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SOLVING SOME ¢—DIFFERENCE EQUATIONS OF THE
FOURTH ORDER

H. EL-METWALLY AND F. M. MASOUD

ABSTRACT. In this paper, we study the existence of the solutions of some
q—difference equations. The solutions of some nonlinear of g—difference equa-
tions of order four are obtained. Also, we find the solutions of some non
homogeneous linear g—difference equations with constant and variables coeffi-
cients.

1. Introduction and Preliminaries

The subject of g-calculus started appearing in the twentieth century in intensive
works especially by F. H. Jackson [12], T. E. Mason [14], R. D. Carmichael [5],W.
J. Trjitzinsky [16], C. R. Adams [I] and other authors such us Picard, Poincare,
Ramanujan.

The g-difference has many applications in different mathematics such as sta-
tistical physics [I5], fractal geometry [8],[9], number theory, quantum mechanics,
orthogonal polynomials [IT] and other sciences including quantum theory, mechan-
ics and theory of relativity [4].

In this paper, we investigate the existence and the properties of the solution of
the following:

I) The nonlinear boundary value problem (BVP) of the fourth-order of the form:

Dyu(t) = f(t,u(t)); 0<t<1, 0<g<l, (1)
uw(0) = 0, Dgu(0)=0, D;u(0)=0, u(l)=1,

where f is a given continuous function.
IT) The linear g-difference equations of order four

D+ ax(@)D} s+ as(@) D21 + ay(#) Dy +aa(@)] y(a) = F@), (2)
where a1 (z), as(z), as(x) and a4(z) are continuous functions.

Let us recall some basic concepts of g-calculus ([7} 10} [13]).
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1- The g-analogue of the shifted factorial (a),, is defined by

(a;9) = 1,
(a;q)n = (1)(1—-qa)(1-q’a)(1—qa)...(1—¢"")
= H(l—qma), n € N.
m=0

2- The g-analogue of a complex number a and of the factorial function are defined
by

[ay = 1+q++..+¢ "
- =, geC—{1} aeC,
and
[nlg! = [1g[2]4[8lg--[n]q
= H[Mﬁm, g#1; neN, [0l=1 0<q¢g<L
m=1

n

3- The g-binomial coefficient [k]q is defined by

nl gt (@0 - .
{ L Kl =Kl (6 0)k( @) =002

4- The g-analogue of the function (z + y)" is defined as:

n

n _ e
(z+y)g = Z {k] Pk 2=k k. n € Np.
k=0 q

5- The exponential functions are defined as:

o0 n 1

z -1
= = 0 1 ; 1-—
eq(x) ;[n]q' ((1 o q)x, q)oo7 < |q| < 9 |$| < | q| 1)
and
[e'e) - "
By(z) = ¢** 1)/27{71] = (—(1=@)z59)e, 0<lgl<1l; weC.
n=0 a:

6- The functions eq(x) and e,—1(—x) satisfy
eq(x) eg-1(—z) = 1.
7- The functions e,(x) and E,(x) satisfy the following properties:
Dyeqg(z) =eq(xz) and DyEq(x) = Eq(qz).

8- The g-derivative D, f of a function f also referred to as the Jackson derivative
[12] defined as:
flgz) — f(z)

Dy f(x) = T w@w—z 0<lgl <1
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9- Derivative of a product
Dqy(f9)() = g(qz)Def(x) + f(x)Dqeg(x)

10- Derivative of a ratio

11- Chain rule

flg(gz)) = f9(x)) g(gz) — g(x)

Df)@) = = o= =z
= qugf(g)Dq,zg(x)'

99

12- Derivative of the inverse function: Let y = f(x) then z = f~!(y) where f~!
is the inverse function to f Applying the g-derivative on each side of the equality,

implies
_ iy ) - F THy(@) yiex) —y(@)
L= Dyfw) = Dyf ) = Tt IS S VT
= Dgyf 71(y)-Dq,xy(m)7
consequently .
Douf )= 5

13- The g-integral of a function f defined in the interval [a, b] is given by

x
o0

/ f®dt =S (1— )" [z f(zq") — a f(g"a)], = € [a,b],

a n=0

and for a = 0, we denote

I () = / fBdgt =S 2 (1 - )" f(ag"),
0 n=0

provided the series converges. If a € [0,0] and f is defined on the interval [0, b],

then

b b a
/}@Mﬁz:/ﬂﬂ%t—!}@ﬂﬂ.

Similarly we have

f®)=f@t), Igft) =117 f(t), neN

14- Fundamental principles of the g-analysis

jf(w)dqw] = f(@).

i@/DJ@Mﬁ:f@%JM)
15- aIntegration by parts: Consider the equality
Dy(f9)(x) = f(x)Deg(x) + 9(qz) Dy f (),

i) Dy
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then
f(@)Dag(x) = Dy(f9)(x) — 9(qz) Dy f ().
Let h(z) = f(x)g(z). We have

b
/ Dyh(z)dyz = h(b) — h(a).

Hence
b b

[ f@Dugta)d,e = [fal, - [oar)Dus(e)dye
2. Studying of Eq.

In this section we consider the following two cases of Eq..
The special case of Eq. with constant coefficients of the form

[D;L +a1D; 1 4 aaD) 1 +azDg-1 + a4} y(x) = f(x), (3)

where a1, as, ag and a4 are constants.

Recall that Eq. is said to be a fourth-order constant coefficients linear nonho-
mogeneous g-difference equation. The corresponding homogenous equation reads

{Dg_l + alDS_l + a2D3_1 +azDy-1 + a4} y(z) =0, (4)

In this case the equations can be solved explicitly.

Consider first the equation

Dy-1y(z) = Ay(z),
which its solution reads
y(z) = eg%. ()
Loading Eq. in Eq., one obtains the following algebraic equation in A called
the characteristic equation of Eq.:

)\4+CL1/\3+CL2/\2 + azA + a4 =0, (6)

Lemma 1. (I) If Eq.(@ has four distinct roots A1, Az, A3 and Ay then Eq.
admits as four linear independent solutions the functions

yt(‘lp) :e(/]\iwla 1= 1527374'
(IT) If some of the roots of the characteristic equation are not distinct, then in

that case also Eq. admits four linear independent solutions.

(IIT) If for example a given root A admits a multiplicity equal to m, so the
corresponding independent solutions need to be searched among functions of the
form

oo
y(z) = Z cpx™,
n=0
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where the coefficients c,, satisfies

m i—1 ;
m . 1— q—(n+z)+k
2 Kz)(‘”m B e

=0 k=0

Proof. (I) Here the theorem is proved straightforwardly.

(II) and (III) To prove this part it suffices to load Eq.(f)) in the following auxiliary
equation

(Dy-1 — )\)my(z) =0, m=2,3 or 4.
This proves the theorem. (I
Theorem 2. The solution of Eq.(@ is given by
y(z) = Ci(z)y1(2) + Ca(2)y2(2) + C3(2)ys(2) + Ca(x)ya(z),
where C(z) = ( Ci(z) Ca(z) Cs(z) Cu(z) )t is the solution of the system
®(qz) D,C(z) = F(z),

and reads
oo

Cl@)=C+(1—qz) ¢ (¢v)F(¢'z),
i=0
Fz)=(0 0 0 f(z) )t and ®(z) is a fundamental matriz of the solutions
of the homogenous Eq.(4) and y1(x), y2(z), y3(z) and ys(z) a fundamental system
of the solutions of Eq.(4)).

Proof. To find the general solution of Eq. let

z1(z) = y(z),
Z9 (!E) = quly({,[:),
w(x) = DZayla),

and

Thus we obtain the system

Dy-1z1(z) = 2z(x),
qul 2’2($) = 2’3(22),
Dq71Z3($) = 24(33),
and
Dy-124(x) = —(a124(%) + a2z3(x) + azzz(x) + agz1(x)) + f(x). (7)

Now, replacing = by gz and then ¢g~' by ¢ and by using the matrix form of Eq.
we obtain

D,z(z) = Az(qx) + F(x). (8)

where z(x) :( z1(x)  z(z) 23(x)  24(x) )tv
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and F(z)=(0 0 0 f(qx) )t.
Now consider the homogeneous part of Eq.

Dyz(z) = Az(qz), (9)
with the fundamental matrix
y1(2) Y2 () y3(x) ya()
() = D1y () _1y2(w) Dy-1y3(x) Dg-1ys(x)
D2y () g 2 ya(z) D2 ys(x) D§,1y4(x)
Diyi(z) Dyaye(z) D,ays(z) D, .ya(x)

The general solution of Eq.@[) is found as

z2(x) = ®(2)C(x),
where C(z) = ( Ci(z) Ca(z) Cs(z) Cu() )t is the solution of the system

®(z)DyC(x) = F(2),

and reads

Clx)=C+(1-q)z Z ¢'® Y (¢'2)F(¢'n),
i=0
and the general solution of Eq. reads

y(x) = z1(z) = C1(z)y1(x) + Cao(x)y2(z) + C3(z)y3(z) + Ca(x)ya(w).

Remark 1. Note that for the q—difference equation

[Dé +a1Dy+ asDy + asDy + a4] y(x) = f(x), (10)
the solution of the corresponding system reads
z(x) = (z)C(x),
where
vi(@)  ye(e)  ys(e) ()
d(z) = qulE z) Dgy2(x) Dgys(z) Dgya(z

(
Déyl ) Dgy2($) Dgy?)(x) D§y4(9€) ’
Dy (x) qug(m) qug(ac) qu4(x)

and C(x) is the solution of the system
®(qz)D,C(z) = F(x), (11)
with F(z)=(0 0 0 f(z) )t, giving

Clz)=C+(1- q)wzq"@‘l(q”lw)F(qix)-

Example 1. Solve the g-difference equation

Dyy — 5D3y + 5D2y + 5Dy — 6y = f(x), (12)
with a) f(x) = 22 b) f(z) = ze*®, a € Z.
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Solution The characteristic equation of Eq. reads
M BN+ 5M2 4+ 50 —-6=0. (13)
and have solutions Ay =1, Aog = —1, A3 =2 and A\, = 3.
This leads to the fundamental system of the corresponding homogenous equation
y1=¢€5,  Y2=e,", ys=e",  ya=er,
and the general solution of Eq. is
y(z) = cr(z)yr + c2()y2 + c3(2)ys + ca(w)ya,

where
Dyc1(z) 0
B(qz) Dyca(x) | _ 0
Dq63($) 0 ’
Dyca(z) f(x)
and
eg €5 62"’” 627“
T 2x 3x
(I)(l') = egf e—qr iegm SeSr
eq eq B% qu
s T T
€y €q 8ey”  27ey
Then
3 _—x 1, —= _ T 1, —x
Qeq—l 4eq—1 eq—l 46q—1
lex 711690 le:c ;163c
‘1)_1(.’1}) — 4-q—1 24 %*1 47g~1 24 “q—1
—2x 1 _—2zx —2x -1 _—2x )
€q_1 geq_1 €q_1 3 €,-1
16731 —71673I ;16731: 16731
47q—1 8 "¢t 4 "¢t 8 ¢!
and
3,—qw 1, —qz gz 1,—qz
2641 1651 eq71 4€q,1
10w —11 4z 1,07 —1,a%
-1 47q—1 24 -1 4-q—1 24 -1
@ (qa:) = i12(197; 1 —Qqqx —ng —1 —qux
—€, 1 3€,-1 €q—1 3 €41
1,-3qz —1_,—3qz ;16—3qgc 1,—3qx
4-q—1 8 “q1 4 “q-1 8 g1
Consequently
3_,—qx 1, ,—qx _p 9% 1. —qx
chl(x) 216q,1 41?171 1€q,1 4leq*1 0
Dyea(z) | _ 46q£1 24 €41 463—1 211 0
Dq83($) 6;731 %6;731 ;7511 —1 7732 0 9
1 _—3qz —1 _—3qz —1 _—3qzx 1 _—3qx
ch4(x) Zeq,l ?eq,l Teq,1 3 g1 f(‘:l:)
then

() if(@)e
Dyca(z) | _ 5 (fﬂ)egﬂ
@ | 7| e e
(z) %f(x)e;f’fx

This implies
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Dyer(@) = @),
Dyeafa) = I,
Dyesla) = 5 I@e, "

and
Dyca(x) = = f(z)e 28

a) If f(z) = 22 we obtain

| p——-
Dyci(z) = szeq,ql,

1 Y
Dyea(z) = ﬂx%g,l,

1 Y oum
Dycs(z) = ?xQeqiq,

and
1 2 —3qx
Dycs(z) = PR
Therefore g-Integrations by parts give

er(@) = e — e [ + @+ D+ (g + D] + 3(a+ 1),

Les [0~ (g Va+ g+ )] + (g + 1),

c2(®) = 2 = o1 24

e Lgrnes g+ 1)] ~Ligr,

— —2x
ca(®) = ca+e {6 12 24 21

and

1 1 1 1
C4(£C) =c4 — eqf’l |:24£L'2 + 5((] + 1)1’ + ﬂ(Qﬁ- 1):| + ﬁ(q + 1)

Consequently the general solution of Eq. where f(z) = 22 is
x 1 2 1
y@) = eeg— [+ g+Dr+(g+1] + 7

1 1 B
ez = op [2f = (g Do+ (g + D] + gp(g+ Deg”

(q+1)ey

1 1 1
2?4 L(g+ Dot ~(g+ 1)} ~ Ligr e

teseg TG 12 24 24

1 1 1 1
— 2?4 —(q+ D+ —=(g+1)| + ——(g+1
1% T et et gglat )}+216(’1Jr )

3z
eq .
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b) If f(z) = weg™ we obtain

1 —
Dyei(z) = zxefjxeq,qfc,
—1 .
Dyca(z) = ﬂxeg‘zegﬁ,
—1 _
Dycs(z) = ?xeg"”eqffx,
and
1 az ,—3qT
Dq04(x):§zeq gt

Therefore g-Integrations by parts give

1 ar —T
4(a - 1)(ag — 1) (== Degre +1], a1,

a(z)=c +

1 T T
co(x) =co — Mo+t Deg 1) [((oz + 1z — Deg¥eg—1 + 1] , a#—1,
c3(z) =c3 — 30— 2)1(aq ) [((Oz —2)x — 1)62‘%;,23’ + 1] , aF 2
and
1

(0= 3)0 = Degre, +1], a#3.

ca(z) =ca + p

8(a—3)(ag — 3)
Consequently the general solution of Eq.where f(z) = zel® is

1

o~ TD(ag =1 [((a =1z —1)eg® + €]

ylz) = ceg +

ot et Diag a1 @ T DT D+ e
2x 1 a—2)r — 1)e®* eQ;L'

T30~ 3 (g =gy (@ DT - D"+ e

+C462w + ! [((—3)z — Deg™ + egﬂ .

8(a—3) (g — 3)
The general case of Eq. of the form
[Di-s 4+ a1(@) Dl + az(2) D2 + ag(@) Dy + as(@)| y(@) = f(@), (14)
where a1 (z), as(z), as(z) and aq(x) are continuous functions.
The corresponding homogenous equation of Eq. is given by
[D;{l +a1(2) D2y + as() D2y + ag(w) Dy 1 + a4(x)} y(z)=0.  (15)
Theorem 3. The solution of equation Eq, s given by
y(z) = Ci(z)y1(x) + Co(2)y2(x) + Cs()ys(x) + Calz)ya(z),
where C(z) = ( Ci(z) Ca(z) Cs(z) Cu(z) )75 is the solution of the system
®(qz)DyC(z) = F(x),
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and reads -
Cl@)=C+(1—q)z) '@ (¢'v)F(q'x),
i=0
Fz)=(0 0 0 f(=) )t and ®(z) is a fundamental matriz of solution of the
homogenous equation Eq.(15) and yi(z), y2(z), y3(z), ya(z) a fundamental system
of solution of Eq.@.
Proof. To find the general solution of supposing

Zl(x) = y($)a
Zz(.’E) = quly(.%'),
() = D2ay(a),

and

We obtain the system

Dy1z(z) = z(x),
qul 2’2($) = 2’3(22),
Dq71Z3($) = Z4(.T),

and
Dy-12z4(x) = —(a1(x)za(x) + a2(x)2z3(x) + az(x)22(x) + as(x)z1(x)) + f(x). (16)

In matrices terms we have

Dyz(x) = A(z)z(qz) + F(2), (17)
where z(z) = ( z1(x) 22(z) z3(x) 24(2) )t,
0 1 0 0
0 0 1 0
A= 0 0 0 1 ’

—asq(qr) —az(qr) —az(qz) —ai(qr)

and F(z)=(0 0 0 f(qz) )t. So it follows from Eq. that the existence
of a unique solution of Eq. under the initial constraints

y(x0) = yo, Dg—ry(zo) =1, Dl 1y(wo) =y2, D2 1ylzo) = s,
is equivalent to the existence of a unique solution of Eq. under the constraints
t t
( 21(360) 22($0) 23($0) Z4($0) ) = ( Yo Y1 Y2 Y3 ) .

As a consequence the existence of a fundamental system of solution y; (), ya2(z),
y3(x), ya(x) of Eq.(14) is equivalent to the existence of a fundamental system

(@) D) Diiypn(z) Diyi(@) ). ( wa(@) Dy-rya(w) D2 ya(x) Diiya(w) )

of the homogeneous part of Eq.

Dyz(z) = A(z)z(qx),
with the fundamental matrix

t

)
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y1(z) Yya(z) y3(z) ya(z)
B Dy-1yi(z) Dy-1y2(x) Dy-1ysz(x) Dy-1ys(x)
=1 D @) D (@) Dlsle) D) e
D2 yi(x) D;aye(x) D) iys(z) Dy ya(z)
Indeed if
a1y1 () + agy2(z) + azys(w) + agya(z) =0,
then
a1Dg-1y1(x) + aeDy-1y2(x) + azDy-1y3(x) + auDy-1ys(x) = 0,
D2 iayi(x) + aa Dl 1ya(x) + a3 D) yys(x) + 044D§71?/4(33) = 0
and

ang_lyl(x) + a2D2_1y2($) + 053.D2_1y3($) + a4DZ’_1y4(x) =0,
or
&(z)a = 0.

where ®(x) is in Eq. and o = ( ap Q3 a3 Qg )t. Hence the system y;;
i =1, 2,3, 4 is linear independent if the matrix ®(x) in Eq. is nonsingular.
The matrix ®(z) can naturally be called the g—Wronskian or g—Casoratian of the
equation Eq. corresponding to the continuous or discrete cases. Consider now
the equation of deriving the solution of the non homogenous Eq. (). If yi(z), y2(z),
y3(x), ya() is a fundamental system of solution of the homogenous equation Eq. (5]
corresponding to the fundamental matrix ®(z), then according to the general theory
of g—difference systems, the general solution of Eq. is found as

z(z) = ®(z)C(x),
where C(z) = ( Ci(z) Cai(z) Cs(z) Cu(x) )t, is the solution of the system

®(qr)DyC(x) = F(x),

and reads

Cl@)=C+(1—q)z) @ (¢v)F(q'z),
=0

and the general solution of Eq. reads
y(z) = z21(x) = Cr(2)y1(2) + Ca(@)y2(2) + C3(x)ys(z) + Ca(w)ys().

Remark 2. Note that for the g-difference equation

[D;1 + a1(z)Dy + az(z) Dy + az(x) Dy + a4(x)} y(z) = f(x).
the solution of the corresponding system reads

z(z) = ®(z)C(x),
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where
y1 () y2(z) ys(z) ya(x)
P(x) = Dyy(2) qyg(x) qy?’(@ qy4($)
Déyl() D§y2($) g ys() D§y4(x) ’
Dgyi(z)  Dyya(z) Dyys(z) Dyya(z)

and C(x) is the solution of the system
®(qz)DyC(z) = F(x),
with F(z)=(0 0 0 f(z) )t, giving
Clz)=C+(1—qz ) ¢® (¢ 2)F(¢'z).
i=0
3. Studying of Eq.
We will need to the following lemma to prove Theorem (5) below.

Lemma 4. ([2],[3])

//f(su dsdvf//fsu ))dqudys.
0

0 gs
Theorem 5. Let u € C[0,1] then the boundary value problems Eq. has a unique

solution is given by:
1

u(t) = / G(t, 5:9) F(s,u(s))dys, (19)
0
where
1 gs(t = 1) [C5EEE) 42— stt+1)], 0<s <<,
G(t,s;q):m t3[%qu +qs}, 0<t<s<I1.

Proof. Integrating Eq. gives

)
N
g
=
~—
I

0 gs

//f(su dsdv_//fsu ))dgvdys
0

/(t —gs)f(s,u(s))dgs + ait + as.

0
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Similarly we have

Dqu(t)

then

Therefore

u(t) =

= (/ v —qs)f(s,u(s))dys | dgv + art® + ast + a3
0
= /(/vqs cu(s))dgv | dys + art? + ast + a3
0
t
- (1 o) Ssuteh)] s +ant? st +
0 as
2 q252 9 9 9
B /(1+q T ats - 1+g¢ TS )f(S,U(s))dqs+a1t +ast + a3
0
t2 + 382
= ( 1+q D5 gts) f(s,u(s))dgs + art® + ast + ag
( 1_|_q qS)f(S,U(S)> q3+a1 + ast + as,
L2 302
t
D,u(t) = / <1+_f8 —qts) f(s,u(s))dys + art® + ast + as.
) q
T 0 3.2 1
v°+q°s
/( 1 +qq _qu) f(sau(s))qu dqv+a1t3 +G,2t2 + ast + a4
o Lo |
T h o 3.2 !
v+ q°s
/( 1 +qq _qu) f(sau(s))dqv dq5+G1t3 +G,2t2 + ast + a4
0 Llgs i
o 3 3.2 2 t
v g°sv  qsv 5 )
- d t t t
/ ((1+q)(1+q+q2) T17g 1+q> f(s’“(s))]qs q8 +a1t” + agt” + azt + aq
0
/ 3 3.3
1 t P
1+ q/ [1 i @5t~ gst” = Trot+ @ ¢'s’ + QBSB} f(s,u(s))dys
0

+a1t3 + a2t2 + Clgt + aq

t
1 /[t3—q3s3—q453—q5s3—q633+q3s3+q453+q533
14q 1+q+¢?

0

— qt®s + q3t52] f(s,u(s))dqs

+a1t3 —+ a2t2 —+ a3t —+ aq.
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Thus
t

u(t) = ! -5’ — qt®s 4+ ¢3ts?| f(s,u(s))dys + art® + ast® + ast + ay,
1+q/) [14+q+¢ !
0

(20)
where a1, as, as and a4 are arbitrary constants. Now using the boundary conditions
of Eq. we have a; = a3 = a4 = 0 and

1
-1 1—g%s?
Lt s s
0

1+q+q
then
u(t) r - —qt2s+q3ts2 f(s,u(s))dys
1 +q 1—|—q—|— 2 ’ ?
0
3 ; 1
t —q’s 3 9
- + ) d )
1+q0/{1+q+q o5+ 5| o)
or
1 F 3 _ 643
t° —q°s
uw(t) = [2](1/ {B]q—qt%—i—q?’tsﬂ f(s,u(s))dgs
0

_[;1/1 [1_[31683 —qs+ q382] f(s,u(s))dgs
0

= /G(ta s;q) f(s,u(s))dgs;[2lq=1+¢,[38];=1+q+ 7. (21)
0

O
Example 2. Find the general solution of the following Boundry Value Problem
Dyu(t) = t*, 0<t<1, (22)
w(0) = 0, Dgu(0)=0, Du(0)=0, u(l)=1.
Solution Let f(¢,u(t)) = t> — f(s,u(s)) = s2, it follows from Eq. that
t 1
1 /[t?’ 2 3 } 2 £ /[1_(1633 3 2] 2
u(t) = — —qts+qts dys — —— ———— —qs+q°s”| s7dys
(t) 2, 2, 3, !
0 0
1 L2 3
t’s q 57 2.3, 3 } t /[ 3, 3 4}
= — | |v5 — 5 —qt"s" +¢°ts ——qs—i—qs dgs
Q]q/ {[ lo  BBlg B, Bl !
0 0
6 3 6 3
_ 1[ ¢t _qt6+qt6]_[ S B i
2, q[ﬁ]q [y Bl 2ly LBlaBly  [Blal6ly  [M]g  [5lg
1 q6 q qd] 6_ 3
= — | (5 - #7),
o v, ~ ) )
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then
R N O S SRl O
O = o B, B, @, e, ) (23)

Clearly when g — 1, the solution of Eq. will be as follows

t) = — (t° ¢
which represents the solution of the equation
D*u(t) = % 0<t<l,
uw(0) = 0, Du(0)=0, D?u0)=0, wu(l)=1.
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