ISSN: 2090-5858.

http://math-frac.oreg/Journals/JFCA/

SOLVING SOME q-DIFFERENCE EQUATIONS OF THE FOURTH ORDER

H. EL-METWALLY AND F. M. MASOUD

ABSTRACT. In this paper, we study the existence of the solutions of some q-difference equations. The solutions of some nonlinear of q-difference equations of order four are obtained. Also, we find the solutions of some non homogeneous linear q-difference equations with constant and variables coefficients.

1. Introduction and Preliminaries

The subject of q-calculus started appearing in the twentieth century in intensive works especially by F. H. Jackson [12], T. E. Mason [14], R. D. Carmichael [5], W. J. Trjitzinsky [16], C. R. Adams [1] and other authors such us Picard, Poincare, Ramanujan.

The q-difference has many applications in different mathematics such as statistical physics [15], fractal geometry [8],[9], number theory, quantum mechanics, orthogonal polynomials [11] and other sciences including quantum theory, mechanics and theory of relativity [4].

In this paper, we investigate the existence and the properties of the solution of the following:

I) The nonlinear boundary value problem (BVP) of the fourth-order of the form:

$$D_q^4 u(t) = f(t, u(t)); 0 \le t \le 1, 0 < q < 1, (1)$$

$$u(0) = 0, D_q u(0) = 0, D_q^2 u(0) = 0, u(1) = 1,$$

where f is a given continuous function.

II) The linear q-difference equations of order four

$$\left[D_{q^{-1}}^4 + a_1(x)D_{q^{-1}}^3 + a_2(x)D_{q^{-1}}^2 + a_3(x)D_{q^{-1}} + a_4(x)\right]y(x) = f(x), \qquad (2)$$

where $a_1(x), a_2(x), a_3(x)$ and $a_4(x)$ are continuous functions.

Let us recall some basic concepts of q-calculus ([7, 10, 13]).

Submitted Dec. 9, 2018.

¹⁹⁹¹ Mathematics Subject Classification. 39A05, 39A13.

Key words and phrases. q-difference equations, boundary value, q-integrals.

1- The q-analogue of the shifted factorial $(a)_n$ is defined by

$$(a;q) = 1,$$

$$(a;q)_n = (1)(1-qa)(1-q^2a)(1-q^3a)...(1-q^{n-1})$$

$$= \prod_{m=0}^{n-1} (1-q^ma), n \in N.$$

2- The q-analogue of a complex number a and of the factorial function are defined by

$$\begin{split} [a]_q &= & 1 + q + q^2 + \ldots + q^{a-1} \\ &= & \frac{1 - q^a}{1 - q}, \qquad q \in \mathbb{C} - \{1\}; \qquad a \in \mathbb{C}, \end{split}$$

and

$$\begin{split} [n]_q! &= & [1]_q[2]_q[3]_q...[n]_q \\ &= & \prod_{m=1}^n [m]_q = \frac{(q;q)_n}{(1-q)^n}, \qquad q \neq 1; \quad n \in \mathbb{N}, \quad [0]! = 1; \quad 0 \leq q \leq 1. \end{split}$$

3- The q-binomial coefficient $\begin{bmatrix} n \\ k \end{bmatrix}_q$ is defined by

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!} = \frac{(q;q)_n}{(q;q)_k(q;q)_{n-k}}, \quad k = 0, 1, 2, ...n.$$

4- The q-analogue of the function $(x+y)^n$ is defined as:

$$(x+y)_q^n = \sum_{k=0}^n {n \brack k}_q q^{k(k-1)/2} x^{n-k} y^k, \qquad n \in \mathbb{N}_0.$$

5- The exponential functions are defined as:

$$e_q(x) = \sum_{n=0}^{\infty} \frac{x^n}{[n]_q!} = \frac{1}{((1-q)x;q)_{\infty}}, \qquad 0 < |q| < 1 \qquad ; |x| < |1-q|^{-1},$$

and

$$E_q(x) = \sum_{n=0}^{\infty} q^{k(k-1)/2} \frac{x^n}{[n]_q!} = (-(1-q)x; q)_{\infty}, \quad 0 < |q| < 1; \quad x \in \mathbb{C}.$$

6- The functions $e_q(x)$ and $e_{q^{-1}}(-x)$ satisfy

$$e_q(x) \ e_{q^{-1}}(-x) = 1.$$

7- The functions $e_q(x)$ and $E_q(x)$ satisfy the following properties:

$$D_q e_q(x) = e_q(x)$$
 and $D_q E_q(x) = E_q(qx)$.

8- The q-derivative $D_q f$ of a function f also referred to as the Jackson derivative [12] defined as:

$$D_q f(x) = \frac{f(qx) - f(x)}{qx - x}, \qquad 0 < |q| < 1.$$

9- Derivative of a product

$$D_q(fg)(x) = g(qx)D_qf(x) + f(x)D_qg(x)$$
$$= f(qx)D_qg(x) + g(x)D_qf(x).$$

10- Derivative of a ratio

$$D_q(\frac{f}{g})(x) = \frac{g(x)D_q f(x) - f(x)D_q g(x)}{g(qx)g(x)}.$$

11- Chain rule

$$\begin{array}{lcl} D_q(f(g))(x) & = & \frac{f(g(qx)) - f(g(x))}{g(qx) - g(x)}.\frac{g(qx) - g(x)}{qx - x} \\ & = & D_{q,g}f(g).D_{q,x}g(x). \end{array}$$

12- Derivative of the inverse function: Let y = f(x) then $x = f^{-1}(y)$ where f^{-1} is the inverse function to f Applying the q-derivative on each side of the equality, implies

$$1 = D_q(x) = D_q f^{-1}(y) = \frac{f^{-1}(y(qx)) - f^{-1}(y(x))}{y(qx) - y(x)} \cdot \frac{y(qx) - y(x)}{qx - x}$$
$$= D_{q,y} f^{-1}(y) \cdot D_{q,x} y(x),$$

consequently

$$D_{q,y}f^{-1}(y) = \frac{1}{D_{q,x}y}.$$

13- The q-integral of a function f defined in the interval [a, b] is given by

$$\int_{a}^{x} f(t)d_{q}t = \sum_{n=0}^{\infty} (1-q)q^{n} \left[x \ f(xq^{n}) - a \ f(q^{n}a) \right], \quad x \in [a,b],$$

and for a = 0, we denote

$$I_q f(x) = \int_0^x f(t) d_q t = \sum_{n=0}^\infty x(1-q)q^n f(xq^n),$$

provided the series converges. If $a \in [0, b]$ and f is defined on the interval [0, b], then

$$\int_{a}^{b} f(t)d_{q}t = \int_{0}^{b} f(t)d_{q}t - \int_{0}^{a} f(t)d_{q}t.$$

Similarly we have

$$I_q^0f(t)=f(t), \qquad I_q^nf(t)=I_qI_q^{n-1}f(t), \quad n\in\mathbb{N}.$$

14- Fundamental principles of the q-analysis

i)
$$D_q \left[\int_a^x f(x) d_q x \right] = f(x).$$

ii) $\int_a^x D_q f(x) d_q x = f(x) - f(a).$

15- Integration by parts: Consider the equality

$$D_q(fg)(x) = f(x)D_qg(x) + g(qx)D_qf(x),$$

then

$$f(x)D_q g(x) = D_q(fg)(x) - g(qx)D_q f(x).$$

Let h(x) = f(x)g(x). We have

$$\int_{a}^{b} D_q h(x) d_q x = h(b) - h(a).$$

Hence

$$\int_{a}^{b} f(x)D_{q}g(x)d_{q}x = [fg]_{a}^{b} - \int_{a}^{b} g(qx)D_{q}f(x)d_{q}x.$$

2. Studying of Eq.(2)

In this section we consider the following two cases of Eq.(2). The special case of Eq.(2) with constant coefficients of the form

$$\left[D_{q-1}^4 + a_1 D_{q-1}^3 + a_2 D_{q-1}^2 + a_3 D_{q-1} + a_4\right] y(x) = f(x), \tag{3}$$

where a_1 , a_2 , a_3 and a_4 are constants.

Recall that Eq.(3) is said to be a fourth-order constant coefficients linear nonhomogeneous q-difference equation. The corresponding homogeneous equation reads

$$\[D_{q^{-1}}^4 + a_1 D_{q^{-1}}^3 + a_2 D_{q^{-1}}^2 + a_3 D_{q^{-1}} + a_4 \] y(x) = 0, \tag{4}$$

In this case the equations can be solved explicitly.

Consider first the equation

$$D_{q^{-1}}y(x) = \lambda y(x),$$

which its solution reads

$$y(x) = e_{q^{-1}}^{\lambda x}. (5)$$

Loading Eq.(5) in Eq.(4), one obtains the following algebraic equation in λ called the characteristic equation of Eq.(4):

$$\lambda^4 + a_1 \lambda^3 + a_2 \lambda^2 + a_3 \lambda + a_4 = 0, \tag{6}$$

Lemma 1. (I) If Eq.(6) has four distinct roots λ_1 , λ_2 , λ_3 and λ_4 then Eq.(4) admits as four linear independent solutions the functions

$$y_i(x) = e_{q^{-1}}^{\lambda_i x}, \qquad i = 1, 2, 3, 4.$$

- (II) If some of the roots of the characteristic equation are not distinct, then in that case also Eq.(4) admits four linear independent solutions.
- (III) If for example a given root λ admits a multiplicity equal to m, so the corresponding independent solutions need to be searched among functions of the form

$$y(x) = \sum_{n=0}^{\infty} c_n x^n,$$

where the coefficients c_n satisfies

$$\sum_{i=0}^{m} \left[\binom{m}{i} (-\lambda)^{m-i} \prod_{k=0}^{i-1} \frac{1 - q^{-(n+i)+k}}{1 - q^{-1}} \right] c_{n+i} = 0.$$

Proof. (I) Here the theorem is proved straightforwardly.

(II) and (III) To prove this part it suffices to load Eq.(5) in the following auxiliary equation

$$(D_{q^{-1}} - \lambda)^m y(x) = 0,$$
 $m = 2, 3 \text{ or } 4.$

This proves the theorem.

Theorem 2. The solution of Eq. (3) is given by

$$y(x) = C_1(x)y_1(x) + C_2(x)y_2(x) + C_3(x)y_3(x) + C_4(x)y_4(x),$$

where
$$C(x) = \begin{pmatrix} C_1(x) & C_2(x) & C_3(x) & C_4(x) \end{pmatrix}^t$$
 is the solution of the system $\Phi(qx) \ D_q C(x) = F(x),$

and reads

$$C(x) = C + (1 - q)x \sum_{i=0}^{\infty} q^{i} \Phi^{-1}(q^{i}x) F(q^{i}x),$$

 $F(x) = \begin{pmatrix} 0 & 0 & f(x) \end{pmatrix}^t$ and $\Phi(x)$ is a fundamental matrix of the solutions of the homogenous Eq.(4) and $y_1(x)$, $y_2(x)$, $y_3(x)$ and $y_4(x)$ a fundamental system of the solutions of Eq.(4).

Proof. To find the general solution of Eq.(3) let

$$z_1(x) = y(x),$$

 $z_2(x) = D_{q^{-1}}y(x),$
 $z_3(x) = D_{q^{-1}}^2y(x),$

and

$$z_4(x) = D_{q^{-1}}^3 y(x).$$

Thus we obtain the system

$$\begin{array}{rcl} D_{q^{-1}}z_1(x) & = & z_2(x), \\ D_{q^{-1}}z_2(x) & = & z_3(x), \\ D_{q^{-1}}z_3(x) & = & z_4(x), \end{array}$$

and

$$D_{q^{-1}}z_4(x) = -(a_1z_4(x) + a_2z_3(x) + a_3z_2(x) + a_4z_1(x)) + f(x).$$
 (7)

Now, replacing x by qx and then q^{-1} by q and by using the matrix form of Eq.(7) we obtain

$$D_q z(x) = Az(qx) + F(x). (8)$$

where $z(x) = (z_1(x) \ z_2(x) \ z_3(x) \ z_4(x))^t$,

$$A = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -a_4 & -a_3 & -a_2 & -a_1 \end{array}\right),$$

and
$$F(x) = \begin{pmatrix} 0 & 0 & 0 & f(qx) \end{pmatrix}^t$$
.

Now consider the homogeneous part of Eq.(8)

$$D_q z(x) = Az(qx), (9)$$

with the fundamental matrix

$$\Phi(x) = \begin{pmatrix} y_1(x) & y_2(x) & y_3(x) & y_4(x) \\ D_{q^{-1}}y_1(x) & D_{q^{-1}}y_2(x) & D_{q^{-1}}y_3(x) & D_{q^{-1}}y_4(x) \\ D_{q^{-1}}^2y_1(x) & D_{q^{-1}}^2y_2(x) & D_{q^{-1}}^2y_3(x) & D_{q^{-1}}^2y_4(x) \\ D_{q^{-1}}^3y_1(x) & D_{q^{-1}}^3y_2(x) & D_{q^{-1}}^3y_3(x) & D_{q^{-1}}^3y_4(x) \end{pmatrix}.$$

The general solution of Eq.(9) is found as

$$z(x) = \Phi(x)C(x),$$

where $C(x) = \begin{pmatrix} C_1(x) & C_2(x) & C_3(x) & C_4(x) \end{pmatrix}^t$ is the solution of the system

$$\Phi(x)D_qC(x) = F(x),$$

and reads

$$C(x) = C + (1 - q)x \sum_{i=0}^{\infty} q^{i} \Phi^{-1}(q^{i}x) F(q^{i}x),$$

and the general solution of Eq.(3) reads

$$y(x) = z_1(x) = C_1(x)y_1(x) + C_2(x)y_2(x) + C_3(x)y_3(x) + C_4(x)y_4(x).$$

Remark 1. Note that for the q-difference equation

$$\left[D_q^4 + a_1 D_q + a_2 D_q + a_3 D_q + a_4\right] y(x) = f(x), \tag{10}$$

the solution of the corresponding system reads

$$z(x) = \Phi(x)C(x)$$

where

$$\Phi(x) = \begin{pmatrix} y_1(x) & y_2(x) & y_3(x) & y_4(x) \\ D_q y_1(x) & D_q y_2(x) & D_q y_3(x) & D_q y_4(x) \\ D_q^2 y_1(x) & D_q^2 y_2(x) & D_q^2 y_3(x) & D_q^2 y_4(x) \\ D_q^3 y_1(x) & D_q^3 y_2(x) & D_q^3 y_3(x) & D_q^3 y_4(x) \end{pmatrix},$$

and C(x) is the solution of the system

$$\Phi(qx)D_aC(x) = F(x), \tag{11}$$

with $F(x) = \begin{pmatrix} 0 & 0 & 0 & f(x) \end{pmatrix}^t$, giving

$$C(x) = C + (1 - q)x \sum_{i=0}^{\infty} q^{i} \Phi^{-1}(q^{i+1}x) F(q^{i}x).$$

Example 1. Solve the q-difference equation

$$D_q^4 y - 5D_q^3 y + 5D_q^2 y + 5D_q y - 6y = f(x), (12)$$

with a)
$$f(x) = x^2$$
 b) $f(x) = xe^{\alpha x}$, $\alpha \in \mathbb{Z}$.

Solution The characteristic equation of Eq.(12) reads

$$\lambda^4 - 5\lambda^3 + 5\lambda^2 + 5\lambda - 6 = 0. \tag{13}$$

and have solutions $\lambda_1 = 1$, $\lambda_2 = -1$, $\lambda_3 = 2$ and $\lambda_4 = 3$.

This leads to the fundamental system of the corresponding homogenous equation

$$y_1 = e_q^x$$
, $y_2 = e_q^{-x}$, $y_3 = e_q^{2x}$, $y_4 = e_q^{3x}$,

and the general solution of Eq.(11) is

$$y(x) = c_1(x)y_1 + c_2(x)y_2 + c_3(x)y_3 + c_4(x)y_4,$$

where

$$\Phi(qx) \begin{pmatrix} D_q c_1(x) \\ D_q c_2(x) \\ D_q c_3(x) \\ D_q c_4(x) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ f(x) \end{pmatrix},$$

and

$$\Phi(x) = \begin{pmatrix} e_q^x & e_q^{-x} & e_q^{2x} & e_q^{3x} \\ e_q^x & -e_q^{-x} & 2e_q^{2x} & 3e_q^{3x} \\ e_q^x & e_q^{-x} & 4e_q^{2x} & 9e_q^{3x} \\ e_q^x & -e_q^{-x} & 8e_q^{2x} & 27e_q^{3x} \end{pmatrix}.$$

Then

$$\Phi^{-1}(x) = \begin{pmatrix} \frac{3}{2}e_{q^{-1}}^{-x} & \frac{1}{4}e_{q^{-1}}^{-x} & -e_{q^{-1}}^{-x} & \frac{1}{4}e_{q^{-1}}^{-x} \\ \frac{1}{4}e_{q^{-1}}^{x} & \frac{-11}{24}e_{q^{-1}}^{x} & \frac{1}{4}e_{q^{-1}}^{x} & \frac{-1}{24}e_{q^{-1}}^{x} \\ -e_{q^{-1}}^{-2x} & \frac{1}{3}e_{q^{-1}}^{-2x} & e^{-2x} & \frac{-1}{3}e_{q^{-1}}^{-2x} \\ \frac{1}{4}e_{q^{-1}}^{-3x} & \frac{-1}{8}e_{q^{-1}}^{-3x} & \frac{1}{4}e^{-3x} & \frac{1}{8}e_{q^{-1}}^{-3x} \end{pmatrix},$$

and

$$\Phi^{-1}(qx) = \begin{pmatrix} \frac{3}{2}e_{q-1}^{-qx} & \frac{1}{4}e_{q-1}^{-qx} & -e_{q-1}^{-qx} & \frac{1}{4}e_{q-1}^{-qx} \\ \frac{1}{4}e_{q-1}^{qx} & \frac{-11}{24}e_{q-1}^{qx} & \frac{1}{4}e_{q-1}^{qx} & \frac{-1}{24}e_{q-1}^{qx} \\ -e_{q-1}^{-2qx} & \frac{1}{3}e_{q-1}^{-2qx} & e_{q-1}^{-2qx} & \frac{-1}{3}e_{q-1}^{-2qx} \\ \frac{1}{4}e_{q-1}^{-3qx} & \frac{-1}{8}e_{q-1}^{-3qx} & \frac{-1}{4}e_{q-1}^{-3qx} & \frac{1}{8}e_{q-1}^{-3qx} \end{pmatrix}.$$

Consequently

$$\begin{pmatrix} D_q c_1(x) \\ D_q c_2(x) \\ D_q c_3(x) \\ D_q c_4(x) \end{pmatrix} = \begin{pmatrix} \frac{3}{2} e_{q^{-1}}^{-qx} & \frac{1}{4} e_{q^{-1}}^{-qx} & -e_{q^{-1}}^{-qx} & \frac{1}{4} e_{q^{-1}}^{-qx} \\ \frac{1}{4} e_{q^{-1}}^{qx} & \frac{-11}{24} e_{q^{-1}}^{qx} & \frac{1}{4} e_{q^{-1}}^{qx} & \frac{-1}{24} e_{q^{-1}}^{qx} \\ -e_{q^{-1}}^{-2qx} & \frac{1}{3} e_{q^{-1}}^{-2qx} & e_{q^{-1}}^{-2qx} & \frac{-1}{3} e_{q^{-1}}^{-2qx} \\ \frac{1}{4} e_{q^{-1}}^{-3qx} & \frac{-1}{8} e_{q^{-1}}^{-3qx} & \frac{1}{8} e_{q^{-1}}^{-3qx} & \frac{1}{8} e_{q^{-1}}^{-3qx} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ f(x) \end{pmatrix},$$

then

$$\begin{pmatrix} D_q c_1(x) \\ D_q c_2(x) \\ D_q c_3(x) \\ D_q c_4(x) \end{pmatrix} = \begin{pmatrix} \frac{1}{4} f(x) e_{q-1}^{-qx} \\ \frac{-1}{24} f(x) e_{q-1}^{qx} \\ \frac{-1}{3} f(x) e_{q-1}^{-2qx} \\ \frac{1}{8} f(x) e_{q-1}^{-3qx} \end{pmatrix}.$$

This implies

$$D_q c_1(x) = \frac{1}{4} f(x) e_{q^{-1}}^{-qx},$$

$$D_q c_2(x) = \frac{-1}{24} f(x) e_{q^{-1}}^{qx},$$

$$D_q c_3(x) = \frac{-1}{3} f(x) e_{q^{-1}}^{-2qx},$$

and

$$D_q c_4(x) = \frac{1}{8} f(x) e_{q^{-1}}^{-3qx}$$

a) If $f(x) = x^2$ we obtain

$$D_q c_1(x) = \frac{1}{4} x^2 e_{q-1}^{-qx},$$

$$D_q c_2(x) = \frac{-1}{24} x^2 e_{q-1}^{qx},$$

$$D_q c_3(x) = \frac{-1}{3} x^2 e_{q-1}^{-2qx},$$

and

$$D_q c_4(x) = \frac{1}{8} x^2 e_{q^{-1}}^{-3qx}.$$

Therefore q-Integrations by parts give

$$c_1(x) = c_1 - \frac{1}{4}e_{q^{-1}}^{-x} \left[x^2 + (q+1)x + (q+1) \right] + \frac{1}{4}(q+1),$$

$$c_2(x) = c_2 - \frac{1}{24}e_{q^{-1}}^x \left[x^2 - (q+1)x + (q+1) \right] + \frac{1}{24}(q+1),$$

$$c_3(x) = c_3 + e_{q^{-1}}^{-2x} \left[\frac{1}{6}x^2 + \frac{1}{12}(q+1)x + \frac{1}{24}(q+1) \right] - \frac{1}{24}(q+1),$$

and

$$c_4(x) = c_4 - e_{q^{-1}}^{-3x} \left[\frac{1}{24} x^2 + \frac{1}{72} (q+1)x + \frac{1}{216} (q+1) \right] + \frac{1}{216} (q+1).$$

Consequently the general solution of Eq.(12) where $f(x) = x^2$ is

$$\begin{split} y(x) &= c_1 e_q^x - \frac{1}{4} \left[x^2 + (q+1)x + (q+1] + \frac{1}{4} (q+1) e_q^x \right. \\ &+ c_2 e_q^{-x} - \frac{1}{24} \left[x^2 - (q+1)x + (q+1) \right] + \frac{1}{24} (q+1) e_q^{-x} \\ &+ c_3 e_q^{2x} + \left[\frac{1}{6} x^2 + \frac{1}{12} (q+1)x + \frac{1}{24} (q+1) \right] - \frac{1}{24} (q+1) e_q^{2x} \\ &+ c_4 e_q^{3x} - \left[\frac{1}{24} x^2 + \frac{1}{72} (q+1)x + \frac{1}{216} (q+1) \right] + \frac{1}{216} (q+1) e_q^{3x}. \end{split}$$

b) If $f(x) = xe_q^{\alpha x}$ we obtain

$$D_q c_1(x) = \frac{1}{4} x e_q^{\alpha x} e_{q-1}^{-qx},$$

$$D_q c_2(x) = \frac{-1}{24} x e_q^{\alpha x} e_{q-1}^{qx},$$

$$D_q c_3(x) = \frac{-1}{3} x e_q^{\alpha x} e_{q-1}^{-2qx},$$

and

$$D_q c_4(x) = \frac{1}{8} x e_q^{\alpha x} e_{q^{-1}}^{-3qx}.$$

Therefore q-Integrations by parts give

$$c_1(x) = c_1 + \frac{1}{4(\alpha - 1)(\alpha q - 1)} \left[((\alpha - 1)x - 1)e_q^{\alpha x}e_{q^{-1}}^{-x} + 1 \right], \quad \alpha \neq 1,$$

$$c_2(x) = c_2 - \frac{1}{24(\alpha+1)(\alpha q+1)} \left[((\alpha+1)x - 1)e_q^{\alpha x}e_{q-1}^x + 1 \right], \quad \alpha \neq -1,$$

$$c_3(x) = c_3 - \frac{1}{3(\alpha - 2)(\alpha q - 2)} \left[((\alpha - 2)x - 1)e_q^{\alpha x}e_{q^{-1}}^{-2x} + 1 \right], \quad \alpha \neq 2,$$

and

$$c_4(x) = c_4 + \frac{1}{8(\alpha - 3)(\alpha q - 3)} \left[((\alpha - 3)x - 1)e_q^{\alpha x} e_{q^{-1}}^{-3x} + 1 \right], \quad \alpha \neq 3.$$

Consequently the general solution of Eq.(12)where $f(x) = xe_q^{\alpha x}$ is

$$y(x) = c_1 e_q^x + \frac{1}{4(\alpha - 1)(\alpha q - 1)} \left[((\alpha - 1)x - 1)e_q^{\alpha x} + e_q^x \right]$$

$$+ c_2 e_q^{-x} - \frac{1}{24(\alpha + 1)(\alpha q + 1)} \left[((\alpha + 1)x - 1)e_q^{\alpha x} + e_q^{-x} \right]$$

$$+ c_3 e_q^{2x} - \frac{1}{3(\alpha - 2)(\alpha q - 2)} \left[((\alpha - 2)x - 1)e_q^{\alpha x} + e_q^{2x} \right]$$

$$+ c_4 e_q^{3x} + \frac{1}{8(\alpha - 3)(\alpha q - 3)} \left[((\alpha - 3)x - 1)e_q^{\alpha x} + e_q^{3x} \right].$$

The general case of Eq.(2) of the form

$$\left[D_{q^{-1}}^4 + a_1(x)D_{q^{-1}}^3 + a_2(x)D_{q^{-1}}^2 + a_3(x)D_{q^{-1}} + a_4(x) \right] y(x) = f(x), \tag{14}$$

where $a_1(x)$, $a_2(x)$, $a_3(x)$ and $a_4(x)$ are continuous functions.

The corresponding homogenous equation of Eq.(14) is given by

$$\left[D_{q^{-1}}^4 + a_1(x)D_{q^{-1}}^3 + a_2(x)D_{q^{-1}}^2 + a_3(x)D_{q^{-1}} + a_4(x) \right] y(x) = 0.$$
 (15)

Theorem 3. The solution of equation Eq.(14) is given by

$$y(x) = C_1(x)y_1(x) + C_2(x)y_2(x) + C_3(x)y_3(x) + C_4(x)y_4(x),$$

where $C(x) = \begin{pmatrix} C_1(x) & C_2(x) & C_3(x) & C_4(x) \end{pmatrix}^t$ is the solution of the system $\Phi(qx)D_qC(x) = F(x),$

and reads

$$C(x) = C + (1 - q)x \sum_{i=0}^{\infty} q^i \Phi^{-1}(q^i x) F(q^i x),$$

 $F(x) = \begin{pmatrix} 0 & 0 & f(x) \end{pmatrix}^t$ and $\Phi(x)$ is a fundamental matrix of solution of the homogenous equation Eq.(15) and $y_1(x)$, $y_2(x)$, $y_3(x)$, $y_4(x)$ a fundamental system of solution of Eq.(15).

Proof. To find the general solution of (14) supposing

$$z_1(x) = y(x),$$

 $z_2(x) = D_{q^{-1}}y(x),$
 $z_3(x) = D_{q^{-1}}^2y(x),$

and

$$z_4(x) = D_{q^{-1}}^3 y(x).$$

We obtain the system

$$\begin{array}{rcl} D_{q^{-1}}z_1(x) & = & z_2(x), \\ D_{q^{-1}}z_2(x) & = & z_3(x), \\ D_{q^{-1}}z_3(x) & = & z_4(x), \end{array}$$

and

$$D_{q^{-1}}z_4(x) = -(a_1(x)z_4(x) + a_2(x)z_3(x) + a_3(x)z_2(x) + a_4(x)z_1(x)) + f(x).$$
 (16)

In matrices terms we have

$$D_q z(x) = A(x)z(qx) + F(x), \tag{17}$$

where $z(x) = (z_1(x) \ z_2(x) \ z_3(x) \ z_4(x))^t$,

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -a_4(qx) & -a_3(qx) & -a_2(qx) & -a_1(qx) \end{pmatrix},$$

and $F(x) = \begin{pmatrix} 0 & 0 & 0 & f(qx) \end{pmatrix}^t$. So it follows from Eq.(16) that the existence of a unique solution of Eq.(14) under the initial constraints

$$y(x_0) = y_0, \ D_{q^{-1}}y(x_0) = y_1, \ D_{q^{-1}}^2y(x_0) = y_2, \ D_{q^{-1}}^3y(x_0) = y_3,$$

is equivalent to the existence of a unique solution of Eq.(17) under the constraints

$$(z_1(x_0) \quad z_2(x_0) \quad z_3(x_0) \quad z_4(x_0))^t = (y_0 \quad y_1 \quad y_2 \quad y_3)^t.$$

As a consequence the existence of a fundamental system of solution $y_1(x)$, $y_2(x)$, $y_3(x)$, $y_4(x)$ of Eq.(14) is equivalent to the existence of a fundamental system

$$\begin{pmatrix} y_1(x) & D_{q^{-1}}y_1(x) & D_{q^{-1}}^2y_1(x) & D_{q^{-1}}^3y_1(x) \end{pmatrix}^t, ..., \begin{pmatrix} y_4(x) & D_{q^{-1}}y_4(x) & D_{q^{-1}}^2y_4(x) & D_{q^{-1}}^3y_4(x) \end{pmatrix}^t,$$
 of the homogeneous part of Eq.(17)

$$D_q z(x) = A(x)z(qx),$$

with the fundamental matrix

$$\Phi(x) = \begin{pmatrix}
y_1(x) & y_2(x) & y_3(x) & y_4(x) \\
D_{q^{-1}}y_1(x) & D_{q^{-1}}y_2(x) & D_{q^{-1}}y_3(x) & D_{q^{-1}}y_4(x) \\
D_{q^{-1}}^2y_1(x) & D_{q^{-1}}^2y_2(x) & D_{q^{-1}}^2y_3(x) & D_{q^{-1}}^2y_4(x) \\
D_{q^{-1}}^3y_1(x) & D_{q^{-1}}^3y_2(x) & D_{q^{-1}}^3y_3(x) & D_{q^{-1}}^3y_4(x)
\end{pmatrix}.$$
(18)

Indeed if

$$\alpha_1 y_1(x) + \alpha_2 y_2(x) + \alpha_3 y_3(x) + \alpha_4 y_4(x) = 0,$$

then

$$\begin{array}{lcl} \alpha_1 D_{q^{-1}} y_1(x) + \alpha_2 D_{q^{-1}} y_2(x) + \alpha_3 D_{q^{-1}} y_3(x) + \alpha_4 D_{q^{-1}} y_4(x) & = & 0, \\ D_{q^{-1}}^2 \alpha_1 y_1(x) + \alpha_2 D_{q^{-1}}^2 y_2(x) + \alpha_3 D_{q^{-1}}^2 y_3(x) + \alpha_4 D_{q^{-1}}^2 y_4(x) & = & 0, \end{array}$$

and

$$\alpha_1 D_{q^{-1}}^3 y_1(x) + \alpha_2 D_{q^{-1}}^3 y_2(x) + \alpha_3 D_{q^{-1}}^3 y_3(x) + \alpha_4 D_{q^{-1}}^3 y_4(x) = 0,$$

or

$$\Phi(x)\alpha = 0.$$

where $\Phi(x)$ is in Eq.(18) and $\alpha = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{pmatrix}^t$. Hence the system y_i ; i=1,2,3,4 is linear independent if the matrix $\Phi(x)$ in Eq.(18) is nonsingular. The matrix $\Phi(x)$ can naturally be called the q-Wronskian or q-Casoratian of the equation Eq.(15) corresponding to the continuous or discrete cases. Consider now the equation of deriving the solution of the non homogenous Eq.(4). If $y_1(x), y_2(x), y_3(x), y_4(x)$ is a fundamental system of solution of the homogenous equation Eq.(15) corresponding to the fundamental matrix $\Phi(x)$, then according to the general theory of q-difference systems, the general solution of Eq.(17) is found as

$$z(x) = \Phi(x)C(x)$$
,

where $C(x) = \begin{pmatrix} C_1(x) & C_2(x) & C_3(x) & C_4(x) \end{pmatrix}^t$, is the solution of the system

$$\Phi(qx)D_aC(x) = F(x),$$

and reads

$$C(x) = C + (1 - q)x \sum_{i=0}^{\infty} q^i \Phi^{-1}(q^i x) F(q^i x),$$

and the general solution of Eq.(14) reads

$$y(x) = z_1(x) = C_1(x)y_1(x) + C_2(x)y_2(x) + C_3(x)y_3(x) + C_4(x)y_4(x).$$

Remark 2. Note that for the q-difference equation

$$\left[D_q^4 + a_1(x)D_q + a_2(x)D_q + a_3(x)D_q + a_4(x) \right] y(x) = f(x).$$

the solution of the corresponding system reads

$$z(x) = \Phi(x)C(x),$$

where

$$\Phi(x) = \begin{pmatrix} y_1(x) & y_2(x) & y_3(x) & y_4(x) \\ D_q y_1(x) & D_q y_2(x) & D_q y_3(x) & D_q y_4(x) \\ D_q^2 y_1(x) & D_q^2 y_2(x) & D_q^2 y_3(x) & D_q^2 y_4(x) \\ D_g^3 y_1(x) & D_g^3 y_2(x) & D_g^3 y_3(x) & D_g^3 y_4(x) \end{pmatrix},$$

and C(x) is the solution of the system

$$\Phi(qx)D_qC(x) = F(x),$$

with $F(x) = \begin{pmatrix} 0 & 0 & 0 & f(x) \end{pmatrix}^t$, giving

$$C(x) = C + (1 - q)x \sum_{i=0}^{\infty} q^{i} \Phi^{-1}(q^{i+1}x) F(q^{i}x).$$

3. Studying of Eq.(1)

We will need to the following lemma to prove Theorem (5) below.

Lemma 4. ([2],[3])

$$\int_{0}^{t} \int_{0}^{v} f(s, u(s)) d_{q} s d_{q} v = \int_{0}^{t} \int_{qs}^{t} f(s, u(s)) d_{q} v d_{q} s.$$

Theorem 5. Let $u \in \mathbb{C}[0,1]$ then the boundary value problems Eq.(1) has a unique solution is given by:

$$u(t) = \int_{0}^{1} G(t, s; q) \ f(s, u(s)) d_{q}s, \tag{19}$$

where

$$G(t,s;q) = \frac{1}{1+q} \left\{ \begin{array}{l} qs(t-1) \left[\frac{q^5s^2(1+t+t^2)}{1+q+q^2} + t^2 - q^2st(t+1) \right], & 0 \leq s \leq t \leq 1, \\ t^3 \left[\frac{-1+q^6s^3}{1+q+q^2} - q^3s^2 + qs \right], & 0 \leq t \leq s \leq 1. \end{array} \right.$$

Proof. Integrating Eq.(1) gives

$$D_q^3 u(t) = \int_0^t f(s, u(s)) d_q s + a_1$$

$$D_{q}^{2}u(t) = \int_{0}^{t} \int_{0}^{v} f(s, u(s)) d_{q}s d_{q}v = \int_{0}^{t} \int_{qs}^{t} f(s, u(s)) d_{q}v d_{q}s$$
$$= \int_{0}^{t} (t - qs) f(s, u(s)) d_{q}s + a_{1}t + a_{2}.$$

Similarly we have

$$\begin{split} D_q u(t) &= \int\limits_0^t \left(\int\limits_0^v (v - qs) f(s, u(s)) d_q s \right) d_q v + a_1 t^2 + a_2 t + a_3 \\ &= \int\limits_0^t \left(\int\limits_{qs}^t (v - qs) f(s, u(s)) d_q v \right) d_q s + a_1 t^2 + a_2 t + a_3 \\ &= \int\limits_0^t \left[\left(\frac{v^2}{1 + q} - q v s \right) f(s, u(s)) \right]_{qs}^t d_q s + a_1 t^2 + a_2 t + a_3 \\ &= \int\limits_0^t \left(\frac{t^2}{1 + q} - q t s - \frac{q^2 s^2}{1 + q} + q^2 s^2 \right) f(s, u(s)) d_q s + a_1 t^2 + a_2 t + a_3 \\ &= \int\limits_0^t \left(\frac{t^2 - q^2 s^2 + q^2 s^2 + q^3 s^2}{1 + q} - q t s \right) f(s, u(s)) d_q s + a_1 t^2 + a_2 t + a_3 \\ &= \int\limits_0^t \left(\frac{t^2 + q^3 s^2}{1 + q} - q t s \right) f(s, u(s)) d_q s + a_1 t^2 + a_2 t + a_3 , \end{split}$$

then

$$D_q u(t) = \int_0^t \left(\frac{t^2 + q^3 s^2}{1 + q} - qts \right) f(s, u(s)) d_q s + a_1 t^2 + a_2 t + a_3.$$

Therefore

$$\begin{split} u(t) &= \int_0^t \left[\int_0^v \left(\frac{v^2 + q^3 s^2}{1 + q} - q v s \right) f(s, u(s)) d_q s \right] d_q v + a_1 t^3 + a_2 t^2 + a_3 t + a_4 \\ &= \int_0^t \left[\int_{qs}^t \left(\frac{v^2 + q^3 s^2}{1 + q} - q v s \right) f(s, u(s)) d_q v \right] d_q s + a_1 t^3 + a_2 t^2 + a_3 t + a_4 \\ &= \int_0^t \left[\left(\frac{v^3}{(1 + q)(1 + q + q^2)} + \frac{q^3 s^2 v}{1 + q} - \frac{q s v^2}{1 + q} \right) f(s, u(s)) \right]_{qs}^t d_q s + a_1 t^3 + a_2 t^2 + a_3 t + a_4 \\ &= \frac{1}{1 + q} \int_0^t \left[\frac{t^3}{1 + q + q^2} + q^3 s^2 t - q s t^2 - \frac{q^3 s^3}{1 + q + q^2} - q^4 s^3 + q^3 s^3 \right] f(s, u(s)) d_q s \\ &+ a_1 t^3 + a_2 t^2 + a_3 t + a_4 \\ &= \frac{1}{1 + q} \int_0^t \left[\frac{t^3 - q^3 s^3 - q^4 s^3 - q^5 s^3 - q^6 s^3 + q^3 s^3 + q^4 s^3 + q^5 s^3}{1 + q + q^2} - q t^2 s + q^3 t s^2 \right] f(s, u(s)) d_q s \\ &+ a_1 t^3 + a_2 t^2 + a_3 t + a_4. \end{split}$$

Thus

$$u(t) = \frac{1}{1+q} \int_{0}^{t} \left[\frac{t^3 - q^6 s^3}{1+q+q^2} - qt^2 s + q^3 t s^2 \right] f(s, u(s)) d_q s + a_1 t^3 + a_2 t^2 + a_3 t + a_4,$$
(20)

where a_1 , a_2 , a_3 and a_4 are arbitrary constants. Now using the boundary conditions of Eq.(1) we have $a_2 = a_3 = a_4 = 0$ and

$$a_1 = \frac{-1}{1+q} \int_0^1 \left[\frac{1-q^6 s^3}{1+q+q^2} - qs + q^3 s^2 \right] f(s, u(s)) d_q s.$$

then

$$u(t) = \frac{1}{1+q} \int_{0}^{t} \left[\frac{t^3 - q^6 s^3}{1+q+q^2} - qt^2 s + q^3 t s^2 \right] f(s, u(s)) d_q s$$
$$-\frac{t^3}{1+q} \int_{0}^{1} \left[\frac{1-q^6 s^3}{1+q+q^2} - qs + q^3 s^2 \right] f(s, u(s)) d_q s,$$

or

$$u(t) = \frac{1}{[2]_q} \int_0^t \left[\frac{t^3 - q^6 s^3}{[3]_q} - q t^2 s + q^3 t s^2 \right] f(s, u(s)) d_q s$$

$$- \frac{t^3}{[2]_q} \int_0^1 \left[\frac{1 - q^6 s^3}{[3]_q} - q s + q^3 s^2 \right] f(s, u(s)) d_q s$$

$$= \int_0^1 G(t, s; q) f(s, u(s)) d_q s :; [2]_q = 1 + q, [3]_q = 1 + q + q^2.$$
 (21)

Example 2. Find the general solution of the following Boundry Value Problem

$$\begin{array}{rcl} D_q^4 u(t) & = & t^2, & 0 \leq t \leq 1, \\ u(0) & = & 0, & D_q u(0) = 0, & D_q^2 u(0) = 0, & u(1) = 1. \end{array} \tag{22}$$

Solution Let $f(t, u(t)) = t^2 \to f(s, u(s)) = s^2$, it follows from Eq.(21) that

$$\begin{split} u(t) &= \frac{1}{[2]_q} \int\limits_0^t \left[\frac{t^3 - q^6 s^3}{[3]_q} - q t^2 s + q^3 t s^2 \right] s^2 d_q s - \frac{t^3}{[2]_q} \int\limits_0^1 \left[\frac{1 - q^6 s^3}{[3]_q} - q s + q^3 s^2 \right] s^2 d_q s \\ &= \frac{1}{[2]_q} \int\limits_0^t \left[\frac{t^3 s^2}{[3]_q} - \frac{q^6 s^5}{[3]_q} - q t^2 s^3 + q^3 t s^4 \right] d_q s - \frac{t^3}{[2]_q} \int\limits_0^1 \left[\frac{s^2}{[3]_q} - \frac{q^6 s^5}{[3]_q} - q s^3 + q^3 s^4 \right] d_q s \\ &= \frac{1}{[2]_q} \left[\frac{t^6}{[3]_q [3]_q} - \frac{q^6 t^6}{[3]_q [6]_q} - \frac{q}{[4]_q} t^6 + \frac{q^3}{[5]_q} t^6 \right] - \frac{t^3}{[2]_q} \left[\frac{1}{[3]_q [3]_q} - \frac{q^6}{[3]_q [6]_q} - \frac{q}{[4]_q} + \frac{q^3}{[5]_q} \right] \\ &= \frac{1}{[2]_q} \left[\frac{1}{[3]_q [3]_q} - \frac{q^6}{[3]_q [6]_q} - \frac{q}{[4]_q} + \frac{q^3}{[5]_q} \right] \left(t^6 - t^3 \right), \end{split}$$

then

$$u(t) = \frac{1}{[2]_q} \left[\frac{1}{[3]_q [3]_q} - \frac{q^6}{[3]_q [6]_q} - \frac{q}{[4]_q} + \frac{q^3}{[5]_q} \right] (t^6 - t^3).$$
 (23)

Clearly when $q \longrightarrow 1$, the solution of Eq.(23) will be as follows

$$u(t) = \frac{1}{360} \left(t^6 - t^3 \right),\,$$

which represents the solution of the equation

$$\begin{array}{rcl} D^4 u(t) & = & t^2; & 0 \leq t \leq 1, \\ u(0) & = & 0, & D u(0) = 0, & D^2 u(0) = 0, & u(1) = 1. \end{array}$$

References

- [1] C. R. Adams, On the linear ordinary q-difference equation, Am. Math.Ser. II, 30 (1929) 195-205
- [2] Ahmad, Bashir, Ahmed Alsaedi, and Sotiris K. Ntouvas. "A study of second-order q-difference equations with boundary conditions." Advances in Difference Equations 2012.1 (2012) 35.
- [3] Ahmad, Bashir. "Boundary-value problems for nonlinear third-order q-difference equations." Electron. J. Differ. Equ 94 (2011) 1-7.
- G. Bangerezako, An introduction to q-difference equations, preprint, University of Burundi, Bujumbura (2007).
- [5] R. D. Carmichael, The general theory of linear q-difference equations, Am. J. Math. 34 (1912) 147-168.
- [6] M. El-Shahed and M. Gaber, Two-dimensional q-differential transformation and its application, Appl. Math. Comp., 217 (22) (2011) 9165-9172.
- [7] T. Ernst, The History of q-Calculus and a New Method, U. U. D. M. Report 2000:16, 1101-3591, Department of Mathematics, Uppsala University, 2000.
- [8] A. Erzan, Finite q-differences and the discrete renormalization group Phys. Lett. A, 225(4-6) (1997) 235-238.
- [9] A. Erzan and J.P. Eckmann, q-analysis of Fractal Sets, Phys. Rev. Lett. 17 (1997).3245-3248.
- [10] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
- [11] M.E.H. Ismail, Classical and quantum orthogonal polynomials in one variable, Cambridge UniversityPress, Cambridge, UK, (2005).
- [12] H. F. Jackson, q-Difference equations, Am. J. Math. 32 (1910) 305-314.
- [13] V. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002.
- [14] T. E. Mason, On properties of the solution of linear q-difference equations with entire function coefficients, Am. J. Math. 37 (1915) 439-444.
- [15] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Statist. Phys. 52 (1988).479-487.
- [16] W. J. Trjitzinsky, Analytic theory of linear q-difference equations, Acta Mathematica, 62 (1) (1933) 227-237.

(Hamdy El-Metwally) Department of Mathematics, Faculty of Science, Mansoura Uni-VERSITY, 35516 MANSOURA, EGYPT.

E-mail address: eaash69@yahoo.com, helmetwally@mans.edu.eg

(Fahd Mohammed Masoud) Department of Mathematics, Sana'a University, Yemen. E-mail address: Fahdmasoud22@gmail.com