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EXISTENCE AND OSCILLATION FOR COUPLED

FRACTIONAL q-DIFFERENCE SYSTEMS

S. ABBAS, M. BENCHOHRA, J. HENDERSON

Abstract. This paper deals first with existence of bounded solutions, then

followed by some oscillation results, for a coupled fractional q-difference sys-
tem. For the first results, some applications are made of the fixed point theory,
and the diagonalization process. Finally, we give two examples illustrating the
applicability of the imposed conditions.

1. Introduction

Fractional differential equations have recently been applied in various areas of
engineering, mathematics, physics, and other applied sciences; see the monographs
[5, 6, 7, 23, 27, 28, 31], the papers [1, 3, 4, 8, 24], and the references therein.
Recently, considerable attention has been given to the existence of solutions of initial
and boundary value problems for fractional differential equations and inclusions
with the Caputo fractional derivative; [6, 22].

Fractional q-difference equations were initiated in the beginning of the 19th cen-
tury [9, 15], and received significant attention in recent years; see [12, 13, 16, 17]
and references therein. In [1, 2, 3, 8], Abbas et al. considered some existence results
for some coupled fractional differential systems.

In recent years there has been much research activity concerning the oscillation
and nonoscillation of solutions of several classes of differential equations and inclu-
sions; [11, 14, 18, 20, 29, 30]. In this article; we discuss the existence of solutions
and their oscillation for the following coupled fractional q-difference system

(CDα1
q u1)(t) = f1(t, u2(t)),

(CDα2
q u2)(t) = f2(t, u1(t)),

(u1(0), u2(0)) = (u01, u02), u1 and u2 are bounded on R+,

; t ∈ R+, (1)

where q ∈ (0, 1), αi ∈ (0, 1], R+ := [0,+∞), fi : R+ × R → R; i = 1, 2, are
given functions, and CDαi

q is the Caputo fractional q-difference derivative of order
αi; i = 1, 2.
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2. Preliminaries

Let I := [0, T ] where T > 0. As usual, L1(I) denotes the space of measurable
functions v : I → R which are Lebesgue integrable with the norm

∥v∥1 =

∫ T

0

|v(t)|dt.

Consider the Banach space C(I) := C(I,R) of continuous functions from I into R
equipped with the norm

∥u∥∞ := sup
t∈I

|u(t)|.

Now, we recall some definitions and properties of fractional q-calculus. For a ∈ R,
we set

[a]q =
1− qa

1− q
.

The q-analogue of the power (a− b)n is

(a− b)(0) = 1, (a− b)(n) = Πn−1
k=0(a− bqk), a, b ∈ R, n ∈ N.

In general,

(a− b)(α) = aαΠ∞
k=0

(
a− bqk

a− bqk+α

)
, a, b, α ∈ R.

Note that if b = 0, then a(α) = aα.

Definition 2.1 [21] The q-gamma function is defined by

Γq(ξ) =
(1− q)(ξ−1)

(1− q)ξ−1
, ξ ∈ R \ {0,−1,−2, . . .}

Notice that the q-gamma function satisfies Γq(1 + ξ) = [ξ]qΓq(ξ).

Definition 2.2 [21] The q-derivative of order n ∈ N of a function u : I → R
is defined by (D0

qu)(t) = u(t),

(Dqu)(t) := (D1
qu)(t) =

u(t)− u(qt)

(1− q)t
, t ̸= 0, (Dqu)(0) := lim

t→0
(Dqu)(t),

and

(Dn
q u)(t) := (DqD

n−1
q u)(t), t ∈ I, n ∈ {1, 2, . . .}.

Set It := {tqn : n ∈ N} ∪ {0}.

Definition 2.3 [21] The q-integral of a function u : It → R is defined by

(Iqu)(t) =

∫ t

0

u(s)dqs :=
∞∑

n=0

t(1− q)qnf(tqn),

provided that the series converges.

We note that (DqIqu)(t) = u(t), while if u is continuous at 0, then

(IqDqu)(t) = u(t)− u(0).
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Definition 2.4 [10] The Riemann-Liouville fractional q-integral of order α ∈ R+ :=
[0,∞) of a function u : I → R is defined by (I0qu)(t) := u(t), and

(Iαq u)(t) :=

∫ t

0

(t− qs)(α−1)

Γq(α)
u(s)dqs, t ∈ I.

Note that for α = 1, we have (I1qu)(t) = (Iqu)(t).

Lemma 2.5 [25] For α ∈ R+ := [0,∞) and λ ∈ (−1,∞) we have

(Iαq (t− a)(λ))(t) =
Γq(1 + λ)

Γ(1 + λ+ α)
(t− a)(λ+α), 0 < a < t < T.

In particular,

(Iαq 1)(t) =
1

Γq(1 + α)
t(α).

Definition 2.6 [26] The Riemann-Liouville fractional q-derivative of order α ∈ R+

of a function u : I → R is defined by (D0
qu)(t) := u(t), and

(Dα
q u)(t) := (D[α]

q I [α]−α
q u)(t), t ∈ I,

where [α] is the integer part of α.

Definition 2.7 [26] The Caputo fractional q-derivative of order α ∈ R+ of a func-
tion u : I → R is defined by (CD0

qu)(t) := u(t), and

(CDα
q u)(t) := (I [α]−α

q D[α]
q u)(t), t ∈ I.

Lemma 2.8 [26] Let α ∈ R+. Then the following equality holds:

(Iαq
CDα

q u)(t) = u(t)−
[α]−1∑
k=0

tk

Γq(1 + k)
(Dk

qu)(0).

In particular, if α ∈ (0, 1), then

(Iαq
CDα

q u)(t) = u(t)− u(0).

From the above lemma, we conclude with the following result.

Lemma 2.9 Let h ∈ C(I). Then the problem{
(CDα1

q u1)(t) = h(t)

u0 = u0,
(2)

has a unique solution given by

u(t) = u0 + (Iαq h)(t).
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In the sequel we will make use of the following fixed point theorem.

Theorem 2.10 (Schauder fixed point theorem, [19]). Let E be a Banach space
and Q be a nonempty bounded convex and closed subset of E, and let N : Q → Q
be a compact and continuous map. Then N has at least one fixed point in Q.

3. Existence of bounded solutions

In this section, we are concerned with the existence of solutions of the coupled
system (1).

Definition 3.1 By a solution of the coupled system (1) we mean a pair of bounded
coupled functions (u1, u2) ∈ C(I)× C(I) that satisfies the system{

(CDα1
q u1)(t) = f1(t, u2(t)),

(CDα2
q u2)(t) = f2(t, u1(t)),

on R+ × R+ and the initial conditions (u1(0), u2(0)) = (u01, u02).

For n ∈ N, let In := [0, n]. We denote by Xn := C(In)×C(In) the Banach space
with the norm

∥(u, v)∥Xn = ∥u∥∞ + ∥v∥∞.

The following hypotheses will be used in the sequel.

(H1) The functions t 7→ f1(t, v) and t 7→ f2(t, u) are measurable on In :=
[0, n], n ∈ N, for each u, v ∈ R, and the functions u 7→ f1(t, v) and
v 7→ f2(t, u) is continuous for a.e. t ∈ In.

(H2) There exist continuous functions pin : In → R+, n = 1, 2, such that

|fi(t, ui)| ≤ pin(t), for a.e. t ∈ In, and each ui ∈ R.
Set

p∗in = sup
t∈In

pin(t), i = 1, 2.

Theorem 3.2 Assume that hypotheses (H1) and (H2) hold. Then the problem (1)
has at least one bounded solution defined on R+.

Proof. The proof will be given in two parts. Fix n ∈ N and consider the problem
(CDα1

q u1)(t) = f1(t, u2(t))

(CDα2
q u2)(t) = f2(t, u1(t))

(u1(0), u2(0)) = (u01, u02)

; t ∈ In := [0, n]. (3)

Part 1. We begin by showing that (3) has a solution (u1n, u2n) ∈ Xn with

∥(u1n, u2n)∥Xn ≤ Rn := ∥u01∥+ ∥u02∥+
2∑

i=1

nαp∗in
Γq(1 + αi)

.

Consider the operators Ni : C(In) → C(In), i = 1, 2, and N : Xn → Xn defined by

(N1u1)(t) = u01 + (Iα1
q f1(·, u2(·)))(t), t ∈ I, (4)

(N2)u2(t) = u02 + (Iα2
q f2(·, u1(·)))(t), t ∈ I, (5)
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and

(N(u1, u2))(t) = ((N1u1)(t), (N2u2)(t)). (6)

Clearly, the fixed points of the operator N are solutions of our coupled system (3).

For any n ∈ N⋆ := N\{0}, we consider the ball

BRn := B(0, Rn) = {w = (w1, w2) ∈ Xn : ∥w∥Xn ≤ Rn}.
We shall show that the operator N : BRn → BRn satisfies all the assumptions of
Theorem 2.10. The proof will be given in several steps.

Step 1. N : BRn → BRn is continuous.
Let {uk}k∈N be a sequence such that uk := (u1k, u2k) → u := (u1, u2) in BRn .
Then, for each t ∈ In, we have

∥(N1u1k)(t)− (N1u1)(t)∥ ≤
∫ t

0

(tq − s)(α1−1)

Γq(α1)
∥f1(s, u2k(s))− f1(s, u2(s))∥dqs,

and

∥(N2u2k)(t)− (N2u2)(t)∥ ≤
∫ t

0

(tq − s)(α2−1)

Γq(α2)
∥f2(s, u1k(s))− f1(s, u1(s))∥dqs.

Since uik → ui as k → ∞, the Lebesgue dominated convergence theorem implies
that

∥Ni(uik)−Ni(ui)∥∞ → 0 as k → ∞.

Hence

∥N(uk)−N(u)∥Xn → 0 as k → ∞.

Step 2. N(BRn
) is uniformly bounded.

For any u := (u1, u2) ∈ Xn, and each t ∈ In we have

|(N1(u1)(t)| ≤ |u01|+
∫ t

0

(t− qs)(α1−1)

Γq(α1)
|f1(s, u2(s))|dqs

≤ |u01|+
∫ t

0

(t− qs)(α1−1)

Γq(α)
p1n(s)dqs

≤ |u01|+ p∗1n

∫ t

0

(t− qs)(α1−1)

Γq(α1)
dqs

≤ |u01|+
nαp∗1n

Γq(1 + α1)
.

Also,

|(N2(u2)(t)| ≤ |u02|+
∫ t

0

(t− qs)(α2−1)

Γq(α2)
|f2(s, u1(s))|dqs

≤ |u02|+
nαp∗2n

Γq(1 + α2)
.

Thus, we get

∥(Nu)(t)∥ = ∥(N1u1)(t)∥+ ∥(N2u2)(t)∥

≤ ∥u01∥+
nα1p∗1n

Γq(1 + α1)
+ ∥u02∥+

nα2p∗2n
Γq(1 + α2)

= Rn.
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Hence

∥N(u)∥Xn ≤ Rn. (7)

This proves that N(BRn) ⊂ BRn .

Step 3. N(BRn) is equicontinuous.
Let t1, t2 ∈ In, t1 < t2 and let u := (u1, u2) ∈ BRn . Thus we have

|(N1u1)(t2)− (N1u1)(t1)|

≤
∫ t1

0

|(t2 − qs)(α−1) − (t1 − qs)(α1−1)|
Γq(α1)

|f + 1(s, u2(s))|dqs

+

∫ t2

t1

|(t2 − qs)(α1−1)|
Γq(α1)

|f1(s, u2(s))|dqs

≤ p∗1n

∫ t1

0

|(t2 − qs)(α1−1) − (t1 − qs)(α1−1)|
Γq(α1)

dqs

+ p∗1n

∫ t2

t1

|(t2 − qs)(α1−1)|
Γq(α1)

dqs.

Also, we get

|(N2u2)(t2)− (N2u2)(t1)|

≤ p∗2n

∫ t1

0

|(t2 − qs)(α2−1) − (t1 − qs)(α2−1)|
Γq(α2)

dqs

+ p∗2n

∫ t2

t1

|(t2 − qs)(α1−1)|
Γq(α2)

dqs.

Thus,

|(Nu)(t2)− (Nu)(t1)| = |(N1u1)(t2)− (N1u1)(t1)|+ |(N2u2)(t2)− (N2u2)(t1)|

≤ p∗1n

∫ t1

0

|(t2 − qs)(α1−1) − (t1 − qs)(α1−1)|
Γq(α1)

dqs

+ p∗2n

∫ t1

0

|(t2 − qs)(α2−1) − (t1 − qs)(α2−1)|
Γq(α2)

dqs

+ p∗1n

∫ t2

t1

|(t2 − qs)(α1−1)|
Γq(α1)

dqs+ p∗2n

∫ t2

t1

|(t2 − qs)(α1−1)|
Γq(α2)

dqs.

As t1 −→ t2, the right-hand side of the above inequality tends to zero.

As a consequence of Steps 1 to 3, together with the Arzelá-Ascoli theorem, we
can conclude that N is continuous and compact. From an application of Theorem
2.10, we deduce that N has a fixed point (u1, u2) which is a solution of the problem
(3).
Part 2. The diagonalization process.
Now, we use the following diagonalization process. For k ∈ N and i = 1, 2, we let
wk = (w1k, w2k), such that{

wik(t) = uink
(t); t ∈ [0, nk],

wik(t) = uink
(nk); t ∈ [nk,∞)

; i = 1, 2.
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Here {nk}k∈N∗ is a sequence of numbers satisfying

0 < n1 < n2 < · · ·nk < · · · ↑ ∞.

Let S = {wk}∞k=1. Notice that

|wnk
(t)| =

2∑
i=1

|wink
(t)| ≤ Rn, for t ∈ [0, n1], k ∈ N.

Also, if k ∈ N and t ∈ [0, n1], we have

w1nk
(t) = u0 +

∫ t

0

(t− qs)(α1−1)

Γq(α1)
f(s, w2nk

(s))dqs,

and

w2nk
(t) = u0 +

∫ t

0

(t− qs)(α2−1)

Γq(α2)
f(s, w1nk

(s))dqs.

Thus, for k ∈ N, and t, x ∈ [0, n1], we have

|w1nk
(t)− w1nk

(x)| ≤
∫ n1

0

|(t− qs)(α1−1) − (x− qs)(α1−1)|
Γq(α1)

|f1(s, w2nk
(s))|dqs,

and

|w2nk
(t)− w2nk

(x)| ≤
∫ n1

0

|(t− qs)(α2−1) − (x− qs)(α2−1)|
Γq(α2)

|f2(s, w1nk
(s))|dqs.

Hence

|w1nk
(t)− w1nk

(x)| ≤ p∗1n1

∫ n1

0

|(t− qs)(α1−1) − (x− qs)(α1−1)|
Γq(α1)

dqs,

and

|w2nk
(t)− w2nk

(x)| ≤ p∗2n−1

∫ n1

0

|(t− qs)(α2−1) − (x− qs)(α2−1)|
Γq(α2)

dqs.

The Arzelà-Ascoli theorem guarantees that there is a subsequence N∗
1 of N and a

coupled function z1 := (z11, z21) ∈ Xn1 with unk
→ z1 as k → ∞ in Xn1 through

N∗
1. Let N1 = N∗

1\{1}.

Notice that

|wnk
(t)| ≤ Rn, for t ∈ [0, n2], k ∈ N.

Also, if k ∈ N, and t, x ∈ [0, n2], we have

|w1nk
(t)− w1nk

(x)| ≤ p∗1n2

∫ n2

0

|(t− qs)(α1−1) − (x− qs)(α−1−1)|
Γq(α1)

dqs,

and

|w2nk
(t)− w2nk

(x)| ≤ p∗2n2

∫ n2

0

|(t− qs)(α2−1) − (x− qs)(α−2−1)|
Γq(α2)

dqs.

The Arzelà-Ascoli theorem guarantees that there is a subsequence N∗
2 of N1 and a

function z2 := (z12, z22) ∈ Xn2 with unk
→ z2 as k → ∞ in Xn2 through N∗

2. Note
that z1 = z2 on [0, n1] since N∗

2 ⊂ N1. Let N2 = N∗
2\{2}. Proceed inductively

to obtain for m = 3, 4, . . . a subsequence N∗
m of Nm−1 and a function zm :=

(z1m, z2m) ∈ Xnm with unk
→ zm as k → ∞ in Xnm through N∗

m. Let Nm =
N∗

m\{m}.
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Define a function u as follows. Fix t ∈ (0,∞) and let m ∈ N with t ≤ nm.
Then define u(t) := zm(t). Thus u = (u1, u2) ∈ X∞ = C[0,∞) × C[0,∞), u(0) =
(u01, u02) and |u(t)| ≤ Rn, for t ∈ [0,∞).

Again fix t ∈ (0,∞) and let m ∈ N with t ≤ nm. Then for n ∈ Nm we have

u1nk
(t) = u01 +

∫ nm

0

(t− qs)(α1−1)

Γq(α1)
f1(s, w2nk

(s))dqs,

and

u2nk
(t) = u02 +

∫ nm

0

(t− qs)(α2−1)

Γq(α2)
f2(s, w1nk

(s))dqs.

Let nk → ∞ through Nm to obtain

z1m(t) = u01 +

∫ nm

0

(t− qs)(α1−1)

Γq(α1)
f1(s, z2m(s))dqs,

and

z2m(t) = u02 +

∫ nm

0

(t− qs)(α2−1)

Γq(α2)
f2(s, z1m(s))dqs.

Thus for t ∈ [0, nm],

(CDα1
q u1)(t) = f1(t, u2(t)),

and

(CDα2
q u2)(t) = f2(t, u1(t)).

Hence, the constructed function u is a solution of the coupled system (1). This
completes the proof. �

4. Oscillation and nonoscillation results

Definition 4.1 [11] A solution u of problem (2) is said to be oscillatory if it is
neither eventually positive nor eventually negative. Otherwise u is called nonoscil-
latory.

Definition 4.2 [11] A solution u = (u1, u2) of the coupled system (1) is said to be
strongly (weakly) oscillatory if each (at least one) of its components is oscillatory.
Otherwise, it is said to be strongly (weakly) nonoscillatory if each (at least one) of
its nontrivial components is nonoscillatory.

The following hypothesis will be used in the sequel.

(H3) There exist continuous functions qin : In → R+, n = 1, 2, and continuous,
bounded and increasing real functions gi; i = 1, 2, such that, for a.e. t ∈ In,
and each ui ∈ R, and v ∈ R∗ := R\{0},

|f1(t, u2)| = q1n(t)g1(u2), |f2(t, u1)| = q2n(t)g2(u1), and vgi(v) > 0.

Remark 4.3 We can see that (H3) implies (H2) with pin(t) = Mqin(t), where

M = sup
v∈R

|gi(v)|.
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The following theorem gives sufficient conditions to ensure the nonoscillation of
solutions of the coupled system (1).

Theorem 4.4 Assume that (H1) and (H3) hold. If u = (u1, u2) is a weakly
nonoscillatory solution of (1), such that u1 and u2 have the same sign, then the
first component u1 is also nonoscillatory.

Proof. Assume to the contrary that u1 is oscillatory but u2 is eventually positive.
Then in view of (H3), there exists nm > 0, such that q1n(t)g1(u2(t)) ≥ 0 for t larger
than nm. Thus, for all t > nm,

u1(t) = u1(nm) +

∫ nm+1

nm

(t− qs)(α1−1)

Γq(α1)
q1n(s)g1(u2(s))dqs > 0.

Hence, u1(t) > 0 for all large t. This is a contradiction.
Analogously, the case when u2 is an eventually negative is proved similarly.

Indeed, if u2 is an eventually negative, then from (H3), there exists nm > 0, such
that for all t > nm,

u1(t) = u1(nm) +

∫ nm+1

nm

(t− qs)(α1−1)

Γq(α1)
q1n(s)g1(u2(s))dqs < 0.

Thus u1(t) < 0 for all large t. This is again a contradiction. This means that u1 is
nonoscillatory. �

Corollary 4.5 Assume that (H1) and (H3) hold. If u = (u1, u2) is a weakly
nonoscillatory solution of (1), such that u1 and u2 have the same sign, then the
second component u2 is also nonoscillatory.

Corollary 4.6 Assume that (H1) and (H3) hold. If u = (u1, u2) is a weakly
nonoscillatory solution of (1), such that u1 and u2 have the same sign, then u is a
strongly nonoscillatory solution of (1).

The following theorem presents the oscillatory result for the coupled system (1).

Theorem 4.7 Assume that (H1) and (H3) hold. If u = (u1, u2) is a weakly
oscillatory solution of (1), such that u1 and u2 have the same sign, then the first
component u1 is also oscillatory.

Proof. Assume to the contrary that u1 is nonoscillatory. If u1 is an even-
tually positive solution, then in view of (H3), there exists nm > 0, such that
q2n(t)g2(u1(t)) ≥ 0 for t larger than nm. Thus, for all t > nm,

u2(t) = u2(nm) +

∫ nm+1

nm

(t− qs)(α2−1)

Γq(α2)
q2n(s)g2(u1(s))dqs > 0.

Hence, u2(t) > 0 for all large t. This is a contradiction since u2 is an oscillatory
solution.

Analogously, the case when u1 is an eventually negative is proved similarly.
Indeed, if u1 is an eventually negative, then from (H3), there exists nm > 0, such
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that for all t > nm,

u2(t) = u2(nm) +

∫ nm+1

nm

(t− qs)(α2−1)

Γq(α2)
q2n(s)g2(u1(s))dqs < 0.

Thus u2(t) < 0 for all large t. This is again a contradiction since u2 is an oscillatory
solution. This means that u1 is oscillatory. �

Corollary 4.8 Assume that (H1) and (H3) hold. If u = (u1, u2) is a weakly
oscillatory solution of (1), such that u1 and u2 have the same sign, then u2 is an
oscillatory solution.

[Corollary 4.9 Assume that (H1) and (H3) hold. If u = (u1, u2) is a weakly
oscillatory solution of (1), such that u1 and u2 have the same sign, then u is an
oscillatory solution of (1).

5. Examples

Example 1. Consider the following problem of fractional 1
4−difference coupled

system 
(cD

1
2
1
4

u)(t) = f(t, v(t))

(cD
1
2
1
4

v)(t) = g(t, u(t))

u(0) = v(0) = 0; u and v are bounded on R+,

; t ∈ R+, (8)

where

f(t, v) =
cnt

5
4 sin t

64(1 +
√
t)(1 + |u|)

; v ∈ R, t ∈ [0, n]; n ∈ N∗

and

g(t, u) =
cnt

5
4 sin t

64(1 +
√
t)(1 + |v|)

; u ∈ R, t ∈ [0, n]; n ∈ N∗

with

cn = 16n− 7
4Γ 1

4

(
3

2

)
; n ∈ N∗.

Since

|f(t, u)| ≤ t
5
4 cn
64

; t ∈ R+, n ∈ N∗,

and

|g(t, v)| ≤ t
5
4 cn
64

; t ∈ R+, n ∈ N∗,

then the hypothesis (H2) is satisfied with

pin(t) =
t
5
4 cn
64

; i = 1, 2, t ∈ R+, n ∈ N∗.

So; for any n ∈ N∗, we have

p∗in =
n

5
4 cn
64

.

A simple computation shows that all conditions of Theorem 3.2 are satisfied.
Hence, the problem (8) has at least one bounded solution defined on R+.
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Example 2. Consider now the following problem of fractional 1
4−difference

coupled system
(cD

1
2
1
4

u)(t) = w1(t, v(t))

(cD
1
2
1
4

v)(t) = w2(t, u(t))

u(0) = v(0) = 0; u and v are bounded on R+,

; t ∈ R+, (9)

where

w1(t, v) =
2ut

5
4 sin t

64(1 +
√
t)(1 + |u|)

; u, v ∈ R,

and

w2(t, u) =
2vt

5
4 sin t

64(1 +
√
t)(1 + |v|)

; u, v ∈ R,

for each t ∈ [0, n]; n ∈ N∗. Since

|w1(t, u)| ≤
2vt

5
4

64(1 + |v|)
; t ∈ R+, n ∈ N∗,

and

|w2(t, v)| ≤
2ut

5
4

64(1 + |u|)
; t ∈ R+, n ∈ N∗,

then the hypothesis (H3) is satisfied with gi(x) =
2x

1+|x| ; x ∈ R, and

qin(t) =
t
5
4

64
; i = 1, 2, t ∈ R+, n ∈ N∗.

So;
M = sup

x∈R
|gi(x)| = 2.

A simple computation shows that all conditions of Theorem 4.4 are satisfied. If
w = (w1, w2) is a weakly nonoscillatory solution of (9), such that w1 and w2 have
the same sign, then the first component w1 is also nonoscillatory.

Also, from Theorem 4.7, if u = (u1, u2) is a weakly oscillatory solution of (9), such
that u1 and u2 have the same sign, then the first component u1 is also oscillatory.
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[30] C. Tunç and O.Tunç, On the boundedness and integration of non-oscillatory solutions of

certain linear differential equations of second order, J. Adv. Res. 7 (1) (2016), 165-168.
[31] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore,

2014.
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