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MARKOV AND NON-MARKOV HEREDITARY PROCESSES IN ASEXUAL AND
RANDOM MATING SEXUAL POPULATIONS

E. A. ABDEL-REHIM, R. M. HASSAN, A. M. A. EL-SAYED

Abstract. In this paper, we numerically investigate the Hereditary processes in the sexual and asexual
mating. The genetic diffusion models of the two cases are described by partial differential equations. The
solutions of these equations are considered as the conditional probability of finding the specific genes at a
certain generation with a certain frequency. We also investigate the effects of the selection and mutations
as well as the dependence on the memory on the sexual random mating and on the self proliferation of
the asexual case. The effects of the wild-type mutation rate and mutator mutation rate per genome on
the asexual proliferation is also numerically discussed. To do so, the common finite difference rules (FDM)
will be utilized. The convergence of the discrete approximate solutions on the short and long run, i.e. the
dependence on the memory, are also discussed and numerically investigated. The reversibility property
for both models is theoretically and numerically discussed. Finally, a concrete conclusion will be given to
summarize our numerical results and their relations to the real life problems.

1. Introduction

The evolution of a population of a certain species is affected by whether the individual organisms are
reproduced sexually or asexually. In asexual reproduction, an exact genetic copy of the parent organism is
produced (a clone). Unlike sexual reproduction, Asexual reproduction only introduces genetic variation into
the population if a random mutation in the organism’s DNA is is passed on to the offspring.

Sexual reproduction involves the fusion of the nuclei of a male and female sex cell during fertilisation.
The offspring inherit a mixture of alleles from both parents. Sexual reproduction has some advantages
such as, it produces genetic variation in the offspring, the species can adapt to new environments due to
variation, which gives them a survival advantage and the diseases are less likely to affect all the individuals
in a population.

In asexual reproduction the population can increase rapidly when the conditions are favourable, only one
parent is needed. This process is more time and energy efficient as it does not require a mate and it is faster
than sexual reproduction. The disadvantages of asexual reproduction are given as, it does not lead to genetic
variation in a population and the disease may affect all the individuals in of the next population.

Bacteria, such as E. coli, are reproduced asexually. An advantage of this is that they can produce many
bacteria very quickly. A disadvantage is that all of the bacteria are genetically identical. If an antibiotic
was put on the bacteria, then all of them would die. The only way for variation to be introduced into the
population is by random mutation.

According to Kimura and Crow [1], asexual population has two favourable mutants can be incorporated
into the population only if one occurs in a descendant of the individual in which the other occurred, while
in a sexual population both mutants can be incorporated through recombination.

Later, Kimura [2] considered evolutionary factors which influence mutation rates through natural selection
and discussed the mechanisms by which spontaneous mutation rates are adjusted in the course of evolution.

The rates of evolution in the asexual and the sexual population were compared by J. Maynard Smith [3].
It is shown that, if the genetic variance of the population is generated by mutation in a uniform environment,
sexual reproduction confers no advantage. But if the genetic variance has arisen because of the selection
that has favoured different genotypes in different environments, then sexual reproduction will accelerate
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adaptation to a new environment. These conclusions differ sharply from those reached by Crow and Kimura
[1]. The difference arises because those authors treated mutations as unique events, whereas they are here
treated as recurrent events.

The rate of evolutionary adaptation of sexual and asexual populations is compared in [4]. If N is the
population size, l the number of loci at which at any time favourable mutations are possible but have not
yet occurred, u the mutation rate per locus and s the selective advantage per locus, sexual reproduction will
not accelerate evolution if 12Nu � ln 20Ns, or, very approximately, if N � 110u. For larger populations
sex does accelerate evolution, by a factor very approximately equal to l.

In 1997, Taddei et al [5] considered the following question: whether high mutation rates m play an
important role in adaptive evolution in models of large, asexual, clonal populations?. The answer is: by
adapting to a new environment, the strong mutator genes (such as those that increase mutation rates by
1, 000-fold) can accelerate adaptation, even if the mutator gene remains at a very low frequency (for example,
10−5. Less potent mutators can become fixed in a fraction of finite populations.

The main aim of this paper is to study the approximate solutions of the partial differential equations
that mathematically model the sexual and asexual genetic hereditary processes. The need for extending the
studied classical partial differential equations to time fractional differential equations is also studied. To
find the approximate solutions of these models, the standard finite difference methods and the Grünwald-
Letnikov scheme are implemented. Therefore, the paper is arranged as follows: The introduction is given
in section 1. In section 2, a short survey of the classical genetic diffusion processes with drift in sexual
and Asexual population are presented to examine the theory of the Markov processes. In section 3 the
approximate solutions of the studied classical partial differential equations are given. In section 4, We study
the time factional differential equations as Non-Markov processes to obtain the approximate solution of
the time-fractional diffusion equation of the sexual population by applying the Grünwald-Letnikov scheme.
In section 5, the convergence to the stationary discrete approximate solutions and the reversibility of the
discussed processes. Finally, section 6 is to simulate the time evolution of the approximate solutions, the
numerical comparison and the lose of number of genes is also studied.

2. A Brief History on Genetic Drift Equations of Sexual and Asexual Population

A large number of mathematical models to discuss the diffusion in genetics with drift for sexual population
are given by biologists. The most famous scientist who was studying the genetic drift is Kimura [12],[13]
and [14]. He supposed that the random mating population of size N , in which two allele A and a happen
with respective frequencies x and 1 − x with s being the selective advantage of A over a. He derived the
partial differential equation which describes the evolution of genes across generations of sexual population
and named it genetic drift equation that reads

∂u(p, x; t)

∂t
=

1

2

∂2

∂x2
{V (x, t)u(p, x; t)} − ∂

∂x
{M(x, t)u(p, x; t)}, (1)

with boundary conditions
u(p, 0; t) = u(p, 1; t) = 0 ,

and initial condition
u(p, x; 0) = δ(x− p) ,

where p is the initial frequency of the gene, M(x, t) = sx(1 − x) is the average rate of change in x per
generation, V (x, t) = 1

2Ne
x(1 − x) is the variance under the mutation impact and Ne(t) is the effective

population size at t. For more detail about the equation (1), see [15].
In 1965, Kimura and Crow [1] were the first scientists made a comparison between sexual and asexual

populations. They was interested in doing experimental data on chloramphenicol resistance in bacteria.
After that, Kimura [2] discuss how spontaneous mutation rates influence the evolution of Asexual population.
Through many years later, many researchers had talk about different types of mutation rates experimentally
but no one tries to simulate the diffusion in genetic of Asexual population.

C. Scott Wylie et al. [8] introduced the idea being the mutator is an allele that increases the mutation
rate throughout the genome by disrupting some aspect of DNA replication or repair. They assume that
the fixation of mutator alleles is limited by (i) competition with mutations in wild-type backgrounds, (ii)
additional deleterious mutational load, and (iii) random genetic drift. They used a multiple-locus model (i.e.
the partial differential equation that contain population size N, beneficial and deleterious mutation rates,
and the strength of mutations s) and employed both simulation and analytic methods to investigate the
effects of these three factors on the fixation probability Pfix of an initially rare mutator. Their simulations
were also shown that effect (i) is typically small for strong-effect mutators. After C. Scott Wylie et al. [8],
no researchers go through simulation of the genetic diffusion of Asexual population.
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The main parameters of adaptation in the asexual reproduction are: the size of the adapting population
and the height and steepness of the adaptive peak characterizing adaptation. By simulation approach,
Tenaillon et. al [6] studied the effect of these parameters on the selection of mutators in asexual populations,
assuming additive fitness. they show that the larger the population size, the more likely the fixation of
mutator alleles.

Travis and et. al [7] examines how mutator dynamics vary according to the frequency of environmental
fluctuations. They demonstrate that as each beneficial mutation provides a greater gain in fitness, mutators
achieve higher densities in more rapidly fluctuating environments. They also show that mutators of inter-
mediate strength reach higher densities than very weak or strong mutators. The partial differential equation
that mathematically models the genetic diffusion of the asexual reproduction reads

∂u(p, x; t)

∂t
=

1

N

∂2

∂x2
{x(1− x)u(p, x; t)}

+ (µ+ − µ−)[1− α(1− s)] ∂
∂x
{x(1− x)u(p, x; t)}

−Nαs[xµ+ + (1− x)µ−]u(p, x; t) ,

(2)

where N is the total population size, µ+ is the mutator mutation rate per genome, µ− is the wild-type
mutation rate per genome, α is the fraction of beneficial mutations and s is the selection coefficient of
mutation. Each of the three lines in equation (2) has a straightforward physical interpretation. The first line
represents random genetic drift. The second line represents the mutational load of the mutator. The final
line represents the decay of probability from the open interval x ∈ (0, 1) due to beneficial mutations. The
values of the above mutation rates are given in two cases: the 1st one is µ− = 0 and µ+ = 0.01, while the
2nd case is µ+ = 0.01 and r ≡ µ+

µ−
where r is the mutator strength. According to Travis et al [7], they found

that mutators of intermediate strength reach higher densities than very weak or strong mutators, i.e. r = 10
is the best to give high density. When mutator strength is low, mutators never reach a high density and
thus have little impact on the evolution of the population to a changing environment. Intermediate strength
mutators can reach high density. These mutators cause enough genetic variability to enable the population
to adapt to a change in the environment. Hitch-hiking on the well-adapted alleles, they reach a high density
within the population. At higher mutator strengths, mutators do not reach such a high density in which
genes can have a large impact on the adaptation of an organism to a novel environment even though they
may remain at a low density.

Â

3. Discretization of the Classical Genetic Drift Equation of the Sexual Population

In this section, we use the common standard finite-difference method (FDM) to find the approximate
solution of genetic drift equation (1) that represents hereditary process of genes in a sexual population. The
independent variables (x, t) are discretized by the following grid points

xj = jh, h > 0, tn = nτ, τ > 0, ,

where j ∈ (1, R), h = 1/R, R ∈ N and n ∈ N0. Take the y(n)
j as the clump vector to approximate the

function u(x, t) being the solution of equation (1). u(x, t) represents the conditional probability function of
finding the allele A with frequency x at the generation time t, see [16],[17] asÂ

yj(tn) ≈
xj+h/2∫
xj−h/2

u(x, tn)dx ≈ hu(xj , tn) ,

DefineÂ the y(n) vector by

y(n) = {y(n)
0 , y

(n)
1 , · · · , y(n)

R−1, y
(n)
R }

T ,

where y(n) = y(tn) is a discrete column probability vector of finding the A allele at the tn generation with

the frequency xj . It is better to choose the initial value y(0) such as
R∑
j=0

y
(0)
j = 1. y(n)

j must satisfy also that

R∑
j=0

y
(n)
j = 1 ∀n ∈ N0, i.e. there is no loss of any of the conditional probability u(x, t) at any generation.
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Apply the standard finite difference method at equation (1), to get

y
(n+1)
j = {( µ

4Ne
+
µs

2R
)h(j − 1)(1− (j − 1)h)}y(n)

j−1+

{1− 2µjh(1− jh)

4Ne
}y(n)
j +

{( µ

4Ne
− µs

2R
)h(j + 1)(1− (j + 1)h)}y(n)

j+1 +O(h2 + τ) ,

(3)

where R = 1
h , µ = τ

h2 .
In order to preserve the positivity in the equation (3), it is required that

0 < µ ≤ 2Ne
max[jh(1− jh)]

= 8Ne . (4)

See [15] for more detail about the stability of the approximate solution nand the description of y(n+1)
j .

Equation (3), is written in matrix form as:

y(n+1) = PT .y(n) , 1 ≤ j ≤ R− 1 , (5)

where P = (pij) is R− 1×R− 1 matrix with i, j = 1, . . . , R− 1 which take the form:

Pij =


P

(1)
ij = µh(j − 1)(1− h(j − 1))( (1.0

4Ne
+ s

2R ), i = j − 1, j = 1, · · · , R− 1

P
(2)
ij = 1− 2µjh(1−jh)

4Ne
i = j, j = 1, · · · , R− 1

P
(3)
ij = (j + 1)h(1− (j + 1)h)( 1

4Ne
− s

2R ), i = j + 1, j = 1, · · · , R− 1 .

(6)

It is more appropriate for the numerical calculation to write the matrix P in the form

P = (I + µH) , (7)

where I is the unit matrix and H = {Hij},i, j ∈, [R − 1] is a square matrix whose rows have the property
that the summation over each one of them is equal zero as

Hij =


H

(1)
ij = h(j − 1)(1− h(j − 1))( (1.0

4Ne
+ s

2R ), i = j − 1, j = 1, · · · , R− 1

H
(2)
ij = −2jh(1−jh)

4Ne
j = i, j = 1 · · · , R− 1

H
(3)
ij = (j + 1)h(1− (j + 1)h)( 1

4Ne
− s

2R ), i = j + 1, j = 1, · · · , R− 1 .

(8)

The matrix P is a stochastic matrix and with the aid of the scaling relation condition (4), one has diagonally
dominant non-negative matrix and M-Matrix and that ensures the stability of the approximate solutions, see
[18] and [19] for more details about the positive stable matrices. For purpose of computing, it is recommended
to take the transpose of each side of (5), to rewrite equation (5) by using equation (7) as

z(n+1) = z(n).(I + µH) , (9)

where z(n) = (y
(n)
j )T . The matrix H has the property that the summation over all its rows is zero. In the

the numerical results section, we give the time evolution of this genetic diffusion case over many generations

and plot
R−1∑
j=1

y
(n)
j ,∀n ∈ N0 to show that, for this Markov case, there is lose of unity as n >> 1. In the the

numerical results section, we give the time evolution of this genetic diffusion case over many generations and

plot
R−1∑
j=1

y
(n)
j ,∀n ∈ N0 to show that, for this Markov case, there is lose of unity as n >> 1.

3.1. The Discretization of the Classical Genetic Drift Equation of the Asexual Population. By
applying the previous FDM to the diffusion in genetic equation (2) of Asexual colony of bacteria, one gets
the discretized solution

y
(n+1)
j = {( µ

N
− µ(µ+ − µ−)[1− α(1− s)]

2R
)h(j − 1)(1− (j − 1)h)}y(n)

j−1

+ {1− 2µjh(1− jh)

N
− cαµ

R2
{µ+jh+ µ−(1− jh)}}y(n)

j

+ {( µ
N

+
µ(µ+ − µ−)[1− α(1− s)]

2R
)h(j + 1)(1− (j + 1)h)}y(n)

j+1 +O(h2 + τ) ,

(10)

where R = 1
h , µ = τ

h2 .
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The preservation of the non-negativity and the stability of the approximate solution defined in equation
(10) requires that

0 < µ ≤ NR2

max[2R2jh(1− jh) +Ncα{jhµ+ + (1− jh)µ−}]

=
4NR2

2R2 +N(µ+ + µ−)
≈ 2N, N(µ+ + µ−) < 1 .

(11)

The matrix form of the equation (10) can be written as:

y(n+1) = PT .y(n) , 1 ≤ j ≤ R− 1 , (12)

where a P = (pij) is R− 1×R− 1 matrix with i, j = 1, . . . , R− 1 which take the form:

Pij =


P

(1)
ij = ( µN −

µ(µ+−µ−)[1−α(1−s)]
2R )h(j − 1)(1− (j − 1)h), i = j − 1, j = 1, · · · , R− 1

P
(2)
ij = 1− 2µjh(1−jh)

N − cαµ
R2 {µ+jh+ µ−(1− jh)}, i = j, j = 1, · · · , R− 1

P
(3)
ij = ( µN + µ(µ+−µ−)[1−α(1−s)]

2R )h(j + 1)(1− (j + 1)h), i = j + 1, j = 1, · · · , R− 1 .

(13)

Again the matrix P is a stochastic matrix as the summation over all its rows is 1 and is also a diagonally
dominant non-negative matrix if and only if the value of µ is controlled by the condition (11). One can
rewrite the matrix equation (12) as the matrix equation (9) by defining the matrix H as

Hij =


H

(1)
ij = ( 1

N −
(µ+−µ−)[1−α(1−s)]

2R )h(j − 1)(1− (j − 1)h), i = j − 1, j = 1, · · · , R− 1

H
(2)
ij = −2jh(1−jh)

N − cα
R2 {µ+jh+ µ−(1− jh)}, j = i, j = 1 · · · , R− 1

H
(3)
ij = ( 1

N + (µ+−µ−)[1−α(1−s)]
2R )h(j + 1)(1− (j + 1)h), i = j + 1, j = 1, · · · , R− 1 .

(14)

The matrix H has the property that the summation over all its rows is zero. Take the transpose of each side
of the matrix equation (12) and use equation (14), you can rewrite this system of equation in the form of
the matrix equation (9). The time evolution of this genetic diffusion with drift over many generations are
simulated and compared for different values of generations, in section 6.

4. Extending to the Time-Fractional Genetic Drift Equation of Sexual Population and
its Approximate Solution

In the Markov mechanism, it does not matter if the parents inherit their characters (genes) from the
grandparentsÂ or the ancestorsÂ of the same family. The Markov processes have an exponential waiting
time and the exponential distribution has a memoryless property. All Â the Â research papers that discussed
the sexual genetic populationÂ Â have explained that some of the genes are lost during the succeeding
generations. Unlike Asexual population. All the old research papers, in this field, discussed the classical
partial differential equations that contains the term ∂u(x,t)

∂t , where u(x, t) is the solution of the partial
differential equation (1) or equation(2). As one see in the last section the discrete forward in time scheme
of ∂u(x,t)

∂t reads

∂u(x, t)

∂t
=
y

(n+1)
j − y(n)

j

τ
. (15)

That means the discrete conditional probability of finding the allele A at the next generation with frequency
0 < x < 1 depends only the current generation. This has no sense as a child may be born with green
eye while both his father and mother have black eyes. This child inherits his eye colour from his grand
parents y(n−1)

j , or his grand grand parents y(n−2)
j , and so on. This is explained as the hereditary process

of the child characteristics depends on the past or in other words the process has a memory. So it is not
important to use the Non-Markov case to keep the memory property of genes inside the family. Only the
Caputo time-fractional operator can reflect the dependence on the memory. So far, replace the first order
time derivative operator ∂

∂t on the genetic drift equation (1) by the Caputo time fractional operator of order
0 < β < 1 that reads

D
t ∗

βf(t) =


1

Γ(m−β){
t∫

0

f (m)(τ)Kβ(t− τ)dτ} for m− 1 < β < m ,

dm

dtm f(t) for β = m ,

(16)

with

Kβ(t− τ) =
(t− τ)β+1−m

Γ(m− β)
,

which is called the memory function [9]. To find out the effect of the memory on many physical , biological,
etc. processes, see [10]. See also [11] for more details of Caputo time-fractional operator and its relationship
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with Riemann-Liouville Integral operators.Â Then the time-fractional genetic drift of the random sexual
mating reads

D
t ∗

β u(x, t) =
1

4Ne(t)

∂2

∂x2
{x(1− x)u} − s ∂

∂x
{x(1− x)u} , 0 < β < 1 , 0 < x < 1 . (17)

The asexual reproduction that occurs in a colony of bacteria that mathematically modelled in equation (2)
does not required to be extended to the time-fractional version. The reason comes from the fact that the
offspring in this case has only one parent and they inherit all their characteristics from him. The most
important factors as described in equation(2) are the mutators, especially the wild-mutator and the sharp
change on the environment that may cause bad or good effects on the number of the offspring.

4.1. Discretization of the Time–Fractional Genetic Drift Equation of a Sexual Population. The
Caputo-time fractional operator [9] specified in the equation (16), is discretized by using the Grúnwald-
Letnikov scheme and has been effectively implemented by many researchers to describe many bilogical,
physical, chemical and etc.., see for examples [11], [17], [20] and [21]. The discretization of the Caputo
time–fractional operator D

t ∗
β u(x, t) by the Grünwald–Letnikov scheme reads

D
τ ∗

β yj(tn+1) = τ−β
n+1∑
k=0

(−1)k
(
β

k

)
(y

(n+1−k)
j − y(0)

j ), 0 < β < 1 ∀n ∈ N0 . (18)

Substitute from Grünwald–Letnikov scheme (18) in equation (17) and use the common finite difference rules,
to get

y
(n+1)
j = bny

0
j +

n∑
m=2

cmy
n+1−m
j +

(β − 2µjh(1− jh)

4Ne
)ynj +

µs

2R
)h(j − 1)(1− (j − 1)h)}y(n)

j−1 +

{( µ

4Ne
− µs

2R
)h(j + 1)(1− (j + 1)h)}y(n)

j+1 +O(τβ , h2) ,

(19)

where R and µ are defined in the previous section. we need to recall the coefficients bn =
∑
m = 0n(−1)m

(
β
m

)
,

and cm = (−1)m+1
(
β
m

)
, introduced by Gorenflo et.Â al [20], to simplify the above equation,Â in order to

fulfil the relationÂ below

bn +

n∑
m=1

cm = 1 .

The condition required to maintain the equation’s non-negativity (19) is provided by the scaling relation.

0 < µ ≤ 800β .

By using the same previously used vector z(n), equation (19) can be written in the matrix form

z(n+1) = bnz
(0) +

n∑
m=2

cmz
(n+1−m) + z(n).Q , (20)

where, the matrix Q = qij , i, j ∈ (1, R− 1) has the form

Qij =


Q

(1)
ij = µh(j − 1)(1− h(j − 1))( (1

4Ne
+ s

2R ), i = j − 1, j = 1, · · · , R− 1

Q
(2)
ij = β − 2µ jh(1−jh)

4Ne
i = j, j = 1, · · · , R− 1

Q
(3)
ij = (j + 1)h(1− (j + 1)h)( 1

4Ne
− s

2R ), , i = j + 1, j = 1, · · · , R− 1 .

(21)

The matrix Q is not a stochastic matrix as the sum over all its rows is β and 0 < β < 1. The matrix Q with
the condition imposed on µ is still positive dominant matrix and that ensures the stability of the discrete
approximate solution. For more details about the approximate solution of the time–fractional genetic drift
equation of A sexual population using FDM, see [15].

In the section of numerical results, we give a comparison of the approximate solution of the Markov case
(β = 1) and the Non-Markov case (0 < β < 1) for different numbers of generations and different values of β.

5. The Convergence of the Stationary Discrete Approximate Solutions of the Diffusion
Equations

The continuous stationary solution of the partial differential equation is getting by taking the limit as
t → ∞. In other words put ∂βu(x,t)

∂tβ
= 0 , 0 < β ≤ 1, and omitting all the terms depending on t. Applying

this method here, i.e. on the equations (1, 2 and 17, leads us to hypergeometric functions.
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Till now researchers recommend the more general methodÂ used to calculate the discrete stationary
solutions of the mentioned equations. Any stochastic matrixÂ P of a Markov process, is known to fulfill the
identity that by takingÂ the limit of PnÂ as n→∞ is Π, see Ross[22]. The column vector Π also is a vector of

probability, so it follows that
n∑
i=0

Πi = 1 andÂ is called the vector of the transitionÂ probability. Stochastic

matrices are the matrices of the classical genetic diffusion with drift of sexual and asexual population,
givenÂ inÂ equations (6) and (13) respectively. The matrix Q of the time fractional genetic drift, defined
in (21) are not stochastic matrix. But Abdel-Rehim [17] proved that the matrices of the time-fractional

diffusion still have stationary probability vector satisfies
R−1∑
j=1

Πj = β and 0 < β < 1.

This approximate stationary convergent solution is found by ignoring time dependence t on the discrete
schemes. To do so, at the classical discrete schemes (3) and (10),Â replace all y(n+1)

j±k by y(n)
j±k, k = 0, 1, 2. For

the time-fractional scheme (19), one has to replace all y(0), y(1), · · · , y(n+1−m), and y(n+1) by simply y(n).
Then the discrete scheme of the genetic equations (3) and (19) for n→∞, with drift, converge to z.H = 0,
which is equivalent HT .y = 0, where the matrix H is defined in equation (9). Apply the same procedure
with the classical discrete scheme of the genetic drift equation of asexual population (10) to get the simple
matrix equation HT .y, where H is defined at equation (14). That means the classical and non-classical cases
tend to the same stationary discrete solutions.

The HT matrices, specified separately at the respective equations (9,10), each have an eigenvector y∗ of

eigenvalue zero.Â Constitute the ȳ = cy∗ vector with c = 1/
R−1∑
j=1

y∗j as a vector whose sum of its elements is

1, exactly like the Π vector.

d(tn) =

R−1∑
j=1

|yj(tn)− ȳj |, n = 1, 2, · · · . (22)

The simulation in the classical case, for the Asexual genetic diffusion with drift, shows that the d row vector
approximates an exponential function

d(t) ≈ e−wt ,
where w is constant variable, and is called the convergence rate .

5.1. The Reversibility of the Diffusion Processes. Let {Xn, n ∈ N} be a two-sided extension of a
positive recurrent Markov is said to be reversible if X(t1), X(t2), · · · , X(tn) has the same distribution as
X(τ − t1), X(τ − t2), · · · , X(τ − tn). That means satisfying the Markov chain with the P transition matrix
and the Π stationary distribution, see Kelly [23],

P
(n)
ij = P{X(n)

1 = j|X(n)
0 = i} = P{X∗

0 = j|X∗
1 = i}

= P{X∗
1 = i|X∗

0 = j}P (X∗
0 = j)/P (X∗

1 = i)

=
Πj

Πi
P

(n)
ji .

(23)

Multiply both sides of the equation (23) by the factor Πi, we have

ΠiP
(n)
ij = ΠjP

(n)
ji , (24)

where equationÂ (24)Â is called the time–reversibility equation, see [17], [22], [23], and [24]. The numerical
result shows that the time–reversibility equation satisfies the following condition for Markov case, i.e. forÂ the
classical case

R−1∑
j=1

ȳj .P =

R−1∑
j=1

PT .ȳj = 1 , (25)

where ȳj is the numerically obtained stationary probability row vector, see section (5) and for the time-
fractional genetic diffusion with drift of sexual population, the condition of reversibility is

R−1∑
j=1

ȳ.Q =

R−1∑
j=1

QT .ȳ = β , 0 < β < 1 . (26)

The matrices Q are defined at equations (21). That means the Non-Markov process is also reversible but with
β percent and not 100% as the Markov process. MATHEMATICA software is used to prove these conditions.
Once more, the expected time between any two returns can simply be calculated from the equation

mj =
1

Πj
1 < j < R− 1 . (27)
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In the following section, we give the numerical results for all the studied quantities.

6. Numerical Results

In this numerical result, the boundary conditions for the genetic drift models in sexual and asexual
population (1) and (2) will be fixed, i.e. u(0, p, t) = u(1, p, t) = 0 ∀t ≤ T , where T is the generations number.
The solutions are singular at the points x = 0 and x = 1 and need to be handled separately, see [25]. The
initial condition is u(x, p, 0) = δ(x− p), where p is the gene frequency and 0 < x < 1. The initial condition
for p = 1/2 is represented by the column vector y(0) = {0, · · · , 1, · · · , 0}. Let x = jh with 1 < j < R,
h = 1/R and let t = nτ, 0 < t ≤ T , τ = µh2 and the steps number for one generation n = 1/τ .

These given numerical results correspond to Ne = 100, R = 100, s = 0.02, µ = 250, τ = 2.5 × 10−2,
T = 50 for the final number of generations, i.e. for long memory, and n = 40 for the number of steps for a
single generation. The simulation of the approximate solutions are given for β = 0.75, 0.6, with number of
steps for one generation n = 137 for β = 0.75, n = 468 for β = 0.6.

The 1st group of figures [ 1 , 2 ] describes the time evolution of the classical and the non-classical approx-
imate solution of the genetic drift (1),(17) equations, respectively, for different β and different generation
values up to the generation of 50th.

The two plots of Figure [ 3 ] represent the comparison of the genetic drift equations (1) and (17) for short
and long memory for different values of β and different generation number.

The 3rd group of figures [ 4 ] describes the time evolution of the classical solution of the Asexual genetic
drift (2) equation for different generation values up to the generation of 50th. These numerical results
correspond to µ− = 0, µ+ = 0.01, N = 100, R = 100, s = 0.02, α = 0.5, µ = 50, τ = 5 × 10−3, T = 50
for the final number of generations, i.e. for long memory, and n = 200 for the number of steps for a single
generation.

The 4th group of figures [ 5 ] describes the effect of the wild-type mutation on the genetic diffusion of
Asexual population (2) as µ+ = 0.1 and µ− = 0.01 for different generation values up to the 50th generation.

It was found that, figures [ 4 , 5 ] are similar as µ− = 0 and µ+ = 0.01, 0.1, respectively.
The group of figures [ 6 ] describes the comparison between the time evolution of the classical approximate

solution of the genetic drift (1) equation with µ+ = 0.01 and µ− = 0, 0.001, and the same numerical results
mentioned in the second group.

The 6th group of figures [ 7 ] also describes the comparison between the time evolution of the classical
approximate solution of the genetic drift (1) equation with µ+ = 0.1 and µ− = 0, 0.01.

Figures [ 8 ] represent the total summation of the approximate solution of the models (1) and (17) for
different values of β and the model (2) for µ− = 0 and µ+ = 0.01, 0.1, respectively.

The 8th [ 9 ] group of figures show the discrete stationary solution of classical genetic drift equations
(1) and (2) respectively, in sexual and asexual population. Taking into account that the discrete stationary
solution of classical genetic drift equation of the Asexual population (2) is within µ− = 0 and µ+ = 0.01, 0.1,
respectively.

The last group of figures [ 12 ] represent the convergence of the discrete scheme of the models (1), (17)
for sexual population and the model (2) for Asexual colony of bacteria within µ− = 0 and µ+ = 0.01, 0.1,
respectively.

Notice that, figures [ 8 – 12 ], left, correspond to the values µ+ = 0.01, µ− = 0.001 and µ+ = 0.1, µ− =
0.01, respectively. This proves that the values of the mutators are the most effect factors on the hereditary
process on the asexual reproduction.

Figure [ 8], right, represents the comparison between the total summation of the discrete solution of the
Markov genetic drift as β = 1 and the Non-Markov genetic drift of the sexual mating as β = 0.75 and
β = 0.6. The figure shows that there is a loose of the part of the genes while with the dependence on the
memory all the numbers of allele are transformed from the zero generation to the 50th generation. This
numerical result proves our main point of view.

Figure [ 10] represents the 3D simulation of time evolution of the classical sexual genetic diffusion equation
with the initial gene frequency p = 0.1. Figure [ 11] represents 3D simulation of the time evolution of the
sexual time fractional genetic diffusion equation for the time–fractional β = 0.75 and with the initial gene
frequency p = 0.5.

Finally, the discrete stationary solution of the classical sexual population (1) ȳ ≈ x2 while in the asexual
colony of bacteria (2) ȳ ≈ x are shown in the numerical results section are shown in [ 9] .
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Figure 1. The classical approximate solution of the genetic drift equation (1) during
different generations.
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Figure 2. The approximate solution of the time–fractional genetic drift equation (17) till
the 50th generation for β = 0.75.
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Figure 3. Comparison between the classical and the non–classical genetic drift equations
(1),(17) for t = 4, 50, respectively with y(0) = {0, · · · , 1, · · · , 0}.
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Figure 4. The approximate solution of the classical genetic drift equation (1) till the
50th generation within µ− = 0.001.
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Figure 5. The approximate solution of the classical genetic drift equation (1) of asexual
population for different values of generations with µ− = 0.01.
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Figure 6. The comparison between µ− = 0 and µ− = 0.001 of the classical approximate
solution of the asexual genetic drift (2) equation at t = 4, 50, respectively.
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Figure 9. The discrete stationary solution of classical genetic drift equations (1) and (2)
of the sexual and Asexual population, respectively.
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Figure 12. The convergence of the discrete scheme of the classical and the non–classical
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7. Conclusion

During sexual mating, two haploid gametes join in the process of fertilization to produce a diploid zygote
and is called the Sexual reproduction. In this case, the children resemble their parents, but they are never
identical to them and through generations the total number of genes will loose its unity. Therefore the
extension to the Non-Markov case (the time-fractional diffusion process) must be interfere to preserve this
property, i.e. the total summation of the conditional probability of finding the allele with certain frequency
at a certain generation that must be one. In the Asexual reproduction, the offspring are genetically identical
to each other and to their parent which causes no loose of genes property that is why there is no need to use
the Non-Markov case. The numerical results shows the memory has a great effect on the closed countries
i.e. countries that are interested in Endogamy such as Middle east, North Africa and Regions of South Asia.
Tribes and families of Upper Egypt also interested in internal marriage to maintain relationships between
tribes and the ranks of families like Arab, Al Hawara and Ashraf tribes.This phenomenon goes back thousands
of years, as the Pharaohs were famous for allowing brother-sister marriage, and the most prominent of these
cases is Pharaoh Tutankhamun, who was born as a result of incestuous marriage. Scientists took samples
of his DNA, it was found that his parents were brother and sister. And this continued until the reign of
the Ptolemies, the successors of Alexander the Great, when Cleopatra II married her brother, King Ptolemy
VI, and when he passed away, Cleopatra married her second brother Ptolemy VIII, in order to preserve
the purity of royal blood and limit the authority to their dynasty only. So did the Inca Empire, restricting
marriage between brother and sister. While in the open countries such as USA, Germany, Britain, Russia
and North Korea who prohibit that phenomenon and in Asexual population (colony of bacteria), the factors
that cause genetic drift are selection and mutation.

Due to the effect of the memory on the diffusion processes, Some negative characteristics and diseases are
raised on the closed countries and closed big families.
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