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COMPOSITION PRINCIPLES FOR ALMOST PERIODIC TYPE

FUNCTIONS AND APPLICATIONS

M. KOSTIĆ

Abstract. This paper introduces and investigates the classes of two-parameter

uniformly recurrent functions, two-parameter �g-almost periodic functions

and their Stepanov generalizations. We work in the setting of complex Banach
spaces, using the recently introduced notions of lower and upper (Banach) g-

densities. We prove many composition principles for the introduced classes and

apply our results in the analysis of the existence and uniqueness of solutions
for various kinds of the abstract inhomogeneous fractional integro-differential

inclusions.

1. Introduction

The notion of almost periodicity was first studied by H. Bohr around 1925 and
later generalized by many other authors (cf. the research monographs [3], [8] and
[19]-[20] for the basic theory of almost periodic functions). For some applications
given, see the research monographs [6], [9]-[10], [14] and [24].

In our recent paper [18], we have systematically analyzed generalized uniformly
recurrent functions and generalized �g-almost periodic functions. This paper con-
tinues the analysis raised in [18] by introducing and investigating the classes of two-
parameter (asymptotically) uniformly recurrent functions, two-parameter (asymp-
totically) �g-almost periodic functions and their Stepanov generalizations. Several
composition principles are established in this context, which enable one to provide
certain applications to the abstract semilinear integro-differential Cauchy problems
and inclusions.

The organization of paper is briefly described as follows. After recalling the basic
facts about almost periodic type functions considered in the paper, we analyze the
lower and upper (Banach) g-densities in Subsection 1.1. The main aim of Subsec-
tion 1.2 is to recollect the basic definitions and results from fractional calculus that
we will use later on. The main structural results are proved in Section 2, where
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we investigate uniformly recurrent functions and �g-almost periodic functions de-
pending on two arguments and related composition principles. The final section of
paper is reserved for applications of obtained theoretical results.

We use the standard notation throughout the paper. We will always assume
that (X, ‖ · ‖) is a complex Banach space. By Lploc(I : X), C(I : X), Cb(I : X)
and C0(I : X) we denote the vector spaces consisting of all p-locally integrable
functions f : I → X, all continuous functions f : I → X, all bounded continuous
functions f : I → X and all continuous functions f : I → X satisfying that
lim|t|→+∞ ‖f(t)‖ = 0, respectively (1 ≤ p < ∞). As is well known, C0(I : X) is a
Banach space equipped with the sup-norm, denoted henceforth by ‖ · ‖∞. If Y is
also a complex Banach space, then L(X,Y ) stands for the space of all continuous
linear mappings from X into Y ; L(X) ≡ L(X,X).

Let I = R or I = [0,∞). Given ε > 0, we call τ > 0 an ε-period for f(·) if and
only if

‖f(t+ τ)− f(t)‖ ≤ ε, t ∈ I. (1.1)

The set constituted of all ε-periods for f(·) is denoted by ϑ(f, ε). We say that a
continuous function f(·) is almost periodic if and only if for each ε > 0 the set
ϑ(f, ε) is relatively dense in [0,∞), which means that there exists l > 0 such that
any subinterval of [0,∞) of length l meets ϑ(f, ε). By AP (I : X) we denote the
vector space consisting of all almost periodic functions from I into X; accompanied
with the sup-norm, AP (I : X) becomes a Banach space. The function f : I → X is
said to be asymptotically almost periodic if and only if there exist an almost periodic
function h : I → X and a function φ ∈ C0(I : X) such that f(t) = h(t) + φ(t) for
all t ∈ I. This is equivalent to saying that, for every ε > 0, we can find numbers
l > 0 and M > 0 such that every subinterval of I ′ of length l contains, at least, one
number τ such that ‖f(t+ τ)− f(t)‖ ≤ ε provided |t|, |t+ τ | ≥M ([25]).

The notion of recurrence plays an important role in the theory of topological
dynamical systems (see the research monograph [5] by J. de Vries for more details
on the subject). Following A. Haraux and P. Souplet [11], we say that a continuous
function f(·) is uniformly recurrent if and only if there exists a strictly increasing
sequence (αn) of positive real numbers such that limn→+∞ αn = +∞ and

lim
n→∞

sup
t∈R

∥∥f(t+ αn)− f(t)
∥∥ = 0. (1.2)

It is well known that any almost periodic function is uniformly recurrent, while the
converse statement is not true in general; any �g-almost periodic function under
our consideration is uniformly recurrent. Furthermore, f(·) is uniformly recurrent
if and only if for each number ε > 0 the set ϑ(f, ε) is unbounded. The pointwise
sums and products of bounded uniformly continuous, uniformly recurrent (�g-
almost periodic) functions need not be uniformly recurrent (�g-almost periodic),
in general.

Suppose that p ∈ [1,∞). Let us recall that a function f ∈ Lploc(I : X) is called
Stepanov p-bounded if and only if

‖f‖Sp := sup
t∈I

(∫ t+1

t

‖f(s)‖p ds

)1/p

<∞.

Equipped with the above norm, the space LpS(I : X) consisting of all Stepanov
p-bounded functions is a Banach space. A function f ∈ LpS(I : X) is said to be
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Stepanov p-almost periodic if and only if the function f̂ : I → Lp([0, 1] : X), defined
by

f̂(t)(s) := f(t+ s), t ∈ I, s ∈ [0, 1], (1.3)

is almost periodic. Furthermore, a function f ∈ LpS(I : X) is called asymptotically
Stepanov p-almost periodic if and only if there exist a Stepanov p-almost periodic
function g ∈ LpS(I : X) and a function q ∈ LpS(I : X) such that f(t) = g(t) + q(t),
t ∈ I and q̂ ∈ C0(I : Lp([0, 1] : X)). It is well known that, if 1 ≤ p ≤ q < ∞ and
f(·) is (asymptotically) Stepanov q-almost periodic, then f(·) is (asymptotically)
Stepanov p-almost periodic.

The concepts of (asymptotical) Stepanov p-uniform recurrence and (asymptoti-
cal) Stepanov (p,�g)-almost periodicity are introduced as follows ([18]):

Definition 1.1. (i) Let 1 ≤ p < ∞. A function f ∈ Lploc(I : X) is said to be

Stepanov p-uniformly recurrent if and only if the function f̂ : I → Lp([0, 1] :
X), defined by (1.3), is uniformly recurrent.

(ii) Let 1 ≤ p <∞. A function f ∈ Lploc(I : X) is said to be Stepanov (p,�g)-
almost periodic if and only if the function f̂ : I → Lp([0, 1] : X) is �g-
almost periodic.

Definition 1.2. (i) Let 1 ≤ p < ∞. A function f ∈ Lploc(I : X) is said to be
asymptotically Stepanov p-uniformly recurrent if and only if there exist a
Stepanov p-uniformly recurrent function h(·) and a function q ∈ LpS(I : X)
such that f(t) = h(t) + q(t), t ∈ I and q̂ ∈ C0(I : Lp([0, 1] : X)).

(ii) Let 1 ≤ p < ∞. A function f ∈ Lploc(I : X) is said to be asymptoti-
cally Stepanov (p,�g)-almost periodic if and only if there exist a Stepanov
(p,�g)-almost periodic function h(·) and a function q ∈ LpS(I : X) such
that f(t) = h(t) + q(t), t ∈ I and q̂ ∈ C0(I : Lp([0, 1] : X)).

We continue by observing that A. Haraux and P. Souplet have proved, in [11,
Theorem 1.1], that there exists a function f : R→ R which is uniformly continuous,
uniformly recurrent and Besicovitch unbounded (cf. [14] for the notion). The
function f : R→ R is given by

f(t) :=

∞∑
n=1

1

n
sin2

( t

2n

)
dt, t ∈ R. (1.4)

Further on, in [11, Theorem 1.2], A. Haraux and P. Souplet have proved that
for each real number c > 0 the function h(·) = min(c, f(·)), where f(·) is given by
(1.4), is bounded uniformly continuous, uniformly recurrent and not asymptotically
almost periodic. In [18], we have slightly improved this result by showing that the
function f(·) is not asymptotically almost automorphic.

The function constructed by H. Bohr on pp. 113–115 of the first part of his
landmark trilogy [4] is also bounded uniformly continuous, uniformly recurrent,
not asymptotically (Stepanov) almost automorphic, and not (Stepanov) quasi-
asymptotically almost periodic, as proved in [18]. Furthermore, in the same paper,
we have revisted the bounded uniformly continuous function f : R→ R used by J.
de Vries in [5, point 6., p. 208]. As shown in [18], this function can serve as a much
simpler example of a bounded uniformly continuous function f : R → R satisfy-
ing all clarified properties of the function given by (1.4) and the above-mentioned
function of H. Bohr. The reading of paper [11] by A. Haraux and P. Souplet has
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motivated us to analyze vector-valued uniformly recurrent functions in more de-
tail ([18]). In that paper, we have made an attempt to further profile the sets of
ε-periods of uniformly recurrent functions by introducing the class of �g-almost
periodic functions, which is simply defined by using the notions of lower and upper
(Banach) densities for the subsets of the non-negative real axis.

1.1. Lower and upper (Banach) g-densities. We will always assume that g :
[0,∞)→ [1,∞) is an increasing mapping satisfying that there exists a finite number
L ≥ 1 such that x ≤ Lg(x), x ≥ 0. For any set A ⊆ [0,∞) and a, b ≥ 0, put
A(a, b) := {x ∈ A ; x ∈ [a, b]}.

We will use the following densities (cf. [15] for more details):

(i) The lower g-density of A, denoted in short by dgc(A), as follows

dgc(A) := lim inf
x→+∞

m(A(0, g(x)))

x
;

(ii) the upper g-density of A, denoted in short by dgc(A), as follows

dgc(A) := lim sup
x→+∞

m(A(0, g(x)))

x
,

as well as:

(i) the lower l; gc-Banach density of A, denoted in short by Bdl;gc(A), as follows

Bdl;gc(A) := lim inf
x→+∞

lim inf
y→+∞

m(A(y, y + g(x)))

x
;

(ii) the lower u; gc-Banach density of A, denoted in short by Bdu;gc(A), as
follows

Bdu;gc(A) := lim sup
x→+∞

lim inf
y→+∞

m(A(y, y + g(x)))

x
;

(iii) the (upper) l; gc-Banach density of A, denoted in short by Bdl;gc(A), as
follows

Bdl;gc(A) := lim inf
x→+∞

lim sup
y→+∞

m(A(y, y + g(x)))

x
;

(iv) the (upper) u; fc-Banach density of A, denoted in short by Bdu;gc(A), as
follows

Bdu;gc(A) := lim sup
x→+∞

lim sup
y→+∞

m(A(y, y + g(x)))

x
.

In [18, Definition 2.1], we have introduced the notion of an �g-almost periodic
function in the following way: A continuous function f : I → X is said that f(·)
is �g-almost periodic if and only if for each ε > 0 we have �g(ϑ(f, ε)) > 0. It is
worth noting that any uniformly continuous, uniformly recurrent function is �g-
almost periodic for a suitable chosen function g(·) and �g ∈ {dgc, dgc}; see [18,
Proposition 2.19]. In the remainder of paper, by �g we denote exactly one of the
above six densities.
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1.2. Fractional calculus. Fractional calculus and fractional differential equations
are rapidly growing fields of research due to their numerous applications in pure
and applied science.

Define gη(t) := tη−1/Γ(η), t > 0 (η > 0), where Γ(·) denotes the Euler Gamma
function. Suppose now that γ ∈ (0, 1). The Caputo fractional derivative Dγ

t u(t)
is defined for those functions u : [0, T ] → X for which u|(0,T ](·) ∈ C((0, T ] : X),

u(·)− u(0) ∈ L1((0, T ) : X) and g1−γ ∗ (u(·)− u(0)) ∈W 1,1((0, T ) : X), by

Dγ
t u(t) =

d

dt

[
g1−γ ∗

(
u(·)− u(0)

)]
(t), t ∈ (0, T ].

Here, W 1,1((0, T ) : X) denotes the usual Sobolev space of order 1. For more de-
tails about the Caputo fractional derivatives, we refer the reader to the doctoral
dissertation of E. Bazhlekova [1].

The Weyl-Liouville fractional derivative Dγ
t,+u(t) of order γ ∈ (0, 1) is defined

for those continuous functions u : R → X such that t 7→
∫ t
−∞ g1−γ(t − s)u(s) ds,

t ∈ R is a well-defined continuously differentiable mapping, by

Dγ
t,+u(t) :=

d

dt

∫ t

−∞
g1−γ(t− s)u(s) ds, t ∈ R.

Set D1
t,+u(t) := −(d/dt)u(t). For more details about the Weyl-Liouville fractional

derivatives, we refer the reader to the paper [22] by J. Mu, Y. Zhoa and L. Peng.
The Wright function Φγ(·) is an entire function which can be introduced by the

formula

Φγ(z) :=

∞∑
n=0

(−z)n

n!Γ(1− γ − γn)
, z ∈ C.

Let us recall that Φγ(t) ≥ 0, t ≥ 0.
For more details about fractional calculus and fractional differential equations,

we refer the reader to [1], [12]-[13], [16] and [23].

1.3. Multivalued linear operators. In this subsection, we will recall the basic
definitions about multivalued linear operators. Let us recall that a multivalued map
A : X → P (X) is said to be a multivalued linear operator (MLO in X, or simply,
MLO) if and only if the following holds:

(i) D(A) := {x ∈ X : Ax 6= ∅} is a linear subspace of X;
(ii) Ax+Ay ⊆ A(x+ y), x, y ∈ D(A) and λAx ⊆ A(λx), λ ∈ C, x ∈ D(A).

It is well known that, for every x, y ∈ D(A) and for every λ, η ∈ C with
|λ| + |η| 6= 0, we have λAx + ηAy = A(λx + ηy). Set R(A) := {Ax : x ∈ D(A)}.
It simply follows that A−1 is an MLO in X. We say that A is closed if and only if
for any sequence (xn) in D(A) and (yn) in X such that yn ∈ Axn for all n ∈ N we
have that limn→∞ xn = x and limn→∞ yn = y imply x ∈ D(A) and y ∈ Ax.

Suppose that A is an MLO in X, as well as that C ∈ L(X) is injective and
CA ⊆ AC. Then the C-resolvent set of A, ρC(A) for short, is defined as the union
of those complex numbers λ ∈ C for which

(i) R(C) ⊆ R(λ−A);
(ii) (λ−A)−1C is a single-valued linear continuous operator on X.

The operator λ 7→ (λ−A)−1C is said to be the C-resolvent of A (λ ∈ ρC(A)); the
resolvent set of A is defined by ρ(A) := ρI(A), R(λ : A) ≡ (λ −A)−1 (λ ∈ ρ(A)).
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For more details about C-resolvent sets of multivalued linear operators, we refer
the reader to [7] and [16].

We will use the following condition henceforth:

(P) There exist finite constants c, M > 0 and β ∈ (0, 1] such that

Ψ :=
{
λ ∈ C : <λ ≥ −c

(
|=λ|+ 1

)}
⊆ ρ(A)

and

‖R(λ : A)‖ ≤M
(
1 + |λ|

)−β
, λ ∈ Ψ.

2. Uniformly recurrent functions and �g-almost periodic functions
depending on two arguments

The main aim of this section is to introduce and analyze the class of two-
parameter (asymptotically) uniformly recurrent functions, the class of two-parameter
(asymptotically) �g-almost periodic functions and prove several related composi-
tion principles, which will enable us to consider applications to the abstract inhomo-
geneous fractional integro-differential inclusions in the final section of paper. Since
the structural results presented in this section can be deduced by uncomplicated
modifications of results known in the existing literature, we have decided to provide
the main details of proofs for only two statements, Theorem 2.4 and Theorem 2.6.

Let I = R or I = [0,∞). By C0(I×Y : X) we denote the space of all continuous
functions H : I × Y → X such that lim|t|→+∞H(t, y) = 0 uniformly for y in any
compact subset of Y. Let us recall that a continuous function F : I × Y → X is
said to be uniformly continuous on bounded sets, uniformly for t ∈ I if and only if
for every ε > 0 and every bounded subset B of Y there exists a number δε,B > 0
such that ‖F (t, x) − F (t, y)‖ ≤ ε for all t ∈ I and all x, y ∈ B satisfying that

‖x − y‖ ≤ δε,B . If F : I × Y → X, then we define F̂ : I × Y → Lp([0, 1] : X) by

F̂ (t, y) := F (t+ ·, y), t ≥ 0, y ∈ Y.

Remark 2.1. It is worth noting that we can also define the space C0,b(I × Y : X)
consisting of all continuous functions H : I×Y → X such that lim|t|→+∞H(t, y) =
0 uniformly for y in any bounded subset of Y. This space, used by T. Diagana in [6,
Subsection 3.3.2], can serve us to slightly modify the notion of spaces introduced
in Definition 2.2(iii)-(iv) and Definition 2.3(ii) below. Furthermore, we can also
consider continuous functions F : I × Y → X which are uniformly continuous on
compact sets.

For every ε > 0 and for every bounded set B ⊆ Y, we define ϑ(F ; ε, B) as the set
constituted of all numbers τ > 0 such that

‖F (t+ τ, y)− F (t, y)‖ ≤ ε, t ∈ I, y ∈ B.

The following definition is crucial in our analysis:

Definition 2.2. (i) A continuous function F : I × Y → X is called uniformly
recurrent, resp. �g-almost periodic, if and only if for every ε > 0 and every
compact K ⊆ Y there exists a strictly increasing sequence (αn) of positive
reals tending to plus infinity such that

lim
n→+∞

sup
t∈I

∥∥F (t+ αn, y)− F (t, y)
∥∥ = 0, y ∈ K, (2.1)



JFCA-2020/12(2) COMPOSITION PRINCIPLES FOR ALMOST PERIODIC TYPE... 7

resp. if and only if for every ε > 0 and every compact K ⊆ Y we have
�g(ϑ(f ; ε,K)) > 0. The collection of all two-parameter uniformly recurrent
functions, resp. �g-almost periodic functions, will be denoted by UR(I×Y :
X), resp. AP�g

(I × Y : X).
(ii) A continuous function F : I × Y → X is called uniformly recurrent on

bounded sets, resp. �g-almost periodic on bounded sets, if and only if for
every ε > 0 and every bounded set B ⊆ Y there exists a strictly increasing
sequence (αn) of positive reals tending to plus infinity such that (2.1) holds
with K = B, resp. if and only if for every ε > 0 and every bounded set B ⊆
Y we have �g(ϑ(f ; ε, B)) > 0. The collection of all two-parameter uniformly
recurrent functions on bounded sets, resp. �g-almost periodic functions on
bounded sets, will be denoted by URb(I×Y : X), resp. AP�g,b(I×Y : X).

(iii) A continuous function F : I × Y → X is said to be asymptotically uni-
formly recurrent, resp. asymptotically �g-almost periodic, if and only if
f(·) admits a decomposition F = G+Q, where G ∈ UR(I × Y : X), resp.
G ∈ AP�g

(I×Y : X), and Q ∈ C0(I×Y : X). Denote by AUR(I×Y : X),
resp. AAP�g

(I × Y : X), the vector space consisting of all asymptoti-
cally uniformly recurrent functions, resp. asymptotically �g-almost peri-
odic functions.

(iv) A continuous function F : I×Y → X is said to be asymptotically uniformly
recurrent on bounded sets, resp. asymptotically �g-almost periodic on
bounded sets, if and only if f(·) admits a decomposition F = G+Q, where
G ∈ URb(I × Y : X), resp. G ∈ AP�g,b(I × Y : X), and Q ∈ C0(I × Y :
X). Denote by AURb(I × Y : X), resp. AAP�g,b(I × Y : X), the vector
space consisting of all asymptotically uniformly recurrent functions, resp.
asymptotically �g-almost periodic functions.

In the contrast to the approach of C. Zhang for almost periodic functions de-
pending on the parameter [25] (see also [14, Definition 2.1.4]), we do not assume a
priori the boundedness of function f(·, ·) in our approach. This is quite reasonable
because uniformly recurrent functions and �g-almost periodic functions of one real
variable need not be bounded, in general. It is worth noticing that introducing parts
(ii) and (iv) is motivated by definition of almost periodicity used by T. Diagana in
[14, Definition 3.29].

For the Stepanov classes, we will use the following notion (see also [14, Definition
2.2.4, Definition 2.2.5; Lemma 2.2.7]):

Definition 2.3. Let 1 ≤ p <∞.

(i) A function F : I×Y → X is called Stepanov p-uniformly recurrent/Stepanov
p-uniformly recurrent on bounded sets (Stepanov (p,�g)-almost periodic/
Stepanov (p,�g)-almost periodic on bounded sets) if and only if the func-

tion F̂ : I × Y → Lp([0, 1] : X) is uniformly recurrent/uniformly recurrent
on bounded sets (�g-almost periodic/�g-almost periodic on bounded sets).

(ii) We say that F : I × Y → X is asymptotically Stepanov p-uniformly re-
current/asymptotically Stepanov p-uniformly recurrent on bounded sets
(asymptotically Stepanov (p,�g)-almost periodic/asymptotically Stepanov
(p,�g)-almost periodic on bounded sets) if and only if there exist two func-
tions G : I × Y → X and Q : I × Y → X satisfying that for each y ∈ Y
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the functions G(·, y) and Q(·, y) are locally p-integrable, as well as that the
following holds:
(a) Ĝ : I × Y → Lp([0, 1] : X) is uniformly recurrent/uniformly recurrent

on bounded sets (�g-almost periodic/�g-almost periodic on bounded
sets),

(b) Q̂ ∈ C0(I × Y : Lp([0, 1] : X)),
(c) F (t, y) = G(t, y) +Q(t, y) for all t ∈ I and y ∈ Y.

The serious difficulty in our investigations presents the fact that for two given
uniformly recurrent functions f : I → X and g : I → X, the sequence (αn) for
which (1.2) holds need not have a subsequence (αnk

) for which

lim
k→∞

sup
t∈R

∥∥g(t+ αnk
)− g(t)

∥∥ = 0;

moreover, for given two �g-almost periodic functions f : I → X and g : I → X, the
set consisting of their joint ε-periods can be bounded. This cannot be the case for
almost periodic functions; so, if one wants to slightly improves [14, Theorem 3.30]
for uniformly recurrent functions and �g-almost periodic functions, it is necessary
to impose some extra conditions coming naturally from the above analysis:

Theorem 2.4. Suppose that f : I → Y is uniformly recurrent (�g-almost periodic)
and the range of f(·) is relatively compact, resp. bounded. If F : I × Y → X is
uniformly recurrent (�g-almost periodic), resp. uniformly recurrent on bounded
sets (�g-almost periodic on bounded sets), and there exists a finite constant L > 0
such that

‖F (t, x)− F (t, y)‖ ≤ L‖x− y‖Y , t ∈ I, x, y ∈ Y, (2.2)

then the mapping F(t) := F (t, f(t)), t ∈ I is uniformly recurrent (�g-almost pe-
riodic), providing additionally the following condition: there exists a strictly in-
creasing sequence (αn) of positive reals tending to plus infinity for which (1.2)

holds and (2.1) holds with K = {f(t) : t ∈ I}, resp. for each ε > 0 we have that

�g(ϑ(F ; ε, {f(t) : t ∈ I}) ∩ ϑ(f, ε)) > 0.

Proof. The proof of theorem is very similar to the proof of [14, Theorem 3.30]
and we will only outline the main details for �g-almost periodic functions. Let

ε > 0 be given, and let τ ∈ ϑ(F ; ε/2(1 +L), {f(t) : t ∈ I})∩ ϑ(f, ε/2(1 +L)). Then
‖f(t+ τ)− f(t)‖ ≤ ε/2(1 + L), t ∈ I and we have

‖F(t+ τ)−F(t)‖ ≤ L‖f(t+ τ)− f(t)‖Y + ‖F (t+ τ, f(t))−F (t+ τ, f(t))‖, t ∈ I.
Hence,

‖F(t+ τ)−F(t)‖ ≤ [Lε/2(1 + L)] + ε/2(1 + L) < ε, t ∈ I,
which completes the proof. �

Similarly we can prove the following slight extension of [14, Theorem 3.31]:

Theorem 2.5. Suppose that f : I → Y is a bounded uniformly recurrent function
(bounded �g-almost periodic function). If F : I × Y → X is uniformly recurrent
on bounded sets (�g-almost periodic on bounded sets) and uniformly continuous
on bounded sets, uniformly for t ∈ I, then the mapping F(t) := F (t, f(t)), t ∈ I
is uniformly recurrent (�g-almost periodic), providing additionally the following
condition: there exists a strictly increasing sequence (αn) of positive reals tending
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to plus infinity for which (1.2) holds and (2.1) holds with K = {f(t) : t ∈ I}, resp.

for each ε > 0 we have that �g(ϑ(F ; ε, {f(t) : t ∈ I}) ∩ ϑ(f, ε)) > 0.

Before proceeding further, it should be observed that the statement of [14, The-
orem 3.32] (see also the proof of [8, Theorem 2.11]) can be formulated and slightly
extended for uniformly recurrent (�g-almost periodic) functions with relatively
compact range.

Composition principles for asymptotically almost periodic functions have been
analyzed in a great number of research papers. With regards to this question, we
will state and give the main details of proof for the following slight extension of
[6, Theorem 3.49], only (observe, however, that we can similarly reconsider and
slightly extend the statements of [6, Theorem 3.50-Theorem 3.52]).

Theorem 2.6. Suppose that h : I → Y is uniformly recurrent (�g-almost pe-
riodic), the range of h(·) is relatively compact, resp. bounded, q ∈ C0(I : X)
and f(t) = h(t) + q(t) for all t ∈ I. Suppose, further, H : I × Y → X is
uniformly recurrent (�g-almost periodic), resp. uniformly recurrent on bounded
sets (�g-almost periodic on bounded sets), there exists a finite constant L > 0
such that (2.2) holds with the function F (·, ·) replaced therein with the function
H(·, ·), and there exists a strictly increasing sequence (αn) of positive reals tend-
ing to plus infinity for which (1.2) holds with the function f(·) replaced therein
with the function h(·) and (2.1) holds with the function f(·) replaced therein with

the function h(·) and set K = {h(t) : t ∈ I}, resp. for each ε > 0 we have that

�g(ϑ(H; ε, {h(t) : t ∈ I}) ∩ ϑ(h, ε)) > 0. If f(·) has a relatively compact range,
Q ∈ C0(I × Y : X) and F (t, y) = H(t, y) + Q(t, y) for all t ∈ I and y ∈ Y,
then the mapping F(t) := F (t, f(t)), t ∈ I is asymptotically uniformly recurrent
(asymptotically �g-almost periodic).

Proof. Due to Theorem 2.4, we have that the mapping t 7→ H(t, h(t)), t ∈ I is
uniformly recurrent (�g-almost periodic). Furthermore, we have the decomposition

F (t, f(t)) = H(t, h(t)) + [H(t, f(t))−H(t, h(t))] +Q(t, f(t)), t ∈ I.

Since the function H(·, ·) satisfies (2.2), we have

‖H(t, f(t))−H(t, h(t))‖ ≤ L‖f(t)− h(t)‖Y ≤ L‖q(t)‖Y → 0 as |t| → +∞.

The proof of theorem completes the observation that lim|t|→+∞ ‖Q(t, f(t))‖ = 0,
which follows from definition of space C0(I × Y : X) and our assumption that f(·)
has a relatively compact range. �

Remark 2.7. The assumption [6, (3.13)] is superfluous. Furthermore, we note that
the assumption that the range of h(·) is relatively compact, resp. bounded, implies
that f(·) is bounded; therefore, if we use the space C0,b(I × Y : X) in place of
C0(I × Y : X) here, the assumption that f(·) has a relatively compact range is
superfluous, as well.

Remark 2.8. Consider, for simplicity, asymptotically uniformly recurrent functions.
The principal part f(·) of function F(t) = F (t, f(t)), t ∈ I satisfies (1.2) with
the same sequence (αn) and the function f(·) in place of f(·). This holds for all
remaining results established in this paper, and this fact will be of some importance
for applications made in the subsequent section.
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Concerning the composition principles for Stepanov almost periodic functions,
the most influential paper written by now is the paper [21] by W. Long and H.-S.
Ding. Repating almost verbatim the arguments given in the proof of [21, Lemma
2.1, Theorem 2.2], we can deduce the following result (we feel it is our duty to say
that the previously proved results are more appropriate for applications in infinite-
dimensional spaces because condition on relative compactness of range of function
f(·) is almost inevitable to be used; see condition (ii) below):

Theorem 2.9. Let I = R or I = [0,∞). Suppose that the following conditions
hold:

(i) The function F : I × Y → X is Stepanov p-uniformly recurrent, resp.
Stepanov (p,�g)-almost periodic, with p > 1, and there exist a number
r ≥ max(p, p/p− 1) and a function LF ∈ LrS(I) such that:

‖F (t, x)− F (t, y)‖ ≤ LF (t)‖x− y‖Y , t ∈ I, x, y ∈ Y. (2.3)

(ii) The function f : I → Y is Stepanov p-uniformly recurrent, resp. Stepanov
(p,�g)-almost periodic, and there exists a set E ⊆ I with m(E) = 0 such
that K := {f(t) : t ∈ I \ E} is relatively compact in Y.

(iii) For every compact set K ⊆ Y, there exists a strictly increasing sequence
(αn) of positive real numbers tending to plus infinity such that

lim
n→+∞

sup
t∈I

sup
u∈K

∫ 1

0

‖F (t+ s+ αn, u)− F (t+ s, u)‖p ds = 0 (2.4)

and (1.2) holds with the function f(·) and the norm ‖·‖ replaced respectively

by the function f̂(·) and the norm ‖ · ‖Lp([0,1]:X) therein, resp. for every
number ε > 0 and for every compact set K ⊆ Y, the set consisting of all
positive real numbers τ > 0 such that

sup
t∈I

sup
u∈K

∫ 1

0

‖F (t+ s+ τ, u)− F (t+ s, u)‖p ds < εp (2.5)

and (1.1) holds with the function f(·) and the norm ‖·‖ replaced respectively

by the function f̂(·) and the norm ‖ · ‖Lp([0,1]:X) therein.

Then q := pr/p + r ∈ [1, p) and F (·, f(·)) is Stepanov q-uniformly recurrent,
resp. Stepanov (q,�g)-almost periodic. Furthermore, the assumption that F (·, 0) is
Stepanov q-bounded implies that the function F (·, f(·)) is Stepanov q-bounded, as
well.

In [14, Theorem 2.7.2], we have also considered the value p = 1 in Theorem 2.9
and the usual condition regarding the existence of a Lipschitz constant L > 0 such
that

‖F (t, x)− F (t, y)‖ ≤ L‖x− y‖Y , t ∈ I, x, y ∈ Y. (2.6)

Using the foregoing arguments, we can simply deduce the following extension of
the above-mentioned theorem:

Theorem 2.10. Let I = R or I = [0,∞). Suppose that the following conditions
hold:

(i) The function F : I × Y → X is Stepanov p-uniformly recurrent, resp.
Stepanov (p,�g)-almost periodic with p ≥ 1, L > 0 and (2.6) holds.

(ii) The same as condition (ii) of Theorem 2.9.
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(iii) The same as condition (iii) of Theorem 2.9.

Then the function F (·, f(·)) is Stepanov p-uniformly recurrent, resp. Stepanov
(p,�g)-almost periodic. Furthermore, the assumption that F (·, 0) is Stepanov p-
bounded implies that the function F (·, f(·)) is Stepanov p-bounded, as well.

Following the analysis of F. Bedouhene, Y. Ibaouene, O. Mellah and P. Ray-
naud de Fitte [2, Theorem 3] for the class of equi-Weyl p-almost periodic functions
and the analysis of W. Long and H.-S. Ding [21], in [17, Theorem 2.1] we have
established a new composition principle for the class of Stepanov p-almost periodic
functions that is not comparable with [21, Theorem 2.2]. Using the proof of the
last-mentioned theorem and the proof of [17, Theorem 2.1], we can deduce the
following generalization of Theorem 2.10:

Theorem 2.11. Suppose that p, q ∈ [1,∞), r ∈ [1,∞], 1/p = 1/q + 1/r and the
following conditions hold:

(i) The function F : I × Y → X is Stepanov p-uniformly recurrent, resp.
Stepanov (p,�g)-almost periodic, and there exists a function LF ∈ LrS(I)
such that (2.3) holds.

(ii) The same as condition (ii) of Theorem 2.9, with the number p replaced with
the number q therein.

(iii) For every compact set K ⊆ Y, there exists a strictly increasing sequence
(αn) of positive real numbers tending to plus infinity such that (2.4) holds
and (1.2) holds with the function f(·) and the norm ‖·‖ replaced respectively

by the function f̂(·) and the norm ‖ · ‖Lq([0,1]:X) therein, resp. for every
number ε > 0 and for every compact set K ⊆ Y, the set consisting of all
positive real numbers τ > 0 such that (2.5) holds and (1.1) holds with the

function f(·) and the norm ‖ · ‖ replaced respectively by the function f̂(·)
and the norm ‖ · ‖Lq([0,1]:X) therein.

Then the function F (·, f(·)) is Stepanov p-uniformly recurrent, resp. Stepanov
(p,�g)-almost periodic. Furthermore, the assumption that F (·, 0) is Stepanov p-
bounded implies that the function F (·, f(·)) is Stepanov p-bounded, as well.

Keeping in mind Theorem 2.9-Theorem 2.10, resp. Theorem 2.11, it is straight-
forward to reformulate the statements of [14, Proposition 2.7.3-Proposition 2.7.4],
resp. [17, Proposition 2.1], for the asymptotical Stepanov p-uniform recurrence and
the asymptotical Stepanov (p,�g)-almost periodicity. Details can be left to the
interested readers.

3. Applications to abstract semilinear fractional
integro-differential inclusions

In this section, we will present two interesting applications of established theo-
retical results in the analysis of the existence and uniqueness of uniformly recurrent
type solutions of abstract semilinear fractional integro-differential inclusions.

1. In the first application, we will consider the finite-dimensional space X := Cn,
where n ≥ 2. Suppose that c > 0, A, B ∈ Cn,n (the space of all complex matrices of
format n×n), the matrix B is not invertible, as well as that the degree of complex
polynomial P (λ) := det(λB−A), λ ∈ C is equal to n and its roots lie in the region
{λ ∈ C : <λ < −c(|=λ|+1)}. Due to [16, Proposition 2.1.2], we have that the region
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Ψ from the formulation of condition (P) belongs to the resolvent set of multivalued
linear operator A = AB−1 as well as that(

λ−AB−1
)−1

= B
(
λB −A

)−1
, λ ∈ Ψ.

Since the degree of complex polynomial P (·) is equal to n, the above formula sim-
ply implies that there exists a positive real constant M > 0 such that condition
(P) holds with β = 1, so that the operator A generates an exponentially decay-
ing strongly continuous degenerate semigroup (T (t))t≥0 which can be analytically
extented to a sector around positive real axis (cf. [16] for the notion).

Suppose now that 0 < γ < 1 and ν > −1. Define

Tγ,ν(t)x := tγν
∫ ∞

0

sνΦγ(s)T
(
stγ
)
x ds, t > 0, x ∈ X,

Sγ(t) := Tγ,0(t) and Pγ(t) := γTγ,1(t)/tγ , t > 0.

Recall [16] that, in general case β ∈ (0, 1], there exists a finite constant M1 > 0
such that ∥∥Sγ(t)

∥∥+
∥∥Pγ(t)

∥∥ ≤M1t
γ(β−1), t > 0, (3.1)

as well as ∥∥Sγ(t)
∥∥ ≤M1t

−γ , t ≥ 1 and
∥∥Pγ(t)

∥∥ ≤M2t
−2γ , t ≥ 1. (3.2)

Set Rγ(t) := tγ−1Pγ(t), t > 0. Then (3.1)-(3.2) yield

‖Rγ(t)‖ = O
(
tγ−1 + t−γ−1

)
, t > 0. (3.3)

Consider now the following abstract fractional inclusion

Dγ
+~u(t) ∈ −A~u(t) + F (t, ~u(t)), t ∈ R, (3.4)

where Dγ
+u(t) denotes the Weyl-Liouville fractional derivative of order γ and F :

R × X → X; after the usual substitution ~v(t) ∈ B−1~u(t), t ∈ R, this inclusion
becomes

Dγ
+

[
B~v(t)

]
= −A~v(t) + F

(
t, B~v(t)

)
, t ∈ R.

Following J. Mu, Y. Zhoa and L. Peng [22], it will be said that a continuous function
u : R→ X is a mild solution of (3.4) if and only if

~u(t) =

∫ t

−∞
Rγ(t− s)F

(
s, ~u(s)

)
ds, t ∈ R.

For the sequel, fix a strictly increasing sequence (αn) of positive reals tending to
plus infinity. Denote

BUR(αn)(R : X) :=
{
~u ∈ UR(R : X) ; ~u(·) is bounded and (1.2) holds with f = ~u

}
.

Equipped with the metric d(·, ·) := ‖ ·− · ‖∞, BUR(αn)(R : X) becomes a complete
metric space.

Now we are able to state the following result:

Theorem 3.1. Suppose that the function F : R × X → X satisfies that for
each bounded subset B of X there exists a finite real constant MB > 0 such that
supt∈R supy∈B ‖F (t, y)‖ ≤MB . Suppose, further, that the function F : R×X → X
is Stepanov p-uniformly recurrent with p > 1, and there exist a number r ≥
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max(p, p/p − 1) and a function LF ∈ LrS(I) such that q := pr/(p + r) > 1 and
(2.3) holds with I = R. If

(γ − 1)q

q − 1
> −1, (3.5)

there exists an integer n ∈ N such that Mn < 1, where

Mn := sup
t≥0

∫ t

−∞

∫ xn

−∞
· · ·
∫ x2

−∞

∥∥∥Rγ(t− xn)
∥∥∥

×
n∏
i=2

∥∥∥Rγ(xi − xi−1)
∥∥∥ n∏
i=1

LF (xi) dx1 dx2 · · · dxn,

and for every compact set K ⊆ Y, (2.4) holds, then the abstract fractional Cauchy
inclusion (3.4) has a unique bounded uniformly recurrent solution.

Proof. Define Υ : BUR(αn)(R : X)→ BUR(αn)(R : X) by

(Υ~u)(t) :=

∫ t

−∞
Rγ(t− s)F (s, ~u(s)) ds, t ∈ R.

Let us firstly show that the mapping Υ(·) is well defined. Suppose that ~u ∈
BUR(αn)(R : X). Then R(~u) = B is a bounded set so that the mapping t 7→
F (t, ~u(t)), t ∈ R is bounded due to the prescribed assumption. Applying Theorem
2.9, we have that the function F (·, ~u(·)) is Stepanov q-uniformly recurrent. Define

q′ := q/(q − 1). Then (3.3) and (3.5) together imply that ‖Rγ(·)‖ ∈ Lq′ [0, 1] and∑∞
k=0 ‖Rγ(·)‖Lq′ [k,k+1] < ∞ due to our analysis from [14, Remark 2.6.12]. Apply-

ing [18, Proposition 3.1], we get that the function t 7→
∫ t
−∞Rγ(t− s)F (s, ~u(s)) ds,

t ∈ R is bounded, continuous and uniformly recurrent (cf. also the proof of [14,
Proposition 2.6.11, Proposition 3.5.3]), which yields that Υ~u ∈ BUR(αn)(R : X),
as claimed. Furthermore, a simple calculation shows that∥∥∥(Υn~u1

)
−
(
Υn~u2

)∥∥∥
∞
≤Mn

∥∥ ~u1 − ~u2

∥∥
∞, ~u1, ~u2 ∈ BUR(αn)(R : X), n ∈ N.

Since we have assumed that there exists an integer n ∈ N such that Mn < 1, the
well known extension of the Banach contraction principle shows that the mapping
Υ(·) has a unique fixed point, finishing the proof of the theorem. �

2. Suppose that a closed multivalued linear operator A satisfies condition (P) in
X, which can be finite-dimensional or infinite-dimensional, with general exponent
β ∈ (0, 1]. Consider the abstract semilinear fractional differential inclusion

(DFP)f,γ,s :

{
Dγ
t u(t) ∈ Au(t) + F (t, u(t)), t > 0,
u(0) = x0,

where Dγ
t denotes the Caputo fractional derivative of order γ, x0 ∈ X and F :

[0,∞) × X → X. By a mild solution of (DFP)f,γ,s, we mean any function u ∈
C([0,∞) : X) satisfying that

u(t) = Sγ(t)x0 +

∫ t

0

Rγ(t− s)F (s, u(s)) ds, t ≥ 0.

In what follows, we will assume that limt→0+ Sγ(t)x0 = x0 so that the mapping t 7→
Sγ(t)x0, t ≥ 0 belongs to the space C0([0,∞) : X); see the estimate (3.1). Arguing
as in the proof of [6, Theorem 3.46], we may conculde that X := BUR(αn)([0,∞) :



14 M. KOSTIĆ JFCA-2021/12(2)

X) ⊕ C0([0,∞) : X) is a complete metric space equipped with the distance d(·, ·)
used above. Set, for every u ∈ X and n ∈ N,(

ΥAu
)
(t) := Sγ(t)x0 +

∫ t

0

Rγ(t− s)F (s, u(s)) ds, t ≥ 0;

An := sup
t≥0

∫ t

0

∫ xn

0

· · ·
∫ x2

0

∥∥Rγ(t− xn)
∥∥

×
n∏
i=2

∥∥Rγ(xi − xi−1)
∥∥ n∏
i=1

LF (xi) dx1 dx2 · · · dxn.

Then a simple calculation shows that∥∥∥(Υn
Au
)
−
(
Υn
Av
)∥∥∥
∞
≤ An

∥∥u− v∥∥∞, u, v ∈ X , n ∈ N.

Keeping in mind [18, Proposition 3.1], Theorem 2.6, Remark 2.7-Remark 2.8 and
the proof of [14, Lemma 2.6.3], we can similarly clarify the following result:

Theorem 3.2. Suppose that the function F : [0,∞) ×X → X is continuous and
satisfies that for each bounded subset B of X there exists a finite real constant MB >
0 such that supt≥0 supy∈B ‖F (t, y)‖ ≤MB . Suppose, further, that H : [0,∞)×X →
X is uniformly recurrent on bounded sets, there exists a finite constant L > 0
such that (2.2) holds with the function F (·, ·) replaced therein with the function
H(·, ·) and I = [0,∞). Let (2.1) hold with any bounded set B = K, and let there
exist an integer n ∈ N such that An < 1. If Q ∈ C0,b(I × Y : X) and F (t, y) =
H(t, y) + Q(t, y) for all t ≥ 0 and y ∈ Y, then the abstract fractional Cauchy
inclusion (DFP)f,γ,s has a unique mild solution.

Let Ω be a bounded domain in Rn, b > 0, m(x) ≥ 0 a.e. x ∈ Ω, m ∈ L∞(Ω),
1 < p <∞ and X := Lp(Ω). Suppose that the operator A := ∆− b acts on X with
the Dirichlet boundary conditions, and that B is the multiplication operator by the
function m(x). As explained in [14], we can apply Theorem 3.2 with A = AB−1

in the study of existence and uniqueness of asymptotically uniformly recurrent
solutions of the semilinear fractional Poisson heat equation Dγ

t [m(x)v(t, x)] = (∆− b)v(t, x) + f(t,m(x)v(t, x)), t ≥ 0, x ∈ Ω;
v(t, x) = 0, (t, x) ∈ [0,∞)× ∂Ω,
m(x)v(0, x) = u0(x), x ∈ Ω.
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