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STABILITY ANALYSIS OF GENERALIZED MODEL OF HUMAN

T-CELL LYMPHOTROPIC VIRUS I (HTLV-I) INFECTION OF

CD4+ T-CELLS

S. Z. RIDA, Y. A. GABER

Abstract. In this paper, we present the fractional-order model of (HTLV-I)

infection of CD4+ T-cells. We show that this model possesses non-negative

solutions as desired in any population dynamics. The stability of different equi-
libria of this model are discussed in detail. Natural-Adomian Decomposition

method (N-ADM) is used to compute an analytical solution of the system of

nonlinear fractional differential equations governing the problem. The results
are compared with the results obtained by the classical Runge-Kutta method

in the case of integer-order derivatives.

1. Introduction

Human T cell lymphotropic virus I (HTLV-I) is the first human retrovirus to be
discovered and has continued to be an important transfusion transmissible infection
(TTI) especially in highly endemic regions such as the subSaharan Africa [1]. The
virus has been associated with several diseases including adult T cell leukemia
(ATL), tropical spastic paraparesis, HTLV-I uveitis and HTLV-I associated infective
dermatitis [2, 3].

Infection with HTLV-I is now a global epidemic, affecting 10 million to 20 million
people. HTLV-1 is spread by blood transfusions, sexual contact and sharing needles.
It can also be spread from mother to child during birth or breast-feeding. There is
no cure or treatment for HTLV-1 and it is considered a lifelong condition; however,
most (95%) infected people remain asymptomatic (show no symptoms) throughout
life [4, 5]. HTLV-I infection is achieved primarily through cell-to-cell contact [6].
HTLV-I is a single-stranded RNA retrovirus, the activity of which produces a DNA
copy of the viral genome that is integrated into the DNA of the host genome
[7]. After this takes place, the latency period can persist for a long period of time.
Latently infected cells contain the virus, but do not produce DNA and are incapable
of contagion. When such cells are stimulated by antigen, they can become active
and infect healthy cells. Taking these factors into consideration, the first classical
of HTLV-I model proposed by Stilianakis and Seydel [6] and Patricia Katri et al
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[7] modified the classic model for the system of non-linear differential equations as
follow: 

dT (t)
dt = λ− µT T (t)− κ V (t)T (t),

dI(t)
dt = κ1V (t)T (t)− (µL + ε)I(t),

dV (t)
dt = εI(t)− (µA + ρ)V (t),

dL(t)
dt = ρV (t) + βL(1− L

Lmax
)− µML.

(1.1)

That model describes the T-cell dynamics of human T-cell lymphotropic virus I
(HTLV-I) infection and the development of adult T-cell leukemia (ATL), where T (t)
represents the concentration of healthy CD4+ T-cells at time t, I(t) represents the
concentration of latently infected CD4+ T-cells, V (t) the concentration of actively
infected CD4+ T-cells, and L(t) the concentration of leukemic cells at time t. To
explain the parameters, we note that λ is the source of CD4+ T-cells from precursors
µT is the natural death rate of CD4+ T-cells, κ is the rate at which uninfected cells
are contacted by actively infected cells. The parameter κ1 represents the rate of
infection of T-cells with virus from actively infected cells. µL, µA, and µM are
blanket death terms for latently infected, actively infected and leukemic cells, to
reflect the assumption that we do not initially know whether the cells die naturally
or by bursting. In addition, ε and ρ represent the rates at which latently infected
and actively infected cells become actively infected and leukemic, respectively. The
ATL cells grow at a rate β of a classical logistic growth function. Lmax is the
maximal population level of leukemic CD4+ T-cells.

The fractional order extension of the classical model (1.1) have been first studied
in [8]. The reason of using fractional differential equations (FDEs) is that FDEs are
naturally related to systems with memory which exists in most biological system.
Also they show the realistic biphasic decline behavior of infection of diseases but
at a slower rate. In our work, we consider fractional-order for the system (1.1),
where DαT,DαI,DαV and DαL are the derivatives of T (t), I(t), V (t) and L(t)
respectively, of arbitrary order α (where 0 < α ≤ 1) in the sense of Caputo (see e.g.
[9]), then our system is described by the following set of fractional order differential
equations 

DαT (t) = λ− µT T (t)− κ V (t)T (t),

DαI(t) = κ1V (t)T (t)− (µL + ε)I(t),

DαV (t) = εI(t)− (µA + ρ)V (t),

DαL(t) = ρV (t) + βL(1− L
Lmax

)− µML.

(1.2)

Subject to the following initial conditions, all parameters are assumed to be positive
as in Table 1.

T (0) = 1000, I(0) = 250, V (0) = 1.5, L(0) = 0. (1.3)

The Adomian Decomposition method (ADM) was frist ntroduced by Adomian in
the 1980’s [10, 11]. Since then the ADM has emerged as efficient procedure for
finding the solution of large and general class of problems. The Natural transform
was defined by Khan [12]. Applications of Natural transform in the solution of
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differential and integeral equations can be found in [13, 14]. The N-ADM basically
demonstrates how the Natural transform maybe combined with ADM to obtain
analytic approximate solution of nonlinear differential equations such as [15, 16].
The motivation of this paper is to find analytical solution for the generalized model
of (HTLV-I) infection in the sense of Caputo by using the N-ADM .

The rest of the paper is organized as follow. In Section 2, a brief review of
the fractional calculus and definitions of Natural, Laplace transform and Mittag-
Leffler function is presented. In Section 3, we show that the model (1.2) possesses a
unique solution which is non-negative. Section 4 is devoted to study the equilibrium
points and the stability analysis of our model (1.2). In Section 5, we apply the
Natural-Adomian Decomposition method for obtaining the solution of the fractional
order model of Human T-cell Lymphotropic virus I (HTLV-I) infection of CD4+ T-
Cells. Numerical simulations are represented graphically and discussed in Section
6. Finally, we conclude the paper in Section 7

2. Preliminary

Here, we present some necessary definitions and notations related to fractional
calculus (see e.g. [9]) and the Natural transform [15, 16, 17]. The most commonly
used definitions are Riemann-Liouville and Caputo.

Definition 2.1. The Riemann-Liouville fractional integeration of order α is defined
as:

(Jαt0f)(t) =
1

Γ(α)

∫ t

t0

(t− s)α−1f(s)ds, α > 0, t > t0,

(J0
t0f)(t) = f(t).

The Riemann-Liouville derivative has certain disadvantages such that the frac-
tional derivative of a constant is not zero. Therefore, we will make use of Caputo’s
definition owing to its convenience for initial conditions of the fractional differential
equations.

Definition 2.2. Riemann-Liouville and Caputo fractional derivatives of order α
can be defined respectively as:

Dα
∗ f(t) = Dn(Jn−αf(t)),

Dαf(t) = Jn−α(Dnf(t)),

where n− 1 < α ≤ n, n ∈ N, f is a given function, and Γ(·) denotes the gamma
function. It is known that (Dα

t0f)(t)→ f ′(t) as α→ 1.
Now, we recall the definitions of Natural transform, Laplace transform of Ca-

puto’s derivative and Mittag-Leffler function in two arguments.

Definition 2.3. Over the set of functions

A = {f(t) : ∃M, τ1, τ2 > 0, |f(t)| < Me|t|/τj , if t ∈ (−1)jx[0,∞)}.

The Natural transform of f(t) is defined by

N{f(t)} = R(s, u) =

∫ ∞
0

f(ut) e−stdt, u > 0, s > 0,

where R(s, u) is the Natural transform of the time function f(t).



JFCA-2020/11(1) STABILITY ANALYSIS OF GENERALIZED MODEL OF HUMAN 173

Theorem 2.1. If N{f(t)} is the natural transform of the function f(t) , then the
natural transform of the fractional derivative of order α is defined as:-

N{Dα(f(t))} =
sα

uα
R(s, u)−

n−1∑
k=0

sα−(k+1)

uα−k
f (k)(0)

Definition 2.4.

L{Dαf(t), s} = sαF (s)−
n−1∑
i=0

sα−i−1f (i)(0), (n− 1 < α ≤ n); n ∈ N.

Ea,b(x) =

∞∑
n=0

xn

Γ(an+ b)
, a > 0, b > 0.

3. Non-negative solutions

Let R4
+ = {X ∈ R4|X ≥ 0} and X(t) = (T (t), I(t), V (t), L(t))T , we now prove

the main theorem.

Theorem 3.1. There is a unique solution X(t) = (T (t), I(t), V (t), L(t))T for model
(1.2) at t ≥ 0 (where, t0 = 0) and the solution will remain in R4

+.

Proof. From Theorem 3.1 and Remark 3.2 of [18], we know that the solution on
(0,∞) is existent and unique. Now, we will show that the feasible region R4

+ is
positively invariant (non-negative solutions). Rearranging the following equation

DαV (t) + (µA + ρ)V (t) = εI(t),

and we assume that g(t) = εI is a constant function of time. Then we get the frac-
tional order differential equation representing the concentration of actively infected
CD4+T-cells as follows:

DαV (t) + (µA + ρ)V (t) = g(t). (3.1)

Solving equation (3.1) using Laplace transform (from Definition 2.4) method [9] and
taking the initial condition to be zero (to simplify), we have the following solution

V (t) =

∫ t

0

(t− τ)α−1Eα,α(−(µA + ρ) (t− τ)α)g(τ)dτ ≥ 0,

where 0 < α < 1, µA + ρ > 0 and El,m(x) is the two-parameter Mittag-Leffler
function (see Definition 2.4). For T (t), I(t) and L(t) by the same way we have
T (t), I(t), L(t) ≥ 0, hence proved that the solution X(t) is positive invariant. �

4. The stability of the equilibrium points

We frist evaluate the equilibrium points or steady states of the fractional system
(1.2). To evaluate the equilibrium points, let

DαT = 0,
DαI = 0,
DαV = 0,
DαL = 0,

(4.1)

then, the system (1.2) has two equilibrium points
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(1) At disease-free equilibrium:

We now consider the equations below and solve it (where there is no infec-
tion).

λ− µT T (t)− κ V (t)T (t) = 0, (4.2)

κ1V (t)T (t)− (µL + ε)I(t) = 0, (4.3)

εI(t)− (µA + ρ)V (t) = 0, (4.4)

ρV (t) + βL(1− L

Lmax
)− µML = 0. (4.5)

From equation (4.4), we have V = 0 and by substituting in equation (4.2),
then disease-free equilibrium (DFE) of the system (1.2) is

E0 = (Teq, Ieq, Veq, Leq)I=0 =

(
λ

µT
, 0, 0, 0

)
.

(2) At endemic equilibrium:

We now consider the case where there is infection, thus we have

E∗ = (Teq, Ieq, Veq, Leq)I 6=0 = (T ∗, I∗, V ∗, L∗),

where

T ∗ =
(µA + ρ)(µL + ε)

εκ1
,

I∗ =
ελκ1 − µT (µA + ρ)(µL + ε)

κε(µL + ε)
,

V ∗ =
ελκ1 − µT (µA + ρ)(µL + ε)

κ(µL + ε)(µA + ρ)
,

and L∗ is calculated by the following equation

L∗2 + a1L
∗ + a2 = 0, (4.6)

where
a1 = − (β−µM )Lmax

β ,

a2 = −ρLmax V ∗

β ; is always negative.

(4.7)

We can note that the equilibrium points are the same for both integer and fractional
system. But the stability region of the fractional-order system with order α, which
is illustrated in Figure 1 (where σ, ω refer to the real and imaginary parts of the
eigenvalues, respectively, and j =

√
−1), is greater than the stability region of

the integer order case (see e.g.[19]). Therefore, we will now drive analytically the
stability of different equilibria of the model (1.2). For E0 , we have the following
theorem:

Theorem 4.1. If β − µM < 0, then the disease free equilibria E0 of the system
(1.2) is Locally asymptotically stable if R0 ≤ 1 (see equation 7.1) and if R0 > 1,
E0 unstable, thus E∗ exists.
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Figure 1. Stability region of the fractional-order system.

Proof. Determining the Jacobian matrix of the system (1.2) at E0 we have:

JE0 =



−µT 0 −κλ
µT

0

0 −(µL + ε) κ1λ
µT

0

0 ε −(µA + ρ) 0

0 0 ρ β − µM


Calculate the eigenvalues of JE0 ,

χ1 = −µT < 0, χ2 = β − µM < 0,

and the last two eigenvalue are given by the quadratic equation

χ2 +B χ+ C = 0, (4.8)

where
B = (µL + ε+ µA + ρ),

C = (µL + ε)(µA + ρ)− κλε
µT

= (µL + ε)(µA + ρ)(1−R0).

This shows that ifR0 ≤ 1, then χ3,4 =
−(µL+ε+µA+ρ)±

√
(µL+ε+µA+ρ)2−4(µL+ε)(µA+ρ)(1−R0)

2 <
0, hence it becomes stable. �

For E∗, we have the following theorem:

Theorem 4.2. Whenever R0 > 1, the positive infected steady states E∗ of the
fractional-order system (1.2) is asymptotically stable.
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Proof. We consider the linearized system of (1.2) at E∗. The Jacobian matrix
evaluated at the endemic equilibrium is given by

JE∗ =



−(µT + κV ∗) 0 −κT ∗ 0

κ1V
∗ −(µL + ε) κ1T

∗ 0

0 ε −(µA + ρ) 0

0 0 ρ β(1− 2L∗

Lmax
)− µM


,

then, one of its eigenvalues be β(1 − 2L∗

Lmax
) − µM (always negative, since L∗ is

higher than the carrying capacity Lmax = β−µM
β , when infection is chronic) and the

remaining eigenvalues are given by solving the following characteristic polynomials:

σ3 + F1σ
2 + F2σ + F3 = 0 (4.9)

with F1, F2 and F3 being

F1 = kV ∗ + µL + ρ+ µT + ε+ µA,

F2 = (kV ∗ + µT )(µL + ε)(µA + ρ),

F3 = kV ∗(µL + ε)(µA + ρ).

Obviously, all the eigenvalues of equation (4.9) have negative real parts if and only
if the coefficients F1, F2 are positive, and F1 F2 − F3 > 0 (Routh’s criterion, see,
e.g. [20, 21]), when R0 > 1. Thus it follows from Routh-Hurtwiz criteria that
the system (1.2) at the endemic equilibrium E∗ is asymptotically stable, whenever
R0 > 1 and this inequalities F1 > 0, F2 > 0, F1 F2 > F3 are satisfied. �

5. The Natural-Adomian Decomposition Method (N-ADM)

Consider the fractional-order model (1.2) subject to the initial condition (1.3).
The nonlinear terms in this model Eqs. (1.2) are V T and L2. For α = 1 the
fractional order model converts to the classical model (see e.g.[7]). Applying the
Natural transform on both sides of Eqs. (1.2)



N{Dα(T )} = λ N{1} − µT N{T (t)} − κ N{V (t)T (t)},

N{Dα(I)} = κ1 N{V (t)T (t)} − (µL + ε) N{I(t)},

N{Dα(V )} = ε N{I(t)} − (µA + ρ) N{V (t)},

N{Dα(L)} = ρ N{V (t)}+ βN{L(1− L
Lmax

)} − µMN{L},

(5.1)
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using property of the Natural transform, we get

sα

uαN{T} −
sα−1

uα T (0) = λ N{1} − µT N{T (t)} − κ N{V (t)T (t)},

sα

uαN{I} −
sα−1

uα I(0) = κ1 N{V (t)T (t)} − (µL + ε) N{I(t)},

sα

uαN{V } −
sα−1

uα V (0) = ε N{I(t)} − (µA + ρ) N{V (t)},

sα

uαN{L} −
sα−1

uα L(0) = ρ N{V (t)}+ βN{L(1− L(t)
Lmax

)} − µMN{L(t)},
(5.2)

using initial conditions (1.3)

N{T} = T (0)
s + λ uα

sα+1 N{1} − µT uα

sα N{T (t)} − κ uα

sα N{V (t)T (t)},

N{I} = I(0)
s + κ1

uα

sα N{V (t)T (t)} − (µL + ε) uα

sα N{I(t)},

N{V } = V (0)
s + ε uα

sα N{I(t)} − (µA + ρ) uα

sα N{V (t)},

N{L} = L(0)
s + ρ uα

sα N{V (t)}+ β uα

sα N{L(t)} − uα

sα
β

Lmax
N{L2(t)} − µM uα

sα N{L(t)}.
(5.3)

The method assumes the solution as an infinite series:

T =

∞∑
k=0

Tk, I =

∞∑
k=0

Ik, V =

∞∑
k=0

Vk, L =

∞∑
k=0

Lk. (5.4)

The nonlinearity V T and L2 are decomposed as

V T =

∞∑
k=0

Ak, L
2 =

∞∑
k=0

A∗k,

where Ak, A
∗
k so-called Adomian Polynomials given as

Ak =
1

k!

dk

dλk

[
k∑
j=0

λjVj

k∑
j=0

λjTj

]∣∣∣∣∣
λ=0

, A∗k =
1

k!

dk

dλk

[
k∑
j=0

λjLj

]2∣∣∣∣∣
λ=0

. (5.5)

Substituting from Eqs. (5.4), (5.5) into (5.3) the result is

N{T0} = T (0)
s + λuα

sα+1 ,

N{I0} = I(0)
s ,

N{V0} = V (0)
s ,

N{L0} = L(0)
s ,

(5.6)
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N{T1} = −µT uα

sα N{T0} − κ uα

sα N{A0},

N{I1} = κ1
uα

sα N{A0} − (µL + ε) uα

sα N{I0}

N{V1} = ε uα

sα N{I0} − (µA + ρ) uα

sα N{V0},

N{L1} = ρ uα

sα N{V0}+ β uα

sα N{L0} − uα

sα
β

Lmax
N{A∗0} − µM uα

sα N{L0},
(5.7)

...

N{Tk+1} = −µT uα

sα N{Tk} − κ
uα

sα N{Ak},

N{Ik+1} = κ1
uα

sα N{Ak} − (µL + ε) uα

sα N{Ik}

N{Vk+1} = ε uα

sα N{Ik} − (µA + ρ) uα

sα N{Vk},

N{Lk+1} = ρ uα

sα N{Vk}+ β uα

sα N{Lk} −
uα

sα
β

Lmax
N{A∗k} − µM uα

sα N{Lk}.
The aim is to study the mathematical behavior of the solution T (t), I(t), V (t),
L(t) for the different values of α. By Applying the inverse Natural transform to
both sides of Eqs.(5.6) the values of T0, I0, V0, L0 are obtained. Substituting these
values of A0, A

∗
0, T0, I0, V0, L0 into Eqs.(5.7), the first component T1, I1, V1, L1

are obtained. The other terms of T2, T3, ..., I2, I3, ... V2, V3, ... and L2, L3, ... can be
calculated recursively in a similar way and we can write the solution

T (t) = T0+T1+... , I(t) = I0+I1+... , V (t) = V0+V1+... , L(t) = L0+L1+... . (5.8)

6. Numerical results and discussion

The N-ADM provides an analytical approximate solution in terms of an infinite
power series. For numerical results, the following values, for parameters, are con-
sidered [7]. The first few components of N-ADM solution T (t), I(t), V (t) and L(t)

Parameter µT µL µA µM κ κ1 β ε ρ Lmax λ
Values (mm3/ day) 0.6 0.006 0.05 0.0005 varies varies 0.0003 0.0004 0.00004 2200 6

Table 1. Parameters values.

are calculated. We computed the first three terms of the N-ADM series solution
for the system (1.2). We present two of them as follows:

T0 = 1000 + λ
Γ(α+1) t

α, I0 = 250, V0 = 1.5, L0 = 0,

T1 = −(1000µT+1500κ)
Γ(α+1) tα − (λµT+1.5λκ)

Γ(2α+1) t2α, I1 = (1500κ1−250(µL+ε))
Γ(α+1) tα + 1.5κ1

Γ(2α+1) t
2α,

V1 = (250ε−1.5(µA+ρ))
Γ(α+1) tα, L1 = 1.5ρ

Γ(α+1) t
α,

thus, the N-ADM series solution of the system (1.2) can be given by Eqs.5.8, with
the values of initial conditions and parameters in Table 1. The approximate solu-
tions displayed in Figures 2-4 with different value of fractional order 0 < α ≤ 1 and
it is clear that varying the values of κ and κ1 will alter the number of uninfected
CD4+ T-cells, infected cells, and leukemic cells.
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Figure 2. The solutions by N-ADM (Solid line) (a) T (t), (b) I(t),
(c) V (t) and (d) L(t) at α = 1 compared with RK4 (Dashed line).

7. Conclusion

In this work we have introduced a generalized of HTLV-I model in Caputo sense.
We obtained the non-negative solutions of the fractional model by Laplace trans-
form. The basic reproduction number ”represents the average number of secondary
infections caused by a single primary actively infected T cell introduced into a pool
of susceptible T cells during its entire infection period” is given by (see e.g.[7])

R0 =
ελκ

µT (µL + ε)(µA + ρ)
. (7.1)

We carried out numerical solutions to demonstrate the theoretical analysis by ap-
plying the Natural-Adomian Decomposition method. For example, if κ = κ1 = 0.1,
then R0 = 1.2 > 1, from Figure 3 the disease will persist and in Figures 3-4 the
results show that increasing the value of κ and κ1 makes the number of healthy
CD4+ T-cells decreases dramatically, while the numbers of latently infected cells
and leukemic cells increase substantially. The comparison for some different values
of α has been obtained and the results show that the solution continuously depends
on the time-fractional derivative.
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Figure 3. The numerical results (a) T (t), (b) I(t), (c) V (t), and
(d) L(t) at κ = κ1 = 0.1 different values of α.
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Figure 4. The numerical results (a) T (t), (b) I(t), (c) V (t), and
(d) L(t) at κ = κ1 = 0.06 different values of α.
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