≤ 1, 0 < β ≤ 1 such that 0 ≤ α− β < 1. Then the

fractional integral operator Lα,βz is defined by

Lα,βz f(z) =
Γ(α)

Γ(β)Γ(α− β)
z1−α

∫ z

0

tβ−1 f(ζ)

(z − ζ)1−α+β
dζ, (1.6)

where the multiplicity of (z− ζ)α−β−1 is removed by requiring log(z− ζ) to be real

when z − ζ > 0 and if α = β, we have Lα,αz f(z) = f(z).

Definition 1.6. Let f(z) be analytic in a simply connected region, for all z ∈ U,

containing the origin and 0 < α ≤ 1, 0 < β ≤ 1 such that 0 ≤ α− β < 1. Then the

fractional integral operator Iα,βz is defined by

Iα,βz f(z) =
Γ(β)

Γ(α)Γ(1− α+ β)

d

dz

∫ z

0

tα−1 f(ζ)

(z − ζ)α−β
dζ, (1.7)

where the multiplicity of (z−ζ)β−α is removed as in Definition 1.5 and if α = β, we

have Iα,αz f(z) = f(z).

We are now ready to introduce the fractional q-derivative operator, we need the

following notations.
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For any complex number α, the q-shifted factorials are defined by

(α; q)0 = 1; (α; q)n =

n−1∏
k=0

(
1− αqk

)
, n ∈ N. (1.8)

In terms of the analogue of the gamma function

(qα; q)n =
Γq(α+ n)(1− q)n

Γq(α)
(n > 0),

where the q-gamma function is defined by

Γq(x) =
(q; q)∞(1− q)1−x

(qx; q)∞
(0 < q < 1).

If |q| < 1, the definition (1.8) remains meaningful for n =∞ as a convergent infinite

product

(α; q)∞ =

∞∏
j=0

(
1− αqj

)
.

Also, the q-integral of a function f(z) is defined by (see Gasper and Rahman [15])

z∫
0

f(t)dqt = z(1− q)
∞∑
k=0

qkf(zqk).

Recalling the definition of fractional q-calculus operators of a complex-valued

function f(z), which were recently studied by Purohit and Raina in [29].

Definition 1.7. The fractional q-integral operator of order λ for a function f(z) is

defined by

Iλq,zf(z) = D−λq,z f(z) =
1

Γq(λ)

∫ z

0

(z − tq)λ−1 f(t)dqt (λ > 0),

where f(z) is an analytic function in a simply-connected region of the complex

z-plane containing the origin and the q-binomial function (z − tq)λ−1 is defined by

(z − tq)λ−1 = zλ−1
1Φ0

[
q1−λ;−; q,

tqλ

z

]
. (1.9)

The series 1Φ0 (λ;−; q, z) is single-valued when |arg(−z)| < π and |z| < 1 (see for de-

tails Gasper and Rahman [15, p. 104-106]) and therefore the function (z − tq)λ−1 in

(1.9) is single-valued when
∣∣∣arg

(
− tq

λ

z

)∣∣∣ < π,
∣∣∣ tqλz ∣∣∣ < 1 and |arg(z)| < π.

Definition 1.8. The fractional q-derivative operator of order λ for a function f(z) is

defined by

Dλ
q,zf(z) = Dλ

q,z I
1−λ
q,z f(z) =

1

Γq(1− λ)
Dq,z

∫ z

0

(z − tq)−λ f(t)dqt (0 ≤ λ < 1),
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where f(z) is an analytic function in a simply-connected region of the complex

z-plane containing the origin and the multiplicity of (z − tq)−λ is removed as in

Definition 1.7.

Definition 1.9. Under the hypotheses of Definition 1.8, the fractional q-derivative

for a function f(z) of order λ is defined by

Dλ
q,zf(z) = Dm

q,zI
m−λ
q,z f(z),

where m− 1 ≤ λ < 1, m ∈ N0.

It is significant to note that Al-Salam [5, 6] and [2] (see also [1]) defined the

aforementioned operators associated with a real-valued function.

Let A denote the class of functions f(z) of the form

f(z) = z +

∞∑
k=n+1

akz
k, (1.10)

which are analytic in the open unit disc U := {z : z ∈ C and |z| < 1}. Further, let

S denote the class of functions which are univalent in U.

A function f(z) ∈ A is said to be starlike and convex of order α, denoted by

S∗(α) and C(α) (0 ≤ α < 1, z ∈ U), respectively, if and only if

Re

(
zf ′(z)

f(z)

)
> α, (1.11)

and

Re

(
1 +

zf ′′(z)

f ′(z)

)
> α. (1.12)

From (1.11) and (1.12), we have

f(z) ∈ C(α)⇔ zf ′(z) ∈ S∗(α).

It is worth noting that S∗(0) = S∗ and C(0) = C. For example: the function

f(z) = z/(1− z)2 ∈ S∗ because

Re

(
zf ′(z)

f(z)

)
= Re

(
1 + z

1− z

)
> 0,

while f(z) = − log(1− z) ∈ C because

1 + Re

(
zf ′′(z)

f ′(z)

)
= 1 + Re

(
z

1− z

)
>

1

2
.

Let further T denote the subfamily of functions f(z) of the form

f(z) = z −
∞∑

k=n+1

akz
k (ak ≥ 0). (1.13)
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On the other hand, let T S∗(α) and T C(α) denote the subfamilies obtained by

taking intersections, respectively of the classes S∗(α) and C(α), that is,

T S∗(α) = S∗(α) ∩ T , T C(α) = C(α) ∩ T .

Moreover, a function f(z) ∈ A given by (1.10) and 0 < q < 1, the q-derivative

of a function f(z) is defined by (see Gasper and Rahman [15])

Dqf(z) =

 f ′(0) if z = 0,
f(qz)− f(z)

(q − 1)z
if z 6= 0.

(1.14)

From (1.14), we deduce that Dqf(z) for a function f(z) of the form (1.10) is given

by

Dqf(z) = 1 +

∞∑
k=n+1

[k]q akz
k−1 (z 6= 0), (1.15)

where

[i]q =
1− qi

1− q
.

As q → 1, [k]q → k, we have

lim
q→1

Dqf(z) = f ′(z).

Making use of the q-derivativeDq, we introduce the subclasses S∗q (α) and Cq (α) as

follows:

A function f(z) ∈ A is called q-starlike and q-convex of order α, denoted by

S∗q (α) and Cq(α) (0 < q < 1, 0 ≤ α < 1, z ∈ U), respectively, if and only if∣∣∣∣ 1

1− α

(
zDqf(z)

f(z)
− α

)
− 1

1− q

∣∣∣∣ ≤ 1

1− q

and ∣∣∣∣ 1

1− α

(
Dq(zDqf(z))

Dqf(z)
− α

)
− 1

1− q

∣∣∣∣ ≤ 1

1− q
.

It is a considerable computational and conceptual advantage for the prescribed

classes to be written as a closed disc with center ((1 − αq)/(1 − q), 0) and radius

(1− α)/(1− q) because it provides explicit and desirable properties one would like

to have. In particular, the starlike functions have the property that the argument

of f increases with z. The above classes turned out that the modulus of f increases

with |z|. We refer the interested readers to [16] for more details concerning these

classes.
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By now, it is abundantly clear that the classes S∗q (α) and Cq(α) satisfy the

inclusion (see [16, 3, 4]):

∩
0<q<1

S∗q (α) = S∗(α), ∩
0<q<1

Cq(α) = C(α) and f(z) ∈ Cq(α)⇔ zDqf(z) ∈ S∗q (α).

Definition 1.10. Let P denote the class of analytic functions p(z) in U such that

p(0) = 1 and Re p(z) > 0, z ∈ U, this class is called the class of functions with

positive real parts, also called Carathéodory class.

For example, the function p(z) = (1 + z)/(1 − z) belongs to P, this function

gives maps conformally of U onto the right-half plane, and consequently it plays a

fundamental role in the class P. We also note that P is a convex set and a compact

subset of S.
For a detailed historical survey and an extended list of references on fractional

and q-fractional calculus and their applications to the theory of univalent and mul-

tivalent functions, we refer, e.g., to [7, 8, 9, 10, 11, 23, 24, 25, 29, 30, 35, 36, 37, 38,

39, 40, 41] and elsewhere. Here, the authors obtained coefficient estimates, sharp

bounds for the Fekete Szegö functional
∣∣a3 − µa2

2

∣∣ , sharp bounds for the second,

third and fourth order Hankel determinant, differential subordination results within

a generalized fractional calculus as well as some properties such as sufficient condi-

tions, inclusion results and distortion theorems for functions belonging to families

of univalent and multivlent functions.

2. Results involving the operators D−λz and Dλ
z

Theorem 2.1. [26] There exists a univalent starlike functions of the form (1.10)

in U such that F (z) = Γ (2 + λ) z−λD−λz f(z) ∈ S∗.

Example 2.1. [26] Let f(z) = z+a2z
2 ∈ S∗, then, from (1.11) and Theorem 2.1, we

have 2 |a2| < 1. Therefore,

Re

(
zF ′(z)

F (z)

)
=

(2 + λ)
2

+ 6 (2 + λ) |a2| |z| cos(θ + ϕ) + 8 |a2|2 |z|2

(2 + λ)
2

+ 4 (2 + λ) |a2| |z| cos(θ + ϕ) + 4 |a2|2 |z|2

>
(2 + λ− 2 |a2| |z|) (2 + λ− 4 |a2| |z|)

(2 + λ+ 2 |a2| |z|)2 ≥ 0,

for |z| < 1 where z = |z| eiθ and a2 = |a2| eiϕ.

Remark 2.1. [26] If f(z) = z+a2z
2 ∈ S∗, then F (z) is an univalent convex function

in |z| < (2 + λ)/4 where λ is a positive real number.

Theorem 2.2. [26] There exists a univalent convex functions of the form (1.10)

in U such that F (z) = Γ (2 + λ) z−λD−λz f(z) ∈ C.
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Example 2.2. [26] Let f(z) = z+a2z
2 ∈ C, then, from (1.12) and Theorem 2.2, we

have 4 |a2| < 1 and

Re

(
1 +

zF ′′(z)

F ′(z)

)
=

(2 + λ)
2

+ 12 (2 + λ) |a2| |z| cos(θ + ϕ) + 32 |a2|2 |z|2

(2 + λ)
2

+ 8 (2 + λ) |a2| |z| cos(θ + ϕ) + 16a2
2 |z|

2

>
(2 + λ− 4 |a2| |z|) (2 + λ− 8 |a2| |z|)

(2 + λ+ 4 |a2| |z|)2 ≥ 0,

for |z| < 1 where z = |z| eiθ and a2 = |a2| eiϕ.

Theorem 2.3. [26] There exists a univalent starlike functions of the form (1.10)

in U such that G(z) = Γ (2− λ) zλDλ
z f(z) ∈ S∗.

Example 2.3. [26] Let f(z) = z + a2z
2 ∈ S∗, then

Re

(
zG′(z)

G(z)

)
=

(2− λ− 2 |a2| |z|) (2− λ− 4 |a2| |z|)
(2− λ+ 2 |a2| |z|)2 > 0,

for |z| < 1 where z = |z| eiθ and a2 = |a2| eiϕ.

Let S∗F and CF denote the classes of functions of the form (1.10) for which

F (z) ∈ S∗ and F (z) ∈ C, respectively. Further, let S∗F stands for the class of

functions of the form (1.10) for which G(z) ∈ S∗. The following theorems give the

lower and upper bounds for
∣∣D−λz f(z)

∣∣ and
∣∣Dλ

z f(z)
∣∣ .

Theorem 2.4. [26] If f(z) ∈ S∗F , then for |z| < 1,

|z|1+λ

Γ (2 + λ) (1 + |z|)2
≤
∣∣D−λz f(z)

∣∣ ≤ |z|1+λ

Γ (2 + λ) (1− |z|)2
,

where λ is a positive real number. Equality holds for f(z) = z/(1− eiθz)2.

Theorem 2.5. [26] If f(z) ∈ CF , then for |z| < 1,

|z|λ

Γ (2 + λ) (1 + |z|)
≤
∣∣D−λz f(z)

∣∣ ≤ |z|λ

Γ (2 + λ) (1− |z|)
,

where λ is a positive real number. Equality holds for f(z) = z/(1− z).

Theorem 2.6. [26] If f(z) ∈ S∗G, then for |z| < 1 and 0 < λ < 1,

|z|−λ

Γ (2− λ) (1 + |z|)
≤
∣∣Dλ

z f(z)
∣∣ ≤ |z|−λ

Γ (2− λ) (1− |z|)
.

Equality holds for f(z) = z/(1− z).
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3. Results involving the operators Iλ,µ,η0,z and Jλ,µ,η0,z

Lemma 3.1. [34] If λ > 0 and κ > µ− η − 1, then

Iλ,µ,η0,z (zκ) =
Γ (κ+ 1) Γ (κ− µ+ η + 1)

Γ (κ− µ+ 1) Γ (κ+ λ+ η + 1)
zκ−µ.

Theorem 3.1. [34] Let λ, µ and η satisfy the inequalities

λ > 0, µ < 2, λ+ η > −2 and µ− η < 2.

If µ(λ+ η)/λ− 2 ≤ n and f(z) of the form (1.13) is in T S∗(α), then∣∣∣Iλ,µ,η0,z f(z)
∣∣∣ ≥ Γ(2− µ+ η)

Γ(2− µ)Γ(2 + λ+ η)
|z|1−µ

×
{

1− (1− α)(−µ+ η + 2)n(n+ 1)!

(n+ 1− α)(−µ+ 2)n(λ+ η + 2)n
|z|n

}
, (3.1)

and ∣∣∣Iλ,µ,η0,z f(z)
∣∣∣ ≤ Γ(2− µ+ η)

Γ(2− µ)Γ(2 + λ+ η)
|z|1−µ

×
{

1 +
(1− α)(−µ+ η + 2)n(n+ 1)!

(n+ 1− α)(−µ+ 2)n(λ+ η + 2)n
|z|n

}
, (3.2)

for z ∈ U if µ ≤ 1 and z ∈ U−{0} if µ > 1. Equalities in (3.1) and (3.2) are

attained by the function

f(z) = z − 1− α
n+ 1− α

zn+1,

of certain values of z, where µ is assumed to be rational number for the case (3.2).

Theorem 3.2. [34] Under the assumptions of Theorem 3.1, let the function f(z) of

the form (1.13) be in the T C(α), then∣∣∣Iλ,µ,η0,z f(z)
∣∣∣ ≥ Γ(2− µ+ η)

Γ(2− µ)Γ(2 + λ+ η)
|z|1−µ

×
{

1− (1− α)(−µ+ η + 2)nn!

(n+ 1− α)(−µ+ 2)n(λ+ η + 2)n
|z|n

}
, (3.3)

and ∣∣∣Iλ,µ,η0,z f(z)
∣∣∣ ≤ Γ(2− µ+ η)

Γ(2− µ)Γ(2 + λ+ η)
|z|1−µ

×
{

1 +
(1− α)(−µ+ η + 2)nn!

(n+ 1− α)(−µ+ 2)n(λ+ η + 2)n
|z|n

}
, (3.4)

for z ∈ U if µ ≤ 1 and z ∈ U−{0} if µ > 1. Equalities in (3.3) and (3.4) are

attained by the function

f(z) = z − 1− α
(n+ 1)(n+ 1− α)

zn+1,

of certain values of z, where µ is assumed to be rational number for the case (3.4).
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4. Results involving the operators Lα,βz and Iα,βz

Theorem 4.1. [17] Let f ∈ A on U. Then the operator Lα,βz : Up → Up is a

bounded operator and ∥∥Lα,βz f(z)
∥∥p
Up
≤ ‖f(z)‖pUp ,

for all z ∈ U where Up(U), 0 < p < 1 stands for the Bergman space for a function

f analytic in U with the norm ‖f(z)‖pUp <∞ defined by

‖f(z)‖ =
1

π

∫
U

|f(z)|p dU <∞,

where dU is known as a Lebesgue measure over U.

Theorem 4.2. [17] (Compactness) Let f(z) ∈ A on U. Then Lα,βz : Up → Up is

compact.

Theorem 4.3. [17] Let f ∈ A, then∣∣Lα,βz f(z)
∣∣ ≤ r (2F1(1, β, α; r))

′
.

Theorem 4.4. [17] If f ∈ C, then∣∣Lα,βz f(z)
∣∣ ≤ rβ

α
(2F1(1;β + 1, α+ 1; r)) .

Theorem 4.5. [17] If f(z) ∈ C, then

Lα,βz f(z) ≤ r Γ (α)

Γ (β) Γ (α− β)

1∫
0

sβ(1− s)α−β−1(1− rs)−1ds,

Theorem 4.6. [17] If f(z) ∈ A, then for 0 < α ≤ 1, 0 < β ≤ 1 and 0 ≤ α − β <
1, we have ∣∣∣∣αβ (Lα,βz f(z)

)
− z
∣∣∣∣ ≤ (2− r) (β + 1)

(1− r)2 (α+ 1)
.

5. Complementary Results

Definition 5.1. [38] Let SPλ (0 ≤ λ ≤ 1) be the class of functions f ∈ A0 satisfying

the inequality

Re

{
z(Ωλf)′

(Ωλf)

}
>

∣∣∣∣z(Ωλf)′

(Ωλf)
− 1

∣∣∣∣ ,
where Ωλf = Γ(2− λ)zλDλ

z f(z) (z ∈ U).

For c 6= 0,−1,−2, ... and z ∈ U, let

ϕ (a, c; z) =

∞∑
n=0

(a)n
(b)n

zn+1,
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and

L(a, c)f(z) = ϕ (a, c; z) ∗ f(z), f ∈ A,

where ∗ stands for the convolution between two power series (see [14]).

Further, it can verified that the Riemann map q of U onto the parabolic region

R =
{
w : w = u+ iv and v2 < 2u− 1

}
,

satisfying q(0) = 1 and q′(0) > 0, is given by

q(z) = 1 +
2

π2

(
log

1 +
√
z

1−
√
z

)2

= 1 +
8

π2

∞∑
n=1

(
1

n

n−1∑
k=0

1

2k + 1

)
zn

=

∞∑
n=0

Bnz
n = 1 +

8

π2

(
z +

2

3
z2 +

23

45
z3 +

44

105
z4 + ...

)
, z ∈ U,

and the function G(z) is given by

G(z) =
1

z

{
L(2− λ, 2) z

(
exp

∫ z

0

q(s)− 1

s
ds

)}
, z ∈ U. (5.1)

Theorem 5.1. [38] Let 0 ≤ λ < 1 and f ∈ SPλ, then

G(−r) ≤
∣∣∣∣f(z)

z

∣∣∣∣ ≤ G(r), |z| = r, (5.2)

and ∣∣∣∣arg

(
f(z)

z

)∣∣∣∣ ≤ max
θ∈[0,2π]

{
arg
(
G(reiθ)

)}
(z = reiθ), (5.3)

where G(z) is given by (5.1). Equality holds true in 5.2 and 5.3 for some z 6= 0 if

and only if f is a rotation of zG(z).

Corollary 5.1. [38] If f ∈ SPλ, then

{w : |w| ≤ G(−1)} ⊆ f (U) .

The result is sharp.

Theorem 5.2. [38] Let f ∈ Sλ (1/2) and g ∈ SPµ (λ ≤ µ), then

Ωλf(z) ∗ Ωµf(z) ∈ SPµ.

In particular, if f ∈ Sλ (1/2) and g ∈ SPλ, then

Ωλf(z) ∗ Ωλf(z) ∈ SPλ.
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Theorem 5.3. [38] Let fj ∈ SPλ (j = 1, 2, ..., n) . Also let

αj > 0 and

n∑
j=1

αj = 1,

Define a function g by

Ωαg(z) =

n∏
j=1

(Ωλfj(z))
αj ,

then g ∈ SPλ.

Theorem 5.4. [38] Let g ∈ P where

g(z) = 1 + c1z + c2z
2 + ... = 1 +G(z),

then

|cn| ≤ 2 (n ∈ N),

and ∣∣∣∣c2 − 1

2
µc21

∣∣∣∣ ≤ 2 +
1

2
(|µ− 1| − 1) |c1|2 .

Furthermore, if we define the sequence {An}∞n=1 by

∞∑
n=1

(−1)n−1γn−1{G(z)}n =

∞∑
n=1

Anz
n,

where γ0 = 1,

γn =
1

2n

1 +
1

2

n∑
j=1

(
n

j

)
Bn

 ,
and the sequence {Bn}∞n=1 by

h(z) = 1 +

∞∑
n=1

Bnz
n,

then

|An| ≤ 2 (n ∈ N).

Theorem 5.5. [38] Let the function f ∈ A be in the class SPλ. Then,

∣∣a3 − µa2
2

∣∣ ≤



4

3π2
(3− λ) (2− λ)

(
12(2−λ)µ
(3−λ)π2 − 4

π2 − 1
3

)
if µ ≥ σ1,

2

3π2
(3− λ) (2− λ) if σ2 ≤ µ ≤ σ1,

4

3π2
(3− λ) (2− λ)

(
1
3 + 4

π2 − 12(2−λ)µ
(3−λ)π2

)
if µ ≤ σ2,

(5.4)

where

σ1 =
3− λ
2− λ

(
1

3
+

5π2

72

)
and σ2 =

3− λ
2− λ

(
1

3
− π2

72

)
.
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Each of the estimates in (5.4) is sharp.

Definition 5.2. For −∞ < α < 2, 0 ≤ δ < 1, 0 ≤ β < 1, 0 < q < 1 and

z ∈ U, Purohit and Raina in [29] defined the families Fαq,δ and Gαq,δ, respectively, by

Fαq,δ =

{
f ∈ T ,

∣∣∣∣ Ωαq,zf(z)

Ωαq,zf(z)− 2δ + 1

∣∣∣∣ < β

}
,

where

Ωαq,zf(z) =
Γq (2− α)

Γq (2)
zα−1Dα

q,zf(z)

= 1 +

∞∑
k=2

Γq (2− α) Γq (k + 1)

Γq (2) Γq (k + 1− α)
akz

k−1,

and

Gαq,δ =

{
f ∈ T , Re

(
(1− γ)Ωαq,zf(z) + α

1− q1−α

1− q
Ωα+1
q,z f(z)

)
> β

}
.

Theorem 5.6. [29] A function f(z) of the form (1.13) belongs to Fαq,δ if and only

if
∞∑
k=2

Γq (k + 1) Γq (2− α)

Γq (2) Γq (k − α+ 1)
(1 + β) ak ≤ 2β (1− δ) .

The result is sharp for the function

f(z) = z − 2β (1− δ) Γq (2) Γq (n− α+ 2)

(1 + β) Γq (n+ 2) Γq (2− α)
zn+1 (n ∈ N).

Theorem 5.7. [29] A function f(z) of the form (1.13) belongs to Gαq,δ if and only

if

∞∑
k=2

Γq (k + 1) Γq (2− α)

Γq (2) Γq (k − α+ 1)
ak
[
(1− γ)(1− q) + γ

(
1− qk−α

)]
≤ (1− β − γ) (1− q) + γ

(
1− q1−α) .

The result is sharp for the function

f(z) = z −
[(1− β − γ) (1− q) + γ

(
1− q1−α)]

An+1,q(α, γ)
zn+1 (n ∈ N),

where

An+1,q(α, γ) =
[(1− β − γ) (1− q) + γ

(
1− q1−α)]Γq (k + 1) Γq (2− α)

Γq (k − α+ 1) Γq (2)
.

Theorem 5.8. [29] Let f(z) of the form (1.10) be in the Fαq,δ (−∞ < α < 2, 0 ≤
q < 1), then

|z| − 2β

(
1− δ
1 + β

)
B (n, α, q) |z|n+1 ≤ |f(z)| ≤ |z|+ 2β

(
1− δ
1 + β

)
B (n, α, q) |z|n+1

,
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where

B (n, α, q) =
Γq (2) Γq (n+ 2− α)

Γq (n+ 2) Γq (2− α)
.

Further,

|z| − 2β

(
1− δ
1 + β

)
|z|n+1 ≤

∣∣zΩαq,zf(z)
∣∣ ≤ |z|+ 2β

(
1− δ
1 + β

)
|z|n+1

.

Theorem 5.9. [29] Let f(z) of the form (1.10) be in the Gαq,δ (−∞ < α < 2, 0 ≤
q < 1), then

|z| −B (n, α, q)C |z|n+1 ≤ |f(z)| ≤ |z|+B (n, α, q)C |z|n+1
.

Also,

|z| − CD |z|n+1 ≤
∣∣zΩαq,zf(z)

∣∣ ≤ |z|+ CD |z|n+1
,

where

C =
(1− β − γ) (1− q) + γ

(
1− q1−α)

(1− γ) (1− q) + γ (1− qn+1−α)
,

and

D =
Γq (n− α+ 2) Γq (2− λ)

Γq (n− λ+ 2) Γq (2− α)
.
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