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NOTE ON GENERALIZATIONS OF A SYMMETRIC ¢-SERIES IDENTITY

XUE-FANG WANG, JIAN CAO*

DebicaTteED To PROFESSOR G.E. ANDREWS ON THE OCCASION OF HIS 80TH BIRTHDAY

AssTrAcT. The main object of this paper is to generalize a symmetric identity which is
given in a recent work [Discrete Math. 339(2016), 2994-2997.] by the method of ¢-
difference equation. In addition, we generalize symmetric identity by fractional integral.
Moreover, we generalize symmetric identity by moment integrals. Finally, we generalize
symmetric identity by generating function for Al-Salam—Carlitz polynomial @f,“‘b)(x, ylg).

1. INTRODUCTION

In this paper, we follow the notations and terminology in [16] and suppose that 0 <
g < 1. In this paper, we follow the notations and terminology in [16] and suppose that
0 < g < 1. We first show a list of various definitions and notations in g-calculus which are
useful to understand the subject of this paper. The basic hypergeometric series ,¢;
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r¥s 5], = S RUPACS n, 1
¢ b1,b, ..., b QZ] ;(q’bl9b2’--~9bs;Q)n[( r4 ] ¢ 1)

converges absolutely for all z if » < s and for |z| < 1 if r = s + 1 and for terminating. The
g-series and its compact factorials are defined respectively by

n—1 oo
@qo=1, @au=[](1-ad"), @aw~=]](1-ad), )
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where a is a complex variable. For convenience, we always assume 0 < g < 1 in the paper,
(ar,az,....am; Qn = (a1;Pn(a2; Qn -+ - (@m; @)n, Where m is a positive integer and n is a
non-negative integer or co.

In [9, 10], Chen and Liu introduced two g-exponential operators
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The Rogers—Szegd polynomials [1] are given by

n n

hn<b,c|q>=z[z] B and g, (biclg) = Z[’,Z] ¢ Bk, 3)

k=0 k=0
The Al-Salam—Carlitz polynomials [6, Eq. (4.4)]

& “ k+1 1
@2“><b,c|q>=2[’,j] (@™, and Wb, clg) = Z[’;} (1 q) (21 ), ab)e" .

k=0 k=0
“)
The Al-Salam—Carlitz polynomials reduce to the Rogers—Szegd polynomials with a = 0.
The Rogers—Szeg6 polynomials play important roles in the theory of orthogonal polyno-
mials. Liu [18, 19] obtained several important results by the following g-difference equa-
tions. Liu and Zeng [23] studied relations between g-difference equations and g-orthogonal
polynomials. For more information, please refer to [3, 12, 13, 14, 15, 17, 20, 21, 22, 27,
29, 30, 31, 32, 33].

Proposition 1. Let f(a, b) be a two-variable analytic function at (0,0) € C2. Then

(A) f can be expanded in terms of h,(a, blq) if and only if f satisfies the functional

equation
bf(aq,b) — af(a,bq) = (b —a)f(a,b). ®)
(B) f can be expanded in terms of g,(a,b|q) if and only if f satisfies the functional
equation
af(aq,b) = bf(a,bq) = (a - b)f(aq, bq). (6)

In [4], Andrews gave a wonderful introduction of Ramanujan’s lost” notebook, and
listed some interesting identities contained therein. One of which is the following beautiful
symmetric identity. Where if

Pp— 1 ﬁn
fla.p) = —a Z (1 —ax")(1 —ax™y)(1 —ax*2y2)--- (1 —ay")’

n>1
Then
fla.p) = f(B,a).

The identity we present here is a refinement of the case where x = ¢,y = ¢°.
Then A.E. Patkowski [25] obtained the following symmetric g-series identity.

Proposition 2 ([25, Eq. (1.3)]). We have, for arbitrary a, and |b| < 1, |t| < 1,

i (—aqul; q)ntn _ i (—lll‘qnﬂ;q)nb" (7)
e AT B S (/) S

In this paper, we first generalize this symmetric g-series identity by the method of g-
difference equation.
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Theorem 3. For arbitrary |a| < 1, |b| < 1 and |t| < 1, we have

N (Catg"™! ), (-abq
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n+l. 2n+l)

s Pnt" Z”] (q7", bq"; @r(—acq

qn+1 0

> . n
(q _abqn+l bq2n+1 ) 2¢1 [ 2n+l1+k > 9> €q :|’
0 9 9

®)

(—atg"*'; @) O (—abg"™t ! @ut" (—agq, 1/(bg™); q)k (th’”)k
&n »b =
Z (i D = 2 G 2 e Caba g | b

(@5 (n+k+1)(n+h)
n n b f'l. 9
24 (¢ b g, (“/b) ®

Proof of Theorems 3 . Denoting the LHS of equation (8) can be written by

0 k
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b,c) = Cor g, cq”
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By using equation (7), we have
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We can verify that f(a, b, ¢) satisfies equation (5). Then, we have

00

fb, €)= ) uha(c, blg),

then, we have

N o (—atg™!; g),b"
f(b,0) = u,b" = _—.
HZ:(; o (tq" @
Hence
- (_atqm—l ’ q)n
f(b,c) = ————h(c, Dlg).
=0 (lCI vQ)n+l
Using the same way, we gain the equation (9). The proof is complete. O

2. FRACTIONAL ({-INTEGRALS FOR A SYMMETRIC @-SERIES IDENTITY

In this section, we use the fractional g-integrals to deduce a new identity for a symmetric
g-series. For more information, please refer to [2, 8, 26].
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The g-gamma function is defined by [16]

() = ((qx' q))";(l ', xeR\(0,-1,-2,...). (10)
The Thomae—Jackson g-integral is defined by [16, 11, 28]
b o
l:fungx=(v—mﬁipquo—afw¢ﬂ¢ﬂ (1)
The Riemann—Liouville fractional q-integra’f:(;)perator is introduced in [2]
(15 f)@) = I,( ) y[“ (Gt/x: @)1 f(1) dy 1. (12)

The generalized Riemann-Liouville fractional g-integral operator for @ € R* is given by
(26]

%mruﬁwmmw (13)
Proposition 4. Fora € R*, 0 <a < x < 1, we have
1 ny _ C n [k]q!an_k a+k .
I Ax"} = kZ:(; [k] mx (alX; q) g (14)

Theorem 5. For « € R*, 0 < ¢ < b < 1, we have we have

i (—acq””,q)n Z b‘”k(c/b; q)a+k3¢2 [ qfk,z_[fcqznﬂ’c?n » q}
g P S NG Dok cq”™!, —acq"™*
_ i (—atq" s @ N (@ D" D/ b @lask 15)
= (g Pnrr H (G Dk (43 Dk

Proof of Theorems 5. Multiply (1 — g)* on the both sides of equation (15), the LHS of
equation (15) become to

d-aF ) (—acq”*';q)nt” i ba+k(c/b; q)a+k p [ q*k’z_?chnJrl’c?n . q]
pary (cq™; @n+1 = *(q; Qark cg®™, —acqg™t T
_ i (1- ‘])a(—acq"”,cqz””;q)oot” o0 b‘”’k(c/b; q)a+k%¢2[ q—k,_acq2n+1’cqn y q]
=0 (—van+l’cqn;q)oo o Ck(q; Dok ch"“,—acq”“ s 4,
B i[ﬂ (—abq””,qu””;q)mt”
= - q.c (—abq"“,bq";q)m
=0 L (bg" Qun

Similarly, the RHS of equation (15) become to

(—atq"" ,q)n o N (@D e/ @ask
: 16
; (tq"; q)n+1 ~9 Z (@ Dn-k (@ Dotk (10

o (—atq"™; q)n ; (—atq™'; g),b"
T aN qc{b } qc {—

= (17)
= (1q" P (tq"; Pn+1

then, we use Proposition 2 can obtain the equation (15). The proof is complete. O
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3. MOMENT INTEGRALS FOR A SYMMETRIC ({-SERIES IDENTITY

In this section, we use the moment integrals to deduce a new identity for a symmetric
g-series.

Al-Salam and Carlitz [1] defined moments of two discrete distributions da'®(x) and
dB“(x) by Rogers-Szego polynomials as follow

f " ¥ da®() = h(alg) and f "X B = ga(alg), (18)

where ¥ (x) is a step function whose jumps occur at the points ¢* and ag” for k € N, while
the jumps of 8 (x) occur at the points g~* for k € N. These jumps are given by

k k
da (k) = q d  da®(ad) = q , 19
) (@; Q)(q> q/a; @k o @ ag) (1/a; 9)(q, aq; @)k (19
k K2 k+1
gy = CL T ) (20)
(5 D

Liu gained the following expression of bivariate Rogers-Szegd polynomials by the tech-
nique of partial fraction [18, Eq. (4.20)].

L b| Z (n+l)k Z (n+l)k )1
n(a, blg) = (21
= Gla L@ & (@:0q/b: )k (a/b 9 &4 (q.9bla g
So it’s natural to defined the generalized discrete probability measure /'*?) by
o k k
@b) = q Epgh + q £ ] (22)
;g [(a/b; Delg-gblasqy """ (bla:q)o(q.aq/bigy |’
where the bivariate Rogers—Szeg6 polynomials expressed by
+00
habig) = [ ¥ dao, 23)

and their generating function are given [18, Eq. (2.3)]

S " 1 |
h,(a, b = = f da®?(x). 24
; (@.bla) (@ Dn (@b Jco (X5 Q) ) &4

Cao [5] generalized equation (24) by the method of transformation.

Proposition 6 ([5, Eq. (1.11)]). Forx e Nand d/c = q*, if max{[cs|, |as]|, |at| , |bs]| , |bt]} <
1, we have

® dx; @)oo
( X C]) da(s,t)(x) — .
—eo (ax,bx,cx;q),, (cs,as, at, bs,bt; q),

(ds, abst; q)., dfc,as,bs
3¥2 ds,abst sgetl- (29

Corollary 7. For x € N, if max{|as|, |at|, |bs|, |bt|, |labst|} < 1, we have

© (X5 Qoo (cs,abst; q) as, bs
— T2 o) = ———— = S sgct]. 26
f o (ax,bx;q),, @) (as,at, bs,bt;q), > *| cs,abst %c (26)
Proposition 8 ([7, Eq. (2.10)]). Forn € N, we have
E(b0,) {(at; g)} = (at, bt; q)co, 27

E(b6,) {d" (at: g)o) = a"(at, br; q>m2¢1[ aafn ,q,bz]. (28)
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Proposition 9. For x € N, if max{|as|, |at|, |bs|, |bt|, labst|} < 1, we have

< (ex,dx; @)oo

da"™"(x) =

(cs,ds,abst; q),, gD (=ct)i(bs, as;q)j I, 1/(esq”™h)
—oo (ax,bx; q), (as,at,bs,bt; q), = (g, cs,ds,abst; q) 2

0 ; ,dsq]

(29)

Proof of Proposition 9. By using the equation (26), we have

© (XD s (ds,abst; q)., gD (=1)i(bs, as; q); _
E(s6,) {Im (ax,bx; q)., da™ X )} (as,at, bs, bt; q)., Z (q,ds,abst; q); Els 0,){(ct)J(csq/,q)m}.

(30)
Then the LHS of the equation (30) can be written by

“ 5 Qoo , *° 1 g
E(sea{ R da“*)(x)} ~ [ e B x4
(X dX Qe
—oo (ax,bx; q), o™, @D

Using the equation (28), the RHS of the equation (30) becomes

. ®
(ds,abst; q)., Z ¢ (=1)/(bs, as; CI)jE( 0,

£/ I Do
(as,at, bs, bt; q),, &~ (q,ds, abst; q); ) {(C )Y (csq’s q) }

_ (cs,ds, abst; q),, i qO(=cty(bs, as; q); T esgh
~ (as,at,bs,bt;q),, (g,cs.ds,abst; q); 2 0 1q.dsg’

The proof is complete. O

2n+l| |

Theorem 10. For x € N, if max {|—axq , —ayq2”+l| , 1xq", Iyq”I} < 1, we have

(—abq"*'; @)
——————h,(x,
Z (bg"; Pn+1 n(x:214)

2n+1.

_ Z (caxg” " (cayg" e <o 49Dy (g —axg™ ! g),
(an; q)n+1 (_ayq2n+] ’yqn; q)oo = (q, _aan+1 , xq2n+l , _axyq3n+] : q)]

~ 1/(xq2n+1) 2n+1+j

X201 3q,—axq (32)
Remark 11. Lety = 0 in Theorem 10, equation (32) reduces to (7).
Proof of Theorem 10. From a symmetric g-series identity
X bn+1; ntn X l‘"+]; nbn
Z(aq Dul" _ N (At ub" 33)
(bq"™; @In+1 1" P
Acting moment integral on both sides of the equation (33), we have
b"“, R 00 s 0 t"+],t 2n+1; o i
Z (zabg™ :4) f r e = b (zatq 1 D 400 (). (34)
bq"; Pnv1 - J-co —o (—atg”, 14" @)eo)

n=0

Then use the equation (23) and (29), we obtain equation (32). The proof is complete. O
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4. (GENERATING FUNCTIONS FOR A SYMMETRIC (-SERIES IDENTITY

In this section, motivated by the results of Liu’s [24], we use the generating function for
Al-Salam—Carlitz polynomial O\ *D(x, y|g) to generalize symmetric g-series identity.
The homogeneous polynomials O™ P (b, clg) is defined by

O (x,)lg) = kz_(; [Z] (@ DiBs sy (35)

Proposition 12 ([24, Proposition3.2]). If max{|xt|, [y?|} < 1, we have

" t, byt; @) o
DP)(x, ylg)—— = . (36)
Z yq( 3 Dn (ab, 1X, 195 @)oo

Theorem 13. If max{lc|,lgl,|-abg®*!|,1bq"],1bl |} < 1, we have

o (—atg™ ! (e " Z (c, —abg™", qu”+‘,q)ool"3 o] 9 —ablqz"“z,blq” o
(1" Dn (43 D £ (q;-abg®™', bq"; q)es —abg™!, bg*"*
(37)

Remark 14. Let ¢ = 0 in Theorem 13, equation (37) reduces to (7).

Proof of Theorem 13. By Using equation (36), let a = ¢",b = ¢"*',x = —ag”*',y =
q",t = b and max {i—aqu’”l| , Ibqnl} < 1, then we have

> > none k R _ bqn+l bq2n+l.q)
tn (D(q q" 1)(_a 2n+1, | ) — rn( a ) s )
Zg ; ¢ T G g Z (—ab* T, bg" )
b n+1’ R
_Z( abq"™ gt (38)
(bq"; P+t

Then, the LHS of equation (37) can be written by

i (C, _abqn+1 bq2n+l’q)mtn ¢2 q/C, _abq2n+l’bqn g
(q’ _abq2n+l’bq ’q)oo —abq”+l’bq2n+l s Y,

—n n+l
tni (c; Q)k(D]({q oq )(_aq2n+l’qn|q)bk
ya (99 Dk

Il
1M

-3 (=abg" s @t" (¢
= bq"Pnv1 (@i

_ i (=atq"™"; @ulc; Qb
— "D (G D

The proof is complete. O
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