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EXISTENCE OF MILD SOLUTION FOR NONLINEAR HYBRID

FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH

CAPUTO DERIVATIVE

MOHAMED.HANNABOU, KHALID.HILAL

Abstract. In this paper we prove an existence result for a boundary value

problem of nonlinear hybrid fractional integrodifferential equation involving
Caputo derivative. We employ a hybrid fixed point theorem of Dhage as a
basic tool in the analysis of our problem. Finally, an example is given to
illustrate the result.

1. Introduction

This note motivates some papers treating the fractional hybrid differential equa-
tions involving Riemann-Liouville differential operators of order 0 < α < 1.
In [18], Sitho et.al. discussed the following existence results for hybrid fractional
integro-differential equationsD

α

(
x(t)−

∑m
i=1 I

βihi(t,x(t))

f(t,x(t))

)
= g(t, x(t)) a.e. t ∈ J = [0, T ], 0 < α ≤ 1

x(0) = 0

whereDα denotes the Riemann-Liouville fractional derivative of order α, 0 < α ≤ 1,
Iϕ is the Riemann-Liouville fractional integral of order ϕ > 0, ϕ ∈ {β1, β2, ..., βm},
f ∈ C(J × R,R \ {0}), g ∈ C(J × R,R), with hi ∈ C(J × R,R) with hi(0, 0) =
0, i = 1, 2, . . . ,m.
In [15], Khalid Hilal and Ahmed Kajouni considered boundary value problems for
hybrid differential equations with fractional order (BVPHDEF of short) involving
Caputo differential operators of order 0 < α < 1

Dα
(

x(t)
f(t,x(t))

)
= g(t, x(t)) a.e. t ∈ J = [0, T ]

a x(0)
f(0,x(0)) + b x(T )

f(T,x(T )) = c
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where f ∈ C(J × R,R\{0}) , g ∈ C(J × R,R) and a, b, c are real constants with
a+ b ̸= 0 .
Dhage and Lakshmikantham [5] discussed the following first order hybrid differential
equation 

d
dt

[
x(t)

f(t,x(t))

]
= g(t, x(t)) a.e. t ∈ J = [0, T ]

x(t0) = x0 ∈ R

where f ∈ C(J × R,R\{0}) and g ∈ C(J × R,R). They established the existence,
uniqueness results and some fundamental differential inequalities for hybrid differ-
ential equations initiating the study of theory of such systems and proved utilizing
the theory of inequalities, its existence of extremal solutions and a comparison re-
sults.
Zhao et.al. [19] are discussed the following fractional hybrid differential equations
involving Riemann-Liouville differential operators

Dq

[
x(t)

f(t,x(t))

]
= g(t, x(t)) a.e. t ∈ J = [0, T ]

x(0) = 0

where f ∈ C(J × R,R\{0}) and g ∈ C(J × R,R). They established the existence
theorem for fractional hybrid differential equation, some fundamental differential
inequalities are also established and the existence of extremal solutions.
Benchohra et al.[16] are discussed the following boundary value problems for dif-
ferential equations with fractional order{

cDαy(t) = f(t, y(t)), for each t ∈ J = [0, T ], 0 < α < 1

ay(0) + by(T ) = c

where cDα is the Caputo fractional derivative, f : [0, T ]× R → R, is a continuous
function, a, b, c are real constants with a+ b ̸= 0.
Motivated by some recent studies on hybrid fractional differential equations see
[15],[18], we consider the following boundary value problem problem :

D
α

(
x(t)−

∑m
i=1 I

βihi(t,x(t))

f(t,x(t))

)
= g(t, x(t)) a.e. t ∈ J = [0, T ], 0 < α < 1

a x(0)
f(0,x(0)) + b x(T )

f(T,x(T )) = c,

(1)

where Dα denotes the Caputo fractional derivative of order α, 0 < α < 1, Iϕ

is the Riemann-Liouville fractional integral of order ϕ > 0, ϕ ∈ {β1, β2, . . . , βm},
f ∈ C(J × R,R \ {0}), g ∈ C(J × R,R), a, b, c are real constants with a + b ̸= 0,
and hi ∈ C(J ×R,R) with hi(0, x(0)) = 0, i = 1, 2, . . . ,m.
By a solution of the (1) we mean a function x ∈ C(J,R) such that

(i) the function t −→ x
f(t,x) is continuous for each x ∈ R, and

(ii) x satisfies the equations in (1).
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This paper is arranged as follows. In Section 2, we recall some concepts and some
fractional calculation law and establish preparation results. In Section 3, we study
the existence of the boundary value problem (1), based on the Dhage fixed point
theorem. In Section 4 an example is given to illustrate the result.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminaries facts which
are used throughout this paper. By E = C(J,R) we denote the Banach space of
all continuous functions from J = [0, T ] into R with the norm

∥y∥ = sup{|y(t)|, t ∈ J}

The class C(J ×R,R) is called the Carathéodory class of functions on J ×R which
are Lebesgue integrable when bounded by a Lebesgue integrable function on J .
By L1(J,R) denote the space of Lebesgue integrable real-valued functions on J
equipped with the norm ∥.∥L1 defined by

∥x∥L1 =
∫ T
0
|x(s)|ds

Definition 1.([2]) The Riemann-Liouvelle fractional integral of the function h ∈
L1([a, b], R+) of order α ∈ R+ is defined by

Iαa h(t) =

∫ t

a

(t− s)α−1

Γ(α)
h(s)ds

where Γ is the gamma function.
Definition 2.([2]) For a integral function h given on the interval [a, b] , the The
Riemann-Liouville fractional-order derivative of h, is defined by

(cDα
a+h)(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1

Γ(α)
(s)ds

where n = [α] + 1 and [α] denotes the integer part of α.
Definition 3.([2]) For a function h given on the interval [a, b] , the Caputo
fractional-order derivative of h, is defined by

(cDα
a+h)(t) =

1

Γ(n− α)

∫ t

a

(t− s)n−α−1

Γ(α)
h(n)(s)ds

where n = [α] + 1 and [α] denotes the integer part of α.
Lemma 1.([1]) Let α > 0 and x ∈ C(0, T )∩L(0, T ). Then the fractional differential
equation

Dαx(t) = 0

has a unique solution

x(t) = k1t
α−1 + k2t

α−2 + . . .+ knt
α−n,

where ki ∈ R, i = 1, 2, . . . , n, and n− 1 < α < n.
Lemma 2. Let α > 0. Then for x ∈ C(0, T ) ∩ L(0, T ) we have

IαDαx(t) = x(t) + c0 + c1t+ . . .+ cn−1t
n−1,

fore some ci ∈ R, i = 1, 2, . . . , n− 1. where n = [α] + 1.
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3. Hybrid fractional integro-differential equations

In this section we consider the boundary value problem (1). The following hybrid
fixed point theorem for three operators in a Banach algebra E, due to Dhage [8],
will be used to prove the existence solution for the boundary value problem (1).
Lemma 3. Let S be a nonempty, closed convex and bounded subset of a Banach
algebra E and let A,C : E −→ E and B : S −→ E be three operators satisfying:
(i) A and C are Lipschitzian with Lipschitz constants δ and ρ, respectively,
(ii) B is compact and continuous,
(iii) x = AxBy + Cx =⇒ x ∈ S for all y ∈ S,
(vi) δM +ρ < 1, where M = ∥B(S)∥. Then the operator equation x = AxBx+Cx
has a solution.
Lemma 4. Suppose that 0 < α < 1 and a, b, c are real constants with a+ b ̸= 0.
Then, for any h ∈ L1(J,R) , the mild solution x ∈ C(J,R) of the problemD

α

(
x(t)−

∑m
i=1 I

βihi(t,x(t))

f(t,x(t))

)
= h(t) a.e. t ∈ J = [0, T ]

a x(0)
f(0,x(0)) + b x(T )

f(T,x(T )) = c

(2)

is given by the hybrid integral equation

x(t) = [f(t, x(t))]
[ 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds (3)

− 1

a+ b

( b

Γ(α)

∫ T

0

(T − s)α−1h(s)ds− c

+
b
∑m
i=1 I

βihi(T, x(T ))

f(T, x(T ))

)]
+

m∑
i=1

Iβihi(t, x(t)) , t ∈ [0, T ]

Proof. Assume that x is a solution of the problem (3). By definition, x(t)
f(t,x(t)) is

continuous. Applying the Caputo fractional operator of the order α, we obtain the
first equation in (2). Again, substituting t = 0 and t = T in (3) we have

x(0)

f(0, x(0))
=

−1

a+ b

( b

Γ(α)

∫ T

0

(T−s)α−1h(s)ds−c+
b
∑m
i=1 I

βihi(T, x(T ))

f(T, x(T ))

)
+

∑m
i=1 I

βihi(0, x(0))

f(0, x(0))

x(T )

f(T, x(T ))
=

1

Γ(α)

∫ T

0

(T − s)α−1h(s)ds− 1

a+ b

( b

Γ(α)

∫ T

0

(T − s)α−1h(s)ds

− c+
b
∑m
i=1 I

βihi(T, x(T ))

f(T, x(T ))

)
+

∑m
i=1 I

βihi(T, x(T ))

f(T, x(T ))

then

a
x(0)

f(0, x(0))
+ b

x(T )

f(T, x(T ))
=

−ab
(a+ b)Γ(α)

∫ T

0

(T − s)α−1h(s)ds+
ac

a+ b

+
b

(Γ(α)

∫ T

0

(T − s)α−1h(s)ds− b2

(a+ b)Γ(α)

∫ T

0

(T − s)α−1h(s)ds

+
bc

a+ b
+
( −ab
a+ b

− b2

a+ b
+ b
)∑m

i=1 I
βihi(T, x(T ))

f(T, x(T ))
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this implies that

a
x(0)

f(0, x(0))
+ b

x(T )

f(T, x(T ))
= c

In the forthcoming analysis, we need the following assumptions:

(H1) The functions f : J ×R −→ ×R \ {0} and hi : J ×R −→ ×R, hi(0, x(0)) =
0, i = 1, 2, . . . ,m, are continuous and there exist two positive functions ϕ,
ψi, i = 1, 2, . . . ,m with bound ∥ϕ∥ and ∥ψ∥, i = 1, 2, . . . ,m, respectively,
such that

|f(t, x(t))− f(t, y(t))| ≤ ϕ(t)|x(t)− y(t)|
and

|hi(t, x(t))− hi(t, y(t))| ≤ ψ(t)|x(t)− y(t)|, i = 1, 2, . . . ,m,

for t ∈ J and x, y ∈ R.
(H2) There exists a function h ∈ L1(J,R) such that .

|g(t, x)| ≤ h(t) a.e t ∈ J

for all x ∈ R.
(H3) There exists a number r > 1 such that

r ≥
F0

[(
1 + |b|

|a+b|

)(
∥h∥L1

Tα

Γ(α+1)

)
+ |c|

|a+b| +
∣∣∣ b∑m

i=1 I
βihi(T,x(T ))

(a+b)f(T,x(T ))

∣∣∣]+K0

∑m
i=1

Tβi

Γ(βi+1)

1− ∥ϕ∥
[(

1 + |b|
|a+b|

)(
∥h∥L1

Tα

Γ(α+1)

)
+ |c|

|a+b| +
∣∣∣ b∑m

i=1 I
βihi(T,x(T ))

(a+b)f(T,x(T ))

∣∣∣]−∑m
i=1

∥ψi∥Tβi

Γ(βi+1)

where F0 = sup
t∈J

|f(t, 0)| and K0 = sup
t∈J

|hi(t, 0)|, i = 1, 2, . . . ,m,

Theorem 1. Assume that the conditions (H1) − (H3) hold. Then the boundary
value problem (1) has at least one mild solution on J provided that

∥ϕ∥
[(

1 +
|b|

|a+ b|

)(
∥h∥L1

Tα

Γ(α+ 1)

)
+

|c|
|a+ b|

+
∣∣∣b∑m

i=1 I
βihi(T, x(T ))

(a+ b)f(T, x(T ))

∣∣∣](4)
+

m∑
i=1

∥ϕ∥T βi

Γ(βi + 1)
< 1.

Proof. Set E = C(J,R) and define a subset S of E as

S = {x ∈ E : ∥x∥ ≤ r}

where r satisfies inequality (3).
Clearly S is closed, convex, and bounded subset of the Banach space E. By Lemma
3, problem (1) is equivalent to the integral equation (3). Now we define three
operators;
A : E −→ E by

Ax(t) = f(t, x(t)), t ∈ J,

B : S −→ E by

Bx(t) =
1

Γ(α)

∫ t

0

(t− s)α−1g(s, x(s))ds− 1

a+ b

( b

Γ(α)

∫ T

0

(T − s)α−1g(s, x(s))ds− c

+
b
∑m
i=1 I

βihi(T, x(T ))

f(T, x(T ))

)
, t ∈ J,
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and C : E −→ E by

Cx(t) =
m∑
i=1

Iβihi(t, x(t)) =
m∑
i=1

∫ t

0

(t− s)βi−1

Γ(βi)
hi(s, x(s))ds, t ∈ J

We shall show that the operators A, B, and C satisfy all the conditions of Lemma
3. This will be achieved in the following series of steps.
Step 1: We first show that A and C are Lipschitzian on E.
Let x, y ∈ E. Then by (H1), for t ∈ J we have

|Ax(t)−Ay(t)| = |f(t, x(t))− f(t, y(t))|
≤ ϕ(t)|x(t)− y(t)| ≤ ∥ϕ∥∥x− y∥

which implies ∥Ax − Ay∥ ≤ ∥ϕ∥∥x − y∥ for all x, y ∈ E. Therefore, A is a Lips-
chitzian on E with Lipschitz constant ∥ϕ∥.
Analogously, for any x, y ∈ E, we have

|Cx(t)− Cy(t)| =
∣∣∣ m∑
i=1

Iβihi(t, x(t))−
m∑
i=1

Iβihi(t, y(t))
∣∣∣

≤
m∑
i=1

∫ t

0

(t− s)βi−1

Γ(βi)
ψi(s)|x(s)− y(s)|ds

≤
m∑
i=1

∥ψi∥T βi

Γ(βi + 1)
∥x− y∥

This means that

∥Cx− Cy∥ ≤
m∑
i=1

∥ψi∥T βi

Γ(βi + 1)
∥x− y∥

Thus, C is a Lipschitzian on E with Lipschitz constant
∑m
i=1

∥ψi∥Tβi

Γ(βi+1) .

Step 2: The operator B is completely continuous on S.
We first show that the operator B is continuous on E. Let {xn} be a sequence
in S converging to a point x ∈ S. Then by the Lebesgue dominated convergence
theorem, for all t ∈ J , we obtain

lim
n→∞

∫ t

0

(t− s)α−1

Γ(α)
g(s, xn(s))ds =

∫ t

0

(t− s)α−1

Γ(α)
lim
n→∞

g(s, xn(s))ds

=

∫ t

0

(t− s)α−1

Γ(α)
g(s, x(s))ds

and

lim
n→∞

b

Γ(α)

∫ T

0

(T − s)α−1g(s, xn(s))ds =
b

Γ(α)

∫ T

0

(T − s)α−1 lim
n→∞

g(s, xn(s))ds

=
b

Γ(α)

∫ T

0

(T − s)α−1g(s, x(s))ds

In consequence, we have
lim
n→∞

Bxn = Bx

pointwise on J . Further, it can be shown as below the sequence f(Bxn) of function
is an equicontinuous set in E. Therefore, Bxn −→ Bx uniformly. As a result, B is
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a continuous operator on S.

Next we will prove that the set B(S) is a uniformly bounded in S. For any x ∈ S,
we have

|Bx(t)| =
∣∣∣ ∫ t

0

(t− s)α−1

Γ(α)
g(s, x(s))ds− 1

a+ b

( b

Γ(α)

∫ T

0

(T − s)α−1g(s, x(s))ds− c

+
b
∑m
i=1 I

βihi(T, x(T ))

f(T, x(T ))

)∣∣∣
≤ ∥h∥L1

Tα

Γ(α+ 1)
+

|b|
|a+ b|

Tα

Γ(α+ 1)
∥h∥L1 +

|c|
|a+ b|

+
∣∣∣b∑m

i=1 I
βihi(T, x(T ))

(a+ b)f(T, x(T ))

∣∣∣
≤

(
1 +

|b|
|a+ b|

)
(∥h∥L1

Tα

Γ(α+ 1)
) +

|c|
|a+ b|

+
∣∣∣b∑m

i=1 I
βihi(T, x(T ))

(a+ b)f(T, x(T ))

∣∣∣ = K1

for all t ∈ J . Therefore, ∥B∥ ≤ K1, which shows that B is uniformly bounded on
S.
Step 3: Now, we will show that B(S) is an equicontinuous set in E. Let τ1, τ2 ∈ J
with τ1 < τ2 and x ∈ S. Then we have

|Bx(τ2)− Bx(τ1)| =
∣∣∣ ∫ τ2

0

(τ2 − s)α−1

Γ(α)
g(s, x(s))ds−

∫ τ1

0

(τ2 − s)α−1

Γ(α)
g(s, x(s))ds

∣∣∣
≤

∫ τ1

0

|(τ2 − s)α−1 − (τ1 − s)α−1|
Γ(α)

|g(s, x(s))|ds+
∫ τ2

τ1

(τ2 − s)α−1

Γ(α)
|g(s, x(s))|ds

≤
∫ τ1

0

|(τ2 − s)α−1 − (τ1 − s)α−1|
Γ(α)

∥h∥L1ds+

∫ τ2

τ1

(τ2 − s)α−1

Γ(α)
∥h∥L1ds

which is independent of x ∈ S. As τ1 −→ τ2, the right-hand side of the above
inequality tends to zero. Therefore, it follows from the Arzelá-Ascoli theorem that
B is a completely continuous operator on S.
Step 4: The hypothesis (iii) of Lemma 3 is satisfied.
Let x ∈ E and y ∈ S be arbitrary elements such that x = AxBy + Cx. Then we
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have

|x(t)| ≤ |Ax(t)||By(t)|+ |Cx(t)|

≤ |f(t, x(t)|
∣∣∣[ 1

Γ(α)

∫ t

0

(t− s)α−1g(s, x(s))ds+
1

a+ b

( b

Γ(α)

∫ T

0

(T − s)α−1g(s, x(s))ds+ c

+
b
∑m
i=1 I

βihi(T, x(T ))

f(T, x(T ))

)]∣∣∣+ ∣∣∣ m∑
i=1

Iβihi(s, s(t))
∣∣∣

≤ (|f(t, x(t)− f(t, 0)|+ |f(t, 0)|)
[ 1

Γ(α)

∫ t

0

(t− s)α−1∥h∥L1ds

+
1

|a+ b|

( |b|
Γ(α)

∫ T

0

(T − s)α−1∥h∥L1ds+ |c|

+
∣∣∣b∑m

i=1 I
βihi(T, x(T ))

f(T, x(T ))

∣∣∣)]+ m∑
i=1

Iβi(|hi(s, x(s))− hi(s, 0) + |hi(s, 0)|)

≤ (r∥ϕ∥+ F0)
[(

1 +
|b|

|a+ b|

)(
∥h∥L1

Tα

Γ(α+ 1)

)
+

|c|
|a+ b|

+
∣∣∣b∑m

i=1 I
βihi(T, x(T ))

(a+ b)f(T, x(T ))

∣∣∣]
+

m∑
i=1

(r∥ψi∥+ k0)T
βi

Γ(βi + 1)

which leads to

∥x∥ ≤ (r∥ϕ∥+ F0)
[(

1 +
|b|

|a+ b|

)(
∥h∥L1

Tα

Γ(α+ 1)

)
+

|c|
|a+ b|

+
∣∣∣b∑m

i=1 I
βihi(T, x(T ))

(a+ b)f(T, x(T ))

∣∣∣]+ m∑
i=1

(r∥ψi∥+ k0)T
βi

Γ(βi + 1)
≤ r

Therefore, x ∈ S.
Step 4. Finally we show that δM + ρ < 1, that is, (vi) of Lemma 3 holds.
Since

M = ∥B(S)∥ = sup
x∈S

{sup
t∈J

|Bx(t)|}

≤
(
1 +

|b|
|a+ b|

)(
∥h∥L1

Tα

Γ(α+ 1)

)
+

|c|
|a+ b|

+
∣∣∣b∑m

i=1
Tβi

Γ(βi+1)I
βihi(T, x(T ))

(a+ b)f(T, x(T ))

∣∣∣
and by (H3) we have

∥ϕ∥M +
m∑
i=1

T βi

Γ(βi + 1)
∥ψi∥ < 1.

with δ = ∥ϕ∥ and ρ =
∑m
i=1

Tβi

Γ(βi+1)∥ψi∥ .

Thus all the conditions of Lemma 3 are satisfied and hence the operator equation
x = AxBx+Cx has a solution in S. In consequence, problem (2) has a mild solution
on J . This completes the proof.
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4. Exemple

In this section we give an example to illustrate the usefulness of our main results.
Let us consider the following fractional boundary value problem:D

3
4

(
x(t)−

∑4
i=1 I

βihi(t,x(t))

f(t,x(t))

)
= (t−1)2

35(13−t2) (7|x(t)|+ 15) a.e. t ∈ J = [0, 1]

x(0)
f(0,x(0)) +

x(1)
f(1,x(1)) =

π
2 ,

(5)

where

4∑
i=1

Iβihi(t, x(t)) = I
1
3

3te−3t

15(3 + t)

(x2(t) + 9|x(t)|
|x(t)|+ 5

+
12e3t

5

)
+ I

7
4

t sin t

7(4 + et)

(x2(t) + 4|x(t)|
|x(t)|+ 3

+ cos t
)

+ I
10
3

2 sinπt

9 + (5 + t)2)

(x2(t) + 8|x(t)|
|x(t)|+ 5

+
4

5

)
+ I

29
6
3t cos t+ 4t sin t

10(4− t)2

(x2(t) + 5|x(t)|
|x(t)|+ 4

+
t

t+ 2

)
and

f(t, x(t)) =
3(cosπt+ 2t)

5(2 + 10t)2

(x2(t) + 5|x(t)|
3 + |x(t)|

)
+

8− 22−t

27
,

Here α = 3
4 , T = 1, a = b = 1, c = π

2 , m = 4, β1 = 1
3 , β2 = 7

4 , β3 = 10
3 , and

β4 = 29
6 . We can show that

|f(t, x)− f(t, y)| ≤
( 1 + 2t

(2 + 10t)2

)
|x− y|

|h1(t, x)− h1(t, y)| ≤
( 18t

75(3 + t)

)
|x− y|

|h2(t, x)− h2(t, y)| ≤
( 4t

21(4 + et)

)
|x− y|

|h3(t, x)− h3(t, y)| ≤
( 16

45 + 5(5 + t)2)

)
|x− y|

|h4(t, x)− h4(t, y)| ≤
( 5t

8(4− t)2)

)
|x− y|

It follows that ϕ(t) = (1 + 2t)(2 + 10t)−2, ψ1(t) = 18t(3+t)−1

75 , ψ2(t) = 4t(4+et)−1

21 ,

ψ3(t) = 16(45 + 5(5 + t)2)−1, and ψ4(t) = 5t(4−t)−2

8 , which give norms ∥ϕ∥ = 1
4 ,

∥ψ1∥ = 3
50 , ∥ψ2∥ = 4(28+7e)−1

3 , ∥ψ3∥ = 8
85 , and ∥ψ4∥ = 5

72 . Since

|g(t, x(t))| =
∣∣∣ (t− 1)2 + 3

35(13 + t2)
(7 + |x|+ 15)

∣∣∣ ≤ ( t− 1)2 + 3

13− t2

)( |x|
5

+
3

7

)
It is easy to verify that ∥p∥ = 4

13 , F0 = sup
t∈[0,2]

|f(t, 0)| = 4
27 , and F0 = sup

t∈[0,2]

|hi(t, 0)| =

4
27 , i = 1, 2, 3, 4. We see that condition (H3) is followed with a number r ∈
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[0.187454, 131.292851].

∥ϕ∥
[(

1 +
|b|

|a+ b|

)(
∥h∥L1

Tα

Γ(α+ 1)

)
+

|c|
|a+ b|

+
∣∣∣b∑4

i=1 I
βihi(T, x(T ))

(a+ b)f(T, x(T ))

∣∣∣]
+

4∑
i=1

∥ϕ∥T βi

Γ(βi + 1)
≃ 0.18957628293 < 1.

Consequently all conditions in Theorem 1, are satisfied. Therefore, problem (5) has
at least one solution on [0, 1].
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