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FRACTIONAL MATHEMATICAL MODEL ON TRANSMISSION

AND CONTROL OF THE SPREAD OF MYIASIS IN HUMAN

SYSTEM USING INSECT REPELLENT

H. E. EZE, G.C.E. MBAH, D. U. NNAJI

Abstract. We proposed a fractional SEITR order model to study the trans-
mission dynamics of Myiasis. We showed the existence of the equilibrium

states. The basic reproduction number of the model was evaluated in terms of

the parameters in the model using the next generation matrix approach. We
provided the conditions for the stability of the disease-free and the endemic

equilibrium points. Also, numerical simulations of the model were carried out
using Adams-type predictor-corrector method which showed in detail the pop-

ulation dynamics of the disease. From these simulations, the level of impacts

of the parameters of the model were demonstrated

1. Introduction

Myiasis is the infestation of live human and vertebrate animals with dipterous
larvae, which, at least for a certain period, feed on the host’s dead or living tissue,
liquid body-substances or ingested food,[9]. It could also be expressed as a parasitic
infestation of tissues and organs in living vertebrates with dipterous larvae,[1].
It is widespread in the tropics and subtropics of Africa and the America, and
can occur in other parts of the world although less frequent,[2]. It is a common
infestation among mammals (human and other vertebrate animals). In humans, it
is seen more in rural areas where people are in more direct contact with animals,[3].
The disease occurs when the female fly lays eggs, which shortly will cause clinical
manifestations that are related to the body site involved,[4]. The infestation is
most often subcutaneous and produces a furunculous or boil-like lesion, but it is
also known to occur in wounds and certain body cavities,[5]. Transmission of this
fly larvae to human hosts differs among the many species of fly. For instance, one
may have gotten an infection from accidentally ingesting larvae, from having an
open wound or sore, or through your nose or ears. In tropical areas, where the
infection is most likely to occur, some flies lay their eggs on drying clothes that are
hung outside. Some flies attach their eggs to mosquitoes, ticks or other flies that
harbor larvae and wait for mosquitoes to bite people. Their larvae then enter these
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Figure 1. Model Flow Diagram.

bites. They can enter skin through people’s bare feet when they walk through soil
containing fly eggs. Some flies deposit their larvae on or near a wound or sore,
depositing eggs in sloughing-off dead tissue. Most of the fly larvae are transmitted
to humans through pet or domestic animals that are infested by larvae.

2. Model Formulation

We assume that the disease cannot kill once an individual is treated; individuals
become exposed once they interact with the pathogen. One can recovered in the
treatment and may die if not treated due to the disease and the study is carried out
in the tropical region. Let S(t), E(t), I(t), T(t), R(t) and P(t) denote the number
of susceptible, exposed, infected, recovered and pathogen class. The schematic
diagram of the disease on which we base our model is as follow:

2.1. Model Equation.

Dα
t S(t) = Λh + ρR− β1(1−c)SP−β2SI

N − µS
Dα
t E(t) = β1(1−c)SP+β2SI

N − E(µ+ τ)

Dα
t I(t) = τE − I(γ + φ+ µ+ δ)

Dα
t T (t) = φI − T [µ+ (1− γ)]

Dα
t R(t) = γI + (1− γ)T −R(µ+ ρ)

Dα
t P (t) = Λp − P (µ1 + σ)

(1)

2.2. Invariant Region.

Lemma 3. The closed set Ω = {(S,E, I, T,R) ∈ R5
+ : S + E + I + T + R = Nh}

is positively invariant with respect to model (1).
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Table 1. Parameters of the model and their Description

Parameters Description
Λh Recruitment rate of human
β1 The rate at which the susceptible individuals interact with the pathogen
β2 The rate at which the susceptible individuals interact with the infected individuals
µ The natural death rate of human
µ1 The natural death rate of pathogen
δ The disease induced death rate
τ The rate at which the exposed individuals progressed to be infected
γ The rate at which the infected individuals recover from the disease without treatment
ρ The rate at which recovered individuals becomes susceptible
φ The rate at which the infected individuals are for treatment
σ The rate at the pathogens die as a result of the predator feeding on them
Λp Recruitment rate of the pathogens
c Rate of adherent to the use of insect repellent

Proof
The fractional derivative of the total human population, obtained by adding all

the human equations of model (1), is given by

Dα
t Nh = Λh − µNh (2)

The Laplace transform of (2) gives:

SαN(s)− Sα−1N(0) =
Λ

s
− µN(s) (3)

⇒ N(s) =
Λ

S(Sα + µ)
+

Sα−1

sα + µ
N(0) (4)

Taking the inverse Laplace transform of (4), we have:

N(t) = Eα,1(−µtα) + ΛtαEα,α+1(−µtα) (5)

where Eα,β is the Mittag-Leffler function. But the fact that the Mittag-Leffler
functions has an asymptotic behavior, it follows that:

Eα,1N(t) =

∞∑
k=0

NK(t)

Γ(αk + 1)
, α > 0 (6)

Eα,α+1N(t) =

∞∑
k=0

NK(t)

Γ(αk + α+ 1)
, α > 0 (7)

Expanding (6), we have

Eα,1N(t) =
1

Γ(1
+

N(t)

Γ(α+ 1)
+

N2(t)

Γ(2α+ 1)
+ ... (8a)

Expanding (7), we have

Eα,α+1N(t) =
1

Γ(α+ 1)
+

N(t)

Γ(2α+ 1)
+

N2(t)

Γ(3α+ 1)
+ ... (8b)
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Since Mittag-Leffler function has an asymptotic property, we have

Nh(t) = 1 +O(N) (9)

Taking limit as k−→∞, we have

Nh(t) ≈ 1 (10)

Then, it is clear that Ω is a positive invariant set.Therefore, all solutions of the
model with initial conditions in Ω remain in Ω for all t > 0. Then , Ω = Nh(t) > 0
implies that it is feasible with respect to model (1).

4. Model Analysis

4.1. The Basic Reproduction Number, R0. The Disease free equilibrium point
is evaluated as:

(S0, E0, I0, T 0, R0, P 0) = (
Λh
µ
, 0, 0, 0, 0, 0) (11)

We use Next Generation Matrix which comprises of two parts: F and V 1,

R0 = ρ(FV −1) (12)

Where

F =
∣∣∣∂fix(0)

∂xj

∣∣∣ , V =
∣∣∣∂vix(0)

∂xj

∣∣∣
ρ = spectral value ( highest eigenvalue)
On the estimation,We used the following disease compartments:

Dα
t E(t) = β1(1−c)SP+β2SI

N − E(µ+ τ)

Dα
t I(t) = τE − I(γ + φ+ µ+ δ)

Dα
t T (t) = φI − T [µ+ (1− γ)]

Dα
t P (t) = Λp − P (µ1 + σ)

(13)

Define

fi =


β1(1−c)SP+β2SI

N
0
0
0

 (14)

vi =


µE+τE

I(γ + φ+ µ+ δ)− τE
T[µ+ (1− γ)]− φI

P(µ1 + σ)− Λp

 (15)

Differentiating (14) with respect to the outlined variables in (13), we have:

F =


0 β2S

N 0 β1(1−c)S
N

0 0 0 0

0 0 0 0

0 0 0 0

 (16)



24 H. E. EZE, G.C.E. MBAH, D. U. NNAJI JFCA-2021/12(2)

and, performing the usual derivative operation on (15), we have

V =


µ+ τ 0 0 0

−τ γ + φ+ µ+ δ 0 0

0 −φ µ+ 1− γ 0

0 0 0 µ1 + σ

 (17)

V −1 =


(µ+ τ)

−1
0 0 0

τ
(µ+τ)(γ+φ+µ+δ) (γ + φ+ µ+ δ)

−1
0 0

− φ τ
(µ+τ)(γ+φ+µ+δ)(−µ−1+γ) − φ

(γ+φ+µ+δ)(−µ−1+γ) − (−µ− 1 + γ)
−1

0

0 0 0 (µ1 + σ)
−1


(18)

FV −1 =


β2Sτ

N(µ+τ)(γ+φ+µ+δ)
β2S

N(γ+φ+µ+δ) 0 β1(1−c)S
N(µ1+σ)

0 0 0 0

0 0 0 0

0 0 0 0

 (19)

Therefore, the eigenvalue of equation (19) is

Eigenvalue(FV −1) =


0

0

0

β2Sτ
N(δ µ+δ τ+γ µ+γ τ+µ2+µφ+µ τ+φ τ)

 (20)

we have the dominant eigenvalue as follows:

R0 =
τβ2S

N(δµ+ δτ + γµ+ γτ + µ2 + µφ+ µτ + φτ)
(21)

At Disease Free Equilibrium,

R0 =
τβ2

(µ+ τ)(δ + γ + φ+ µ)
(22)

4.2. Sensitive Indices of the Parameters of Myiasis Infection. . Recall the
obtained reproduction number with respect to model(1) evaluated as equation (22)
above.
The sensitivity index of ′β′ with respect to R0 , is given as:

WR0

β =
∂R0

∂β
× β

R0
= 1 (23a)

The sensitivity index of ′Λ′h with respect to R0 , is given as:

WR0

Λh
=
∂R0

∂Λh
× Λh
R0

= 1 (23b)

The sensitivity index of ′µ′ with respect to R0 , is given as:

WR0
µ =

∂R0

∂µ
× µ

R0
< 0 (23c)



JFCA-2020/12(2) CONTROL OF MYIASIS IN HUMAN 25

The sensitivity index of ′µ′1 with respect to R0 , is given as:

WR0
µ1

=
∂R0

∂µ1
× µ1

R0
< 0 (23d)

The sensitivity index of ′σ′ with respect to R0 , is given as:

WR0
σ =

∂R0

∂σ
× σ

R0
< 0 (23e)

The sensitivity index of ′τ ′ with respect to R0 , is given as:

WR0
τ =

∂R0

∂τ
× τ

R0
= 0 (23f)

Where ′W ′ = Sensitive Index
Every other parameter that are not reflected in the reproduction number of the
model (1) has its sensitivity index as zero. The result show that some of the pa-
rameters have positive signs and others have negative signs while some parameters
are zero. This implies that some of the parameters have positive effect on the basic
reproduction number (R0); some have negative effect on it while some have zero
effect.

4.3. Stability Analysis. Here, we studied the stability at Disease free equilib-
rium(DFE) and Endemic state equilibrium point(EEP).

4.3.1. Local Stability at DFE. We evaluated the Disease free equilibrium points as:

(S0, E0, I0, T 0, R0, P 0) =

(
Λh
µ
, 0, 0, 0, 0, 0

)
(24)

The Jacobian matrix at Disease free equilibrium is given as:

J0 =


−µ 0 −β2S

N 0 ρ −β1(1−c)S
N

0 −(µ+ τ) β2S
N 0 0 β1(1−c)S

N
0 τ −(γ + φ+ µ+ δ) 0 0 0
0 0 φ −[µ+ (1− γ)] 0 0
0 0 γ 1− γ −(µ+ ρ) 0
0 0 0 0 0 −(µ1 + σ)


(25)

By characteristic equation
|J0 − Iλ| = 0 (26)

matrix (25) become:
−a−λ 0 −β2S

N 0 ρ −β1(1−c)S
N

0 −b−λ β2S
N 0 0 β1(1−c)S

N
0 τ −c−λ 0 0 0
0 0 φ −d−λ 0 0
0 0 γ 1− γ −h−λ 0
0 0 0 0 0 −f−λ

 = 0 (27)

Thus, we have

(a− λ)(−b− λ)(−c− λ)(−d− λ)(−h− λ)(−f − λ) = 0 (28)

Where
a = µ , b = µ+ τ , c = (γ + φ+ µ+ δ) , d = [µ+ (1− γ)] , h = µ+ ρ , f = µ1 + σ
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Then from (28), the respective eigenvalues are:

λ1 = −a = −µ (29a)

λ2 = −b = −(µ+ τ) (29b)

λ3 = −c = −(γ + φ+ µ+ δ) (29c)

λ4 = −d = −[µ+ (1− γ)] (29d)

λ5 = −h = −(µ+ ρ) (29e)

λ6 = −f = −(µ1 + σ) (29f)

Since all the above eigenvalue are negative, the equilibrium point (24) is locally
asymptotically stable.

�

4.3.2. Global Stability at DFE. Here, we study the global stability with construction
of a Lyapunov function of the system(1).

Theorem 4.1. The disease-free equilibrium E0, given by (24), of the model (1) is
globally asymptotically stable if R0 < 1.

Proof
Observing the conditions in [10], from system(1) we select the infected classes
(E(t), I(t)) of the human population to construct a Lyapunov function G(t) such
that

G(t) = x1E(t) + x2I(t) (30)

It is good to note that for G(t) to be a Justifiable Lyapunov function, the coefficients
of (30) will be chosen such that x1 > 0 and x2 > 0 (non-negotiable). The derivative
of equation (30) becomes

Ġ(t) = x1Ė(t) + x2İ(t) (31)

= x1[aS − E(µ+ τ)] + x2[τE − I(δ + γ + φ+ µ)] (32)

we recall:

a =
β1(1− c)P + β2I

N
, S(t) = S, I(t) = I, P (t) = P,N(t) = N

rearranging equation(32), thus gives

Ġ(t) = x1aS − E[x1(µ+ τ)− x2τ ]− I[x2(δ + γ + φ+ µ)] (33)

The following steps will be observed in forming the Lyapunov function:

� set the coefficient of aS to the numerator of R0 (excluding β2).
� set the coefficient of I to the denominator of R0

� set the coefficient of E to zero.

Then, we have: 
x1 = τ,

x2(δ + γ + φ+ µ) = (µ+ τ)(δ + γ + φ+ µ)

x1(µ+ τ)− x2τ = 0

(34)

Solving, we have {
x1 = τ,

x2 = µ+ τ
(35)
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substituting for x1 and x2 in (33), we have

Ġ(t) = x1aS − I(µ+ τ)(δ + γ + φ+ µ) (36)

= τ

[
β1(1− c)P + β2I

N

]
S − I(µ+ τ)(δ + γ + φ+ µ) (37)

But at DFE S = N and P = 0, therefore

Ġ(t) = τβ2I − I(µ+ τ)(δ + γ + φ+ µ) (38)

= I

[
τβ2

(µ+ τ)(δ + γ + φ+ µ)
− 1

]
(µ+ τ)(δ + γ + φ+ µ) (39)

= I[Ro − 1](µ+ τ)(δ + γ + φ+ µ) (40)

Therefore, Ġ(t) ≤ 0 for R0 < 1. By Lyapunov-LaSalle’s invariant principle [12],
(24) is globally asymptotically stable.

�

4.3.3. Local Stability at EEP. Again, we study the stability of the Endemic equi-
librium points.

E∗ = (S∗, E∗, I∗, T ∗, R∗, P ∗) = (I∗K5, I
∗K2, I

∗K3, I
∗K4, I

∗K1,K1) (41)

Where
K1 =

Λp
µ1+σ , K2 = (γ+φ+µ+δ)

τ , K3 = φ
µ+(1−γ) , K4 = 1

µ+ρ (γ + φ (1−γ)
µ+(1−γ) ) , K5

= (γ+φ+µ+δ)(µ+τ)(µ1+σ)
τβΛp(1−c)) .

The Jacobian matrix of Equation (1) is given as:

JE =


−β1P (1−c)−β2I

N − µ 0
−β2S
N 0 ρ

−β1(1−c)S
N

β1P (1−c)+β2I
N −(µ+ τ)

β2S
N 0 0

β1(1−c)S
N

0 τ −(γ + φ+ µ+ δ) 0 0 0
0 0 φ −[µ+ (1− γ)] 0 0
0 0 γ 1− γ −(µ+ ρ) 0
0 0 0 0 0 −(µ1 + σ)


(42)

Then we compute |JE − λI|, where I is an (6× 6) identity matrix.

|JE−λI| =

∣∣∣∣∣∣∣∣∣
−

(
β1P (1−c)+β2I

N + µ
)
− λ 0

−β2S
N 0 ρ

−β1(1−c)S
N

β1P (1−c)+β2I
N −(µ+ τ)− λ β2S

N 0 0
β1(1−c)S

N
0 τ −(γ + φ+ µ+ δ)− λ 0 0 0
0 0 φ −[µ+ (1− γ)]− λ 0 0
0 0 γ 1− γ −(µ+ ρ)− λ 0
0 0 0 0 0 −(µ1 + σ)− λ

∣∣∣∣∣∣∣∣∣ = 0

(43)
By characteristic equation, we have:

−[(µ1+σ)+λ]

∣∣∣∣∣∣∣
−

(
β1P (1−c)+β2I

N + µ
)
− λ 0

−β2S
N 0 ρ

β1P (1−c)+β2I
N −(µ+ τ)− λ β2S

N 0 0
0 τ −(γ + φ+ µ+ δ)− λ 0 0
0 0 φ −[µ+ (1− γ)]− λ 0
0 0 γ 1− γ −(µ+ ρ)− λ

∣∣∣∣∣∣∣ = 0

(44)
Assuming ρ ≈ 0, (44) now becomes

[−(µ1+σ)−λ]·[−(µ+ρ)−λ]·[−(µ+1−γ)−λ]·

∣∣∣∣∣−
(
β1P (1−c)+β2I

N + µ
)
− λ 0

−β2S
N

β1P (1−c)+β2I
N −(µ+ τ)− λ β2S

N
0 τ −(γ + φ+ µ+ δ)− λ

∣∣∣∣∣ = 0

(45)
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Considering the remaining (3 × 3) matrix, we have∣∣∣∣∣∣
−(a+ µ)− λ 0 −b

a −d− λ b
0 τ −e− λ

∣∣∣∣∣∣ = 0 (46)

where

a =
β1P (1− c) + β2I

N
, b =

−β2S

N
, d = (µ+ τ), e = (γ + φ+ µ+ δ)

The resulting characteristics equation of (35) becomes

λ3 +(d+e+a+µ)λ2 +(de+ad+ae+µd+µe−τb)λ+(ade+µde−τµb) = 0 (47)

By Descartes’ Rule of Signs [11], if the coefficient of λ and the constant term
in (36) are greater than zero, then, the eigenvalues of (32) are certain to be all
negative. As such, asymptotical stability of (30). Otherwise, unstable.

5. Numerical Simulation

we used MATLAB to get the numerical solution of our model by applying Adams-
type predictor-corrector method. This method is well known for numerical solutions
of first-order problems,[6].

Table 2. Estimated initial conditions and the parameters with
values and their sources

Parameter Value Source
Λh 2, 000 [7]
ρ 0.5120 [8]
β1 0.5172 [8]
β2 0.4828 [8]
µ 1.9249 [8]
τ 0.5013 [8]
γ 0.4885 [8]
φ 1.4422 [8]
δ 0.1570 [8]

1− γ 0.5115 [8]
Λp 1,000 Estimated
µ1 0.9407 [8]
σ 1.0345 [8]
c 0 < c < 1 [8]
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Variable at initial condition Value Source
S(0) 20,000 Estimated
E(0) 5,000 Estimated
I(0) 2,000 Estimated
T (0) 1,000 Estimated
R(0) 18000 Estimated
P (0) 9,000 Estimated

Figure 2. Dynamics of the Diseased Population.

5.1. Graphical Simulation. From the figure above, the infestation will be high at
the earlier stage due to the lack of awareness of its endemic, therefore the susceptible
population will be decreasing once the interaction with the pathogen is in action.
This implies that the disease will invade the population with time.
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Figure 3. Effect of Insect Repellent on Diseased Population.

From the figure above, the graph showed us that the disease infection started
responding to the insect repellent containing diethyltoluamide once the population
became aware of the disease endemic and adhered to the use of it. Therefore, as
time goes on, the use of insect repellent will become more effective, as so fizzle out
the disease as the curve does not collapse to zero but will consequently increase the
population class with time and hence gives us a locally asymptotically stability

Figure 4. Variation of Susceptible Class with Different α.

The above graph is from the controlled population. Here, we could be able to
analyze the authenticity between fractional and the integer approach and we found
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out that the fractional approach is proved to be better than those at the integer
case. As it is seen from the dialogue box, α = 1.0 is undoubtedly a good one but as
the population is under control, it has given the fractional approach a better result
at α = 0.3 since the susceptible class have gained more individuals. Therefore,
the graph α = 0.3 shows how the susceptible population increases with time and
stabilizes at some point and that means that the system is locally asymptotically
stable at that point.

Figure 5. Variation of Exposed Class with Different α

From the above graph, it captures a decrease in the exposed population with
time and clearly shows that the exposed population will vanish at some point since
the graph is from controlled population. Therefore, α = 0.3 is a better result
compared to α = 1.0 and α = 0.7 Therefore, since the graph captures a decrease in
the exposed population with time and clearly shows that the exposed population
will vanish at some point, it means that the model is LAS when R0 < 1.



32 H. E. EZE, G.C.E. MBAH, D. U. NNAJI JFCA-2021/12(2)

Figure 6. Dynamics of Sensitive Parameter On Diseased Population

From the susceptible graph, we observed that increasing the presence of param-
eter, β in the diseased population leads to decrease in the susceptible class. Then,
the population keeps on reducing as the interaction level keep on increasing with
time. At the exposed graph, for the fact that the interaction rate has been increased
on the susceptible class, then the exposed population will increase gradually with
time. At the infected graph, the infectiousness of the disease in the population will
increase as well since the exposed class is increased. In general, Figure 6 shows how
a variation of the interaction level affects the susceptible, exposed and infected pop-
ulation. From susceptible, it gave a decreasing graph since the interaction increases
in the absence of control on the population.

Figure 7. Dynamics of Sensitive Parameter On Diseased Population



JFCA-2020/12(2) CONTROL OF MYIASIS IN HUMAN 33

From the treatment graph, since the infected population here have adopted treat-
ment, then increasing more presence of the parameter, β will reduces the infectious-
ness of the disease in the population which increase the recovered population. From
the pathogens graph, off course increasing more presence of the interaction rate im-
plies increased in the pathogens level.

6. Conclusion

We have presented a fractional order model dynamic of myiasis infection with
control measure and the effect of the control measure was felt as demonstrated
on the graph. The model captures the causes, the predisposing factors of myiasis
disease and a possible way of preventing the interactions. It can be seen in the
model that the spread of the disease totally depends on the interaction between the
pathogens and the people within the population. It is seen that if the proportion of
population that is treated increases, then they will become susceptible again after
recovery. The numerical simulations of the fractional order model with different
values of α are performed by Caputo’s derivative using the predictor corrector
method of Adams-Bash forth Moulton type. The dynamics of the compartments
have been shown in the graphs obtained. In addition, the results gave an insight
that fractional order model is more suitable than its integer-order.
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