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INVESTIGATION OF SOME STABILITY PROPERTIES OF

SOLUTIONS FOR A CLASS OF NONLINEAR BOUNDARY

VALUE FRACTIONAL DIFFERENTIAL EQUATIONS

K. I. ISIFE

Abstract. TIn this study, some stability properties of solutions for a class
of nonlinear boundary value fractional differential equations were considered.

First, Laplace transform method was used to show that the solution to the
class of problem considered is Mittag-Leffler stable. Moreover, by applying
the method of Lyapunov-like function approach, an equilibrium solution of
the problem is proved to be asymptotically stable.

1. Introduction

In recent years, fractional calculus has become an interesting and important
area of research due to its numerous applications in models of several phenomena
in various fields of science and engineering. Indeed, a number of applications in
areas such as biology [20], viscoelasticity [1], earthquake prediction [3, 15], signal
processing [17], dynamical systems [2] and etc., abound in the literature. For more
on the theories and applications of fractional calculus, (see [10, 14, 13, 21]) and the
references therein.

The concept of stability is an important aspect of the qualitative theory of differ-
ential equations. Various stability types such as Hyers-Ulam-Rassias, Mittag-Leffler
and Lyapunov-like direct method have been employed in the literature to study
some properties of solutions of fractional differential equations. For instance, the
author in [12] studied the stability with respect to part of the variables of nonlinear
Caputo fractional differential equations. Sufficient conditions of stability, uniform
stability, Mittag- Leffler stability and asymptotic uniform stability of this type were
obtained within the method of Lyapunov-like functions.

Considering the Mittag-Leffller stability of fractional order nonlinear dynamic
systems, the authors in [11] studied the fractional differential equation

t0D
α
t x(t) = f(t, x(t)),

with the initial value x(t0), where Dα denotes either Caputo or Riemann-Liouville
fractional operator, α ∈ (0, 1), f : [t0,∞) × Ω −→ Rn is piece-wise continuous in
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t and locally Lipschitz in x on [t0,∞) × Ω, and Ω ∈ Rn is a domain that contains
the origin x = 0.

On extension of Lyapunov direct method of the fractional nonautonomous sys-
tems with order lying in (1, 2), the authors in [5] employed Lyapunov direct method
in the study of stability problem of Caputo type nonautonomous systems. The work
extended [16], which is an improvement of some results from the uniformly asymp-
totically stability of integer-order differential systems to fractional-order differential
systems with order p ∈ (0, 1), based on Lyapunov direct method.

Equally, on the systems of nonlinear fractional differential equations, [7] studied
the stability and stabilization of a class of fractional-order nonlinear systems for
0 < α < 2. Based on the method of fractional order Lyapunov stability theorem,
S-procedure and MittagLeffler function, the stability conditions that ensure local
stability and stabilization of a class of fractional-order nonlinear systems under the
Caputo derivative with 0 < α < 2. were proposed. Other works on stability of
fractional differential equations can be found in [16, 4, 6, 18, 19] and the references
therein.

In all the works considered, a continuously differentiable function V was used as
a Lyapunov-like function, however in our own case, we shall assume that V is only
continuous. To this end, we shall investigate some stability types of the nonlinear
fractional boundary value problem

Dα
a+

x(t) + k Dβ
a+

x(t) + g(t, x(t)) = h(t), t ∈ [a, b], (1)

Dα−1
a+

x(a+) = Dα−1
a+

x(b−), (2)

I2−α
a+

x(a+) = I2−α
a+

x(b−), (3)

I1−β
a+

x(a+) = I1−β
a+

x(b−), (4)

in the Sobolev space

Wα,β [a, b] =
{
x(t) ∈ C2−α[a, b] : D

α
a+

x(t), Dβ
a+

x(t) ∈ L
1
β [a, b]

}
,

where 0 < β < 1 < α < 2, C2−α[a, b] =
{
x(t) : x(t)(t− a)2−α ∈ C0[a, b]

}
, k is a

positive constant, Dα
a+

x(t) is understood here in the the Riemann-Liouville sense,

Dα−1
a+

x(a+) := limt−→a+ Dα−1
a+

x(t), g : [a, b] × [0,∞) is an L∞− Caratheódory

function, h ∈ L
1
β [a, b].

This work is organized as follows. In section 2, we shall define some basic terms
of fractional calculus and state some useful lemmas related to our work. In sec-
tion three, we shall establish that the solution to the problem is Mittag-Leffler
stable. Equally, by using Lypunov-like function approach, we shall show that an
equilibrium solution of equations (1)-(4) is asymptotically stable.

2. Preliminaries

Definition 2.1.[9] The Riemann-Liouville fractional derivative of a function x,
of order α, with lower limit a is defined as,

Dα
a+

x(t) =
1

Γ(n− α)

dn

dtn

∫ t

a

(t− s)n−α−1x(s)ds, (5)
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with n− 1 < α < n, n = [α] + 1, while the Riemann-Liouville fractional integral of
a function x, of order α > 0, and denoted by Iαa+

x(t) is defined by,

Iαa+
x(t) =

1

Γ(α)

∫ t

a

(t− s)α−1x(s)ds. (6)

Observe from equations (5) and (6) that,

Dα
a+

x(t) =
dn

dtn
In−α
a+

x(t). (7)

Definition 2.2.[8] A function f : [a, b]× R −→ R is said to be a Carathéodory
function if it satisfies the following conditions:

• f(t, x) is Lebesgue measurable with respect to t in [a, b],
• f(t, x) is continuous with respect to x on R

A function f(t, x) defined on [a, b]×R is said to be an Lp− Carathéodory function,
p ≥ 1, if it is a Carathéodory function and ∀r > 0, there exists hr ∈ Lp(a, b), such
that ∀x ∈ [−r, r] and ∀t ∈ [a, b], then f(t, x) ≤ hr(t).

Definition 2.3.[14] A two-parameter Mittag-Leffler function is defined as

Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
, Re(α), Re(β) > 0, z ∈ C. (8)

Definition 2.4.[11] The solution of (1)-(4) is said to be Mittag-Leffler stable if

∥x(t)∥ ≤
{
m[x(t0)]Eα−β(−k(t− t0)

α−β
}b

, (9)

where t0 is the initial time, m(0) = 0,m(x) > 0, b > 0 and m(x) is locally Lipschitz
with respect to x ∈ Wα,β [t0, b] with Lipschitz constant m0.

Definition 2.5.[5] A continuous function β : [0, a) × [0,∞) −→ [0,∞) is said
to belong to class KL functions, if for each fixed s, the mapping β(r, s) belongs to
class K with respect to r, and for each fixed r, the mapping β(r, s) is decreasing
with respect to s and β(r, s) −→ 0, as s −→ ∞.

Lemma 2.6. [10] The space ACn[a, b] consists of those and only function f ,
which can be represented in the form

f(x) = Ina+
φ(x) +

n−1∑
k=0

ck(x− a)k, (10)

where φ ∈ L1(a, b), ck(k = 0, 1, 2, · · · , n− 1) are arbitrary constants.
Lemma 2.7.[10] If f ∈ L1(a, b) and In−α

a+
f(t) ∈ ACn[a, b], then

Iαa+
(Dα

a+
f(x)) = f(x)−

n∑
j=1

Dα−j
a+

f(a+)(x− a)α−j

Γ(α− j + 1)
, (11)

holds. A particular case, where 0 < β < 1 < α < 2, then according to [8], we have
that

Iαa+
Dβ

a+
x(t) = Iα−β

a+
x(t)− 1

Γ(α)
(t− a)α−1I1−β

a+
x(a+). (12)

Lemma 2.9. [8] If x ∈ Wα,β
2−α[a, b], then x satisfies the relations (1)- (4) if, and

only if, x satisfies the Voterra-integral integral equation

x(t)− (t− a)α−1

Γ(α)
Dα−1

a+
x(b−)−

(t− a)α−2

Γ(α− 1)
I2−α
a+

x(a+)+kIα−β
a+

x(t)−k
(t− a)α−1

Γ(α)
I1−β
a+

x(b−)
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= Iαa+
[h(t)− g(t, x(t))].

Lemma 2.10.[5]. Let x(t), k(t) be nonnegative continuous functions on [t0, b] and
let a(t) be a nondecreasing function on [t0, b]; further let g(u) be a nondecreasing
continuous function for u ≥ 0 and g(u) > 0 for u > 0, then the inequality

x(t) ≤ a(t) +

∫ t

t0

k(s)g(x(s))ds, (t0 ≤ t ≤ b),

implies the inequality

x(t) ≤ Ω−1

[
Ω(a(t)) +

∫ t

t0

k(s)ds

]
, (t0 ≤ t ≤ b′ ≤ b),

where Ω(u) = −
∫ u

ϵ
ds
g(s) , (ϵ > 0, u > 0) and b′ = max(t0 ≤ τ ≤ b) : Ω(a(τ)) +∫ τ

t0
k(s)ds ≤ Ω(∞) lies within the domain of definition Ω−1(u), for t0 ≤ t ≤ b′.

Lemma 2.11. [5]. Let x(t) be a continuous and nonnegative function defined
on a real interval t0 ≤ t ≤ T (T could be infinity) and let a(t) be a nonnegative
and monotonously nondecreasing function on the given interval. If

x(t) ≤ a(t) +M

∫ t

t0

(t− s)p−1x(s)ds, (p > 0), (13)

where M is a positive constant, then

x(t) ≤ a(t)Ep(MΓ(p)(t− t0)
p), (t0 ≤ t ≤ T ). (14)

3. Existence results

First, we shall show that the solution to equations (1)-(4) is Mittag-Leffler stable.
Theorem 3.1. Suppose that there exists a nonnegative and nonincreasing func-

tion V : [0, b]× R −→ R+ that is locally Lipschitz with respect to x such that

h(t)− g(t, x(t)) ≤ V (t, x(t))tα−β , (15)

and
Dα−1

0+
x(0+) + I2−α

0+
x(0+) + I1−β

0+
x(0+) ≤ V (0, x(0)) = 0, (16)

then the solution of equations (1)-(4) is Mittag-Leffler stable.
Proof.
Now, taking the Laplace transform of both sides of equation (1) and making use

of the boundary conditions (2) - (4), we have

L
{
Dα

0+x(t) + k Dβ
0+

x(t) + g(t, x(t)) = h(t)
}

=⇒ sαX(s)−Dα
0+x(0+)− sI2−α

0+
x(0+) + ksβX(s)− kI1−β

0+
x(0+))+

G(s,X(s)) = H(s)

=⇒ (sα + ksβ)X(s) = Dα−1
0+

x(0+) + sI2−α
0+

x(0+) + kI1−β
0+

x(0+)

+H(s)−G(s,X(s))

=⇒ X(s) =
1

(sα + ksβ)

[
Dα−1

0+
x(0+) + sI2−α

0+
x(0+) + kI1−β

0+
x(0+))

]
+

1

(sα + ksβ)
[H(s)−G(s,X(s))]

=⇒ X(s) =
s−β

sα−β + k
Dα−1

0+
x(0+) +

s1−β

sα−β + k
I2−α
0+

x(0+)
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+
s−β

sα−β + k
I1−β
0+

x(0+) +
H(s)−G(s,X(s))s−β

sα−β + k
On taking the inverse Laplace transform of the preceding, we obtain that

x(t) = tα−1Eα−β,α(−ktα−β)Dα−1
0+

x(0+)

+tα−2Eα−β,α−1(−ktα−β)I2−α
0+

x(0+) + tα−1Eα−β,α(−ktα−β)I1−β
0+

x(0+)

+

∫ t

0

(t− s)α−1Eα−β,α[−k(t− s)α−β ](h(s)− g(s, x(s))ds

=⇒ |x(t)|t2−α ≤ tEα−β,α(−ktα−β)|Dα−1
0+

x(0+)|

+Eα−β,α−1(−ktα−β)|I2−α
0+

x(0+)|+ tEα−β,α(−ktα−β)|I1−β
0+

x(0+)|

+t2−α

∫ t

0

(t− s)α−1Eα−β,α[−k(t− s)α−β ]|(h(s)− g(s, x(s))|ds

≤ tEα−β,α(−ktα−β)|Dα−1
0+

x(0+)|+ Eα−β,α−1(−ktα−β)|I2−α
0+

x(0+)|+

tEα−β,α(−ktα−β)|I1−β
0+

x(0+)|

+t2−α

∫ t

0

(t− s)α−1Eα−β,α[−k(t− s)α−β ]sα−βV (s, x(s))ds

But, ∫ t

0

(t− s)α−1Eα−β,α[−k(t− s)α−β ]sα−βds

=
∞∑

n=0

−kn

Γ[α(n+ 1)− βn]

∫ t

0

(t− s)α(1+n)−βn−1sα−βds

By making change of variable s = tv, we have that∫ t

0

(t− s)α−1Eα−β,α[−k(t− s)α−β ]sα−βds

=

∞∑
n=0

−kn

Γ[α(n+ 1)− βn]

∫ 1

0

tα(2+n)−β(n+1)(1− v)α(1+n)−βn−1vα−βdv

=

∞∑
n=0

−kn

Γ[α(n+ 1)− βn]

tα(2+n)−β(n+1)Γ[(α(1 + n)− βn]Γ(α− β + 1)

Γ[α(2 + n)− β(n+ 1) + 1]

=
∞∑

n=0

−kntα(2+n)−β(n+1)Γ(α− β + 1)

Γ[α(2 + n)− β(n+ 1) + 1]

= Γ(α− β + 1)t2α−βEα−β,2α−β+1(−ktα−β).

Thus,
|x(t)|t2−α ≤ tEα−β,α(−ktα−β)|Dα−1

0+
x(0+)|

+Eα−β,α−1(−ktα−β)|I2−α
0+

x(0+)|+ tEα−β,α(−ktα−β)|I1−β
0+

x(0+)|
+V (0, x(0))t2+α−βΓ(α− β + 1)Eα−β,2α−β+1(−ktα−β).

From the statement of the theorem, we have that

|x(t)|t2−α ≤ bEα−β,α(−ktα−β)V (0, x(0))

+V (0, x(0))b2+α−βΓ(α− β + 1)Eα−β,2α−β+1(−ktα−β).

=⇒ ∥x(t)∥ ≤ V (0, x(0))b2+α−βΓ(α− β + 1)Eα−β(−ktα−β).

Therefore, the solution of (1)-(4) is Mittag-Leffler stable.
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Next, by using Lyapunov-like direct method, we shall establish that an equilib-
rium solution of (1) - (4) is asymptotically stable about an equilibrium point. First,
we consider the comparison theory below.

Theorem 3.2.(Comparison Theorem) Assume that x ∈ Wα,β [a, b] satisfies

Dα
a+

x(t) + k Dβ
a+

x(t) ≤ 0, (17)

and
Dα−1

a+
x(a+), I

2−α
a+

x(a+), I
1−β
a+

x(a+) ≤ 0, (18)

then x(t) ≤ 0, ∀t ∈ [a, b].
Proof. Suppose the conclusion of our theorem is false, then there exists some

t1, t2 ∈ [a, b] such that x(t) ≤ 0, ∀t ∈ [a, t1] and x(t) > 0, ∀t ∈ (t1, t2]. Let

x(t0) = max
t1≤t≤t2

x(t).

Operating Iαa+
to both sides of (15), we have

Iαa+
(Dα

a+
x(t) + k Dβ

a+
x(t)) ≤ 0

=⇒ x(t)−
(t− a)α−1Dα−1

a+
x(a+)

Γ(α)
−

(t− a)α−2I2−α
a+

x(a+)

Γ(α− 1)
+ kIα−β

a+
x(t)

−
k(t− a)α−1I1−β

a+
x(a+)

Γ(α)
≤ 0,

then from equation (16), we have that

x(t) + kIα−β
a+

x(t) ≤ 0.

So,
x(t0) + kIα−β

a+
x(t0) ≤ 0

But,

Iα−β
a+

x(t0) =
1

Γ(α− β)

∫ t0

a

(t0 − s)α−β−1x(s)ds

=
1

Γ(α− β)

∫ t1

a

(t1 − s)α−β−1x(s)ds+
1

Γ(α− β)

∫ t0

t1

(t0 − s)α−β−1x(s)ds

≥ 1

Γ(α− β)

∫ t0

t1

(t0 − s)α−β−1x(s)ds

≥ 1

Γ(α− β)

∫ t0

t1

(t0 − s)α−β−1x(t0)ds

=
x(t0)(t0 − t1)

α−β

Γ(α− β + 1)

Thus,

x(t0) +
kx(t0)(t0 − t1)

α−β

Γ(α− β + 1)
≤ x(t0) + kIα−β

a+
x(t0) ≤ 0

=⇒ x(t0)(1 +
k(t0 − t1)

α−β

Γ(α− β + 1)
)

=⇒ x(t0) ≤ 0,

which is a contradiction. Therefore,

x(t) ≤ 0, ∀t ∈ [a, b]
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Theorem 3.3 Let x = 0 be an equilibrium point for the fractional differential
equation (1) - (4), and let D be a domain in Wα,β [a, b] that contains x = 0. Suppose
that there exists a continuous function V ∈ D such that V (t, x(t)) : [0,∞)×D −→
R, and a class of K functions λi, (i = 1, 2, 3) such that

λ1(∥x∥) ≤ t2−αV (t, x(t)) ≤ λ2(∥x∥), (19)

Dα
0+V (t, x(t)) +Dβ

0+
V (t, x(t)) ≤ −λ3(∥x∥), (20)

∀t > 0 and ∀x ∈ D. Then x = 0 is uniformly asymptotically stable.
Proof: First we pick an open ball Br(x) in the domain D with centre at x and

radius r > 0. We denote δ to be

δ = min
∥x∥=r

λ1(∥x∥),

then for any θ ∈ (0, δ), let Ωθ =
{
x ∈ Br(x) : t

2−αV (t, x(t)) ≤ θ
}
.

Now, since t2−αV (t, x(t)) ≤ θ, then it follows from (17) that λ1(∥x∥) ≤ θ.
By implication, Ωθ is a subset of {x ∈ Br(x) : λ1(∥x∥) ≤ θ} .

Similarly, it can be shown that Ωθ contains the set

{x ∈ Br(x) : λ2(∥x∥) ≤ θ} .
Next, since V (t, x(t)) is a monotone decreasing function by theorem 3.2 and (18),
it follows that any solution starting in Ωθ for any initial time t ≥ t0 stays in Ωθ

for all future time. Therefore any trajectory starting in {x ∈ Br(x) : λ2(∥x∥) ≤ θ}
remains in Ωθ, and also in the set {x ∈ Br(x) : λ1(∥x∥)}, for all t ≥ t0. From our
assumptions (17) and (18), it follows that

Dα
0+V (t, x(t)) +Dβ

0+
V (t, x(t)) ≤ −λV (t, x(t), (21)

where λ = λ3t
2−α

λ2

Operating Iα0+ to both sides of (19), we have

Iα0+

(
Dα

0+V (t, x(t)) +Dβ
0+

V (t, x(t)) ≤ −λV (t, x(t)
)

=⇒ V (t, x(t)) ≤ tα−1

Γ(α)
Dα−1

0+
V (t, x(t)) |t=0 +

tα−2

Γ(α− 1)
I2−α
0+

V (t, x(t)) |t=0

+k
tα−1

Γ(α)
I1−β
0+

V (t, x(t)) |t=0 −kIα−β
0+

V (t, x(t))− Iα0+ (λV (t, x(t)))

≤ tα−1

Γ(α)
Dα−1

0+
V (t, x(t)) |t=0 +

tα−2

Γ(α− 1)
I2−α
0+

V (t, x(t)) |t=0

+k
tα−1

Γ(α)
I1−β
0+

V (t, x(t)) |t=0

+
1

Γ(α− β)

∫ t

0

(t− s)α−β−1V (s, x(s))
[
−k − λ(t− s)β

]
ds.

This implies that

t2−αV (t, x(t)) ≤ t

Γ(α)
Dα−1

0+
V (t, x(t)) |t=0 +

I2−α
0+

V (t, x(t)) |t=0

Γ(α− 1)

+
kt

Γ(α)
I1−β
0+

V (t, x(t)) |t=0
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+
t2−α

Γ(α− β)

∫ t

0

(t− s)α−β−1V (s, x(s))
[
−k(t− s)−β − s

]
ds.

Set h(t) = t2−αV (t, x(t)), h0 =
I2−α
0+

V (t,x(t))|t=0

Γ(α−1) , h1 =
Dα−1

0+
V (t,x(t))|t=0

Γ(α) +
kI1−β

0+
V (t,x(t))|t=0

Γ(α)

and µ = k + λ(t− s)β , then we have that

h(t) ≤ h0 + th1 +
1

Γ(α− β)

∫ t

0

(t− s)α−β−1 (−µh(s)) ds.

It is worthy of observation that µ is a strictly increasing function and h0, h1 are
nonnegative functions, then by lemma 2.10. we have that

h(t) ≤ G−1

[
G(h0 + h1t+

1

Γ(α− β)

∫ t

0

(t− s)α−β−1ds

]
= G−1

[
G(h0 + h1t+

tα−β

Γ(α− β + 1)

]
,

where G(h) = −
∫ h

g
dτ
µ(τ) , 0 < g < r.

The function G(h) is a strictly decreasing differentiable function on (0, r). In addi-
tion, for all t ≥ 0, h(t) is monotonously nonincreasing function whenever h(t) > 0
and limh−→0 G(h) = ∞.

We suppose that a = limh−→r

∫ h

g
dτ
µ(τ) , then the function G(h) ∈ (−a,∞). Since

G is strictly decreasing, its inverse G−1 is defined on (−a,∞). We define a function
ν(p, q) by

ν(p, q) =

{
G−1

[
G(p+ h1q) +

qα−β

Γ(α−β+1)

]
p > 0

0 p = 0

Then from the above, we have that

h(t) ≤ ν(h0, t)

for all t ≥ 0.
We show that ν is a KL function. Observe that G and G−1 are continuous on

(−a,∞).
ν is strictly increasing with respect to p for each q, since

∂ν(p, q)

∂p
=

µ(ν(p, q))

µ(p+ h1q)
> 0.

Also, whenever qα−β−1 > h1Γ(α−β)
µ(p+h1q)

and for a fixed p, ν is strictly decreasing with

respect to q, since

∂ν(p, q)

∂q
= −µ(ν(p, q))

[
qα−β−1

Γ(α− β)
− h1

µ(p+ h1q)

]
. Finally, ν(p, q) −→ 0, as q −→ ∞. Hence, ν is a KL function. Following the above
process, we have that

t2−αV (t, x(t)) ≤ ν(
I2−α
0+

V (t, x(t)) |t=0

Γ(α− 1)
, t)

Hence any solution starting in {x ∈ Br(x) : λ2(∥x∥) ≤ θ}must satisfy the inequality

∥x∥ ≤ λ1t
2−αV (t, x(t))
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λ1ν(t
2−α∥x(0)∥, t)

:= γ(∥x(0)∥, t),
where γ belongs to a class ofKL functions. Therefore, whenever t −→ ∞, ∥x(t)∥ −→
0. This implies that the zero solution is asymptotically stable.

Corollary 3.4. Let x = 0 be an equilibrium point for the fractional differential
equation (1)-(4) and let D ⊂ Wα,β [a, b] be a domain that contains x = 0. Suppose
that there exists a continuous function V (t, x) : [0,∞)×D −→ R such that

t1−β(∥x∥) ≤ t2−αV (t, x(t)) ≤ t3−α(∥x∥), (22)

Dα
0+V (t, x(t)) +Dβ

0+
V (t, x(t)) ≤ −t(∥x∥), (23)

then the equilibrium point x = 0 is uniformly asymptotically stable.
Proof. From the proof of theorem 3.3, we have that

t2−αV (t, x(t)) ≤ t

Γ(α)
Dα−1

0+
V (t, x(t)) |t=0 +

I2−α
0+

V (t, x(t)) |t=0

Γ(α− 1)

+
kt

Γ(α)
I1−β
0+

V (t, x(t)) |t=0 − kt2−α

Γ(α− β)

∫ t

a

(t− s)α−β−1V (s, x(s))ds

− t2−α

Γ(α)

∫ t

a

(t− s)α−1V (s, x(s))ds

≤ t

Γ(α)
Dα−1

0+
V (t, x(t)) |t=0 +

I2−α
0+

V (t, x(t)) |t=0

Γ(α− 1)

+
kt

Γ(α)
I1−β
0+

V (t, x(t)) |t=0

− t2−α

Γ(α)

∫ t

a

(t− s)α−1V (s, x(s))ds.

Then by lemma 2.11 , we have that

t2−αV (t, x(t)) ≤

(
I2−α
0+

V (t, x(t)) |t=0

Γ(α− 1)

)
Eα(−Γ(α)tα)

+

(
t

Γ(α)
Dα−1

0+
V (t, x(t)) |t=0 +

kt

Γ(α)
I1−β
0+

V (t, x(t)) |t=0

)
Eα(−Γ(α)tα)

=⇒ t2−αV (t, x(t)) ≤

(
I2−α
0+

V (t, x(t)) |t=0

Γ(α− 1)

)
e−Γ(α)tα

+

(
t

Γ(α)
Dα−1

0+
V (t, x(t)) |t=0 +

kt

Γ(α)
I1−β
0+

V (t, x(t)) |t=0

)
e−Γ(α)tα

:= ρ(
I2−α
0+

V (t, x(t)) |t=0

Γ(α− 1)
, t)

Thus,

t2−αV (t, x(t)) ≤ ρ(
I2−α
0+

V (t, x(t)) |t=0

Γ(α− 1)
, t) (24)
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It is easy to see that ρ is in the class of KL functions. To show this, we set

a0 =
I2−α
0+

V (t,x(t))|t=0

Γ(α−1) , a1 = 1
Γ(α)D

α−1
0+

V (t, x(t)) |t=0, a2 = k
Γ(α)I

1−β
0+

V (t, x(t)) |t=0

Now for each fixed t, we have that

∂ρ(
I2−α
0+

V (t,x(t))|t=0

Γ(α−1) , t)

∂a0
= e−Γ(α)tα > 0.

Equally for a fixed a0, we have that

∂ρ(
I2−α
0+

V (t,x(t))|t=0

Γ(α−1) , t)

∂t
= −Γ(α+ 1)tα−1e−Γ(α)tα (a1t+ a2t+ a0)

+ (a1 + a2) e
−Γ(α)tα < 0.,

for all t positive. Thus, ρ is a strictly decreasing function with respect to any t > 0.
Also, ρ −→ 0 as t −→ ∞. Therefore, ρ is a KL function. It follows from (22) and
(24) that

∥x∥ ≤ Φ(
I2−α
0+

V (t, x(t)) |t=0

Γ(α− 1)
, t)).

Finally, ∥x∥ −→ 0 as t −→ ∞. Thus, x = 0 is uniformly asymptotically stable.

4. Conclusion

We have succeeded in establishing some stability results for a class of nonlinear
boundary value fractional differential equations in a Sobolev space.
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