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COEFFICIENT PROBLEM CONCERNING SOME NEW
SUBCLASSES OF ANALYTIC AND UNIVALENT FUNCTIONS

J. O. HAMZAT AND M. T. RAJI

ABSTRACT. The primary focus of the present paper is to study few properties
of fractional analytic function fo(z) belonging to certain new subclasses of an-
alytic functions S% 5, (o, B, A\) and K, 5 . (a, B, A) defined in the open
unit disk. o o

1. INTRODUCTION
Suppose that A denote the class of all analytic functions f with series expansion
f(2) =24 ap2® 4+ az2® + ... (1)

normalized with f/(0) —1 =0 = f(0) in the open unit disk D = {z € C: |z] < 1}.
Let S denote the class of univalent function f € A in D. Also suppose that S*
denote the subclass of S consisting of the functions f(z)which are starlike in D. A
function f(z) € K is said to be convex in D if f(z) € S satisfies zf/(z) € S*. See
(12]), (13]), ([4]) and ([8]) for details. In view of the above definitions, we can write
that

KcS*cScA (2)
and f(z) € S* if and only if
2 f@
/ IO e k. 3)
o ¢
Further, the function f(z) having the series expansion
- _ 5,5 N~ .2kt
fo) =175 =2+ +2h=> 2 (z € D) (4)
k=0
belong to the analytic class S* while the function f(z) of the form
__F _ 2., .,3 _ S k+1
f(z)fl_zfz+z +z...f];)z (z € D) (5)
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is in the class K. In 2017, ([2]) introduced and studied the fractional analytic func-
tion f,(z) of the form

=z+ i Zithe (€ D) (6)

1—z20
k=1

fa(z) =

for some real & (0 < & < 2) in the open unit disk. For more details on the kind of
analytic function f,(z) defined in (6), interested reader can refer to ([1]), ([6]) and
([10]). Now, for the purpose of the present investigation we shall consider a more
generalized form of (6) whereby f,(z) is given by

Az —w) - r B" 14k
fa(z)=m=(z—w)+z(—1)*(Z—w) * (,€eD) (1)

for some real @ (0 < o« <2), =1 < B < A <1 where w is a fixed point in D . Now

using (7), a new class A, of analytic functions f,(z) is given in D such that

Z— W i k
o) = o =~ Y (D () (€ D) (9
k=1

- A+ B(z —w

for some real @ (0 < a« <2), —1 < B < A <1 where w is a fixed point in D.
Alsofor -1 < B<A<1,A>0,a>0,me Ny=N|J{0} and fixed w in D,
we introduce the following linear differential operator such that

Dofa(z) = fa(2)

A 24+ A

Do) + 5 (0°8(2) = =) (352) (071 1a(2)

D™ fo(2) + 2 (D1 fa(2)) = (2 —w) (E2) (D™ 1fu(2)) .
Using (8) and (9), we obtain

D" fo(2) = (z—w)+ >

<2+ka(2+A)>m(1)kBk
k=1

5 W1 (Z = W) (10)

and

[e'e] o m—+1 k
Derlfa(Z) — (Z_w)+z (W) (_1)k%ak+1(2_w)k. (11)
k=1

Now for the purpose of the present investigation, we propose the following defini-
tions.

Remark A: In particular, when w = A =0, A =a =1 and B = —1 in (10), we
immediately obtain the celebrated Salagean differential operator ([9]).

Definition 1: Let f, € A, satisfies the analytic condition

Re (lm) > B8 (12)

for real B (0 < 8 < 1) where w is a fixed point in D, then we say that f,(z) €
S%. B,m(a, B, A) where S% p (o, B, A) denote the class of starlike functions of
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order f3.
Definition 2: Let f, € A, satisfies the analytic condition

(2 — w) (D™ fu(2))

Re D f(2)

> B (13)

for real B (0 < 8 < 1) where w is a fixed point in D, then we say that f,(z) €
K, g m(a, B, A) where K, 5 .(a, B, A) denote the class of convex functions of
order (3.

2. COEFFICIENT INEQUALITIES

The results presented here include the coefficient inequalities for functions f,(2)
belonging to the classes S% p (o, 8, A) and K, p,.(a, B, A) in the open unit
disk D.

Theorem 2.1: Let f, € A, satisfies the inequality

i (24 ka(2+ )"

2m+1

Bk
Bl ai<1-8. )

(Fa(24+ X)) +2(1-p))
k=1

Then fo(2) € 84 p (@, B, A) wherea >0A>0,-1<B<A<1L0<B<1me

N {0} and w is a fixed point in D. The equality is attained for function f,(z)

given by’

2m+1Ak’ (1 _ 6) ei‘n’

Fol®) = =4 L @ T ha@ s W) (ha2 £ 0 T2 )

(z=w)

(15)
Proof: Suppose that f, € A, is having the form (1). If f,(2) satisfies the inequality
(14), then

‘ (Dm+1f(z)> 1 ’ o (2+ka2(2+>\)) (ka(22+)\)) (_1)k%’;ak+l(z — w)ka
Dnf(z) ) T oo « m
bri) T+ (M) (=1 Brari(z —w)he

- Z?=1(2+ka2§2+x))m(ka@rx)) %Iak+1”z_wlka

T 1, (BN B gy [z e

m (e taged) b,y
1—2?:1(%M)m %\awfﬂ B '

This shows that fo(2) € S} g ,,.(a, B, A). Now suppose that f,(z) is given by (8),

then we have that

RN 34205 = 3 1

k=1

:(1—5)Zﬁ=1—5
k=1

and this obviously ends the proof of theorem 2.1.
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If m = 0 in theorem 2.1, then the following corollary is immediate.
Corollary 2.2: Let f, € A, satisfies the inequality
1 |B¥|
5 (ka(2+A) +2(1 = f)) —5 lagr| <1- 5.
k=1
Then fo(z) € S p ola, B, A). The equality is attained for function f,(2) given

24% (1 - )

fa(2) = (z —w) + k; R+ D) (a2 N +20=5) 1B~ W)ttt

Corollary 2.3: Let f, € A, satisfies the inequality
Bk
Z (ha(2+ ) +2) B

Ak |ak+1| <L
k=1 A

Then fo(2) € S} p o(a, 0, A). The equality is attained for function f,(2) given
by’

2Ak ka+1
fa(2) *ka Tha@E N+ B9
Corollary 2.4: Let f, € A, satisfies the inequality
1
3 (ka(24+ X)) 4+ 2) |ag4+1] < 1.

Then fo(2) € ST _1 o(@, 0, A). The equality is attained for function f,(2) given

(Z o )kaJrl.

fa(2) +z:k:lwr k:a2+)\)+2)
Corollary 2.5: Let f, € A, satisfies the inequality

oo

Z (3ka +2) |api1] < 1.
k=1

Then f,(z) € ST _; (e, 0, 1). The equality is attained for function f,(z) given
by’
_ 2
fa(2) = (Z_w”; R D) Ghat2) © Y

)ku-&-l.

Remark B:

In a special situation when m =0, A =0, A =1and B = —1. Then the inequality
(14) readily yield the result obtained by ([2]).

Theorem 2.6: Let the function f,(z) € A,given by (8) satisfies the inequality

o0

1

2m+1
k=1

for some § (0< B < 1), a>0, A >0, -1 <B< A<1andw is a fixed point in
D. Then

k
(ka=5+1) @+ ka@+ )™ (D T faa S1-5 (16)

fa(z) S KA,B,m(aa ﬁ)
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Equality is attained for function f,(z)given by

2mH(1— 3)
fa(z) = (2— W+Zk E—1)(ka—B+1)(2+Eka2+\)m+!

(z—w)ketl (17

Proof: Let f,(z) € A, be given by (8). If f,(z) satisfies the (16), then

24k a(2+2) \m+1 k Bk k
Ypny ko (AR (1) ik ajq1(z—w)**

oo 24k a(2+4X m—+1
T4 3oge, (e )™ kB ~ api1(z—w)ke

D™t fa(z)

5 m+1u2’
(D™ fu(2)) 1‘

k A)ym+1 B
o TiLy ko (FEReER) "G E aga|Jz—w]*®

= 1_ S (2+ka(2+A))"L+1|B|k

lakt1||z—wlke

k A) ymtl B
S50, ka (ZEka@en )l pl

lak+1]

< 1-p
24k a(24+X) \m+1 |B —
1— Zkzl(M) \A\ lakt1

showing that f,(z) € Ka, B, m(a, 8)and this completes the proof of theorem 2.6.

3. PARTIAL SUMS

In this section, we discuss the partial sums of the analytic function f,(z) defined
by (8). Here, we propose the following definition.

fa(2) =(z—w)+ (—1)1“%: g1 (z —w)katt k=1, 2 3, ... (18)

for some real & (0 <« <2) and —1<B<A<LI.

Theorem 3.1: Let the function f,(z) be of the form (18) with |ar4+1] <1, 0 <
a<2, A>0

—1<B<A<1andme Ny=N|J{0}. Then for |z —w|= (r +d)

m—+1

Derlfa(Z) 1— <W) |§L |ak+1|

%e< D fo(2) ) g karn+2\™ Bk (19)
" 1 (ko) B oy
and

Eaen+2\™T Bk rar

e (Lt 5 1 (Lozpen) ™ 1B (4 "
e
Dm fo(z)

1= (ReCp) IR (o gyt

Proof: Suppose that f,(z)be of the form (18), then

e (o) — e (14 CE () B )

D™ fo(z) 1+(W) (- 1) aK+1(z w)ke

i sin(ka + p)
R e B Jagen| (rtd)he ( cos(kad + p)+ )

(EoltN)) (EalzfMi2)m™ \%’“ lax 1] (r+d)F® ( cos(kaf + p)+ >
=1+ Re

i sin(kad + p)

where a1 = |ags 1] €*?. It implies that
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D™ fu(2)
Re ( D7 7a(2)
(RaGta) (ha@intzym [Cos(kaa+p)+ (Bl ymIBE (7+d)’“‘}

2m |B|2k

Bk .
1+2(%) \%|GK+1‘(T+d)mcos(ka9+p)+(w) lax 1|2 (r+d)2ke

Suppose that A(t) is defined by

k
(B e2) ™ B ey (r o+ d)be o

142 (W) B \agei| (r + d)bot + (ka@y)ﬂ) BE Jak+1]? (r + d)2he

(t = cos(kab + p)) .
Then, we have that h'(t) > 0 and |ag4+1| < 1. Finally, we obtain

k
o (Dm“fa(z)) L (ka(§+>\)> (ka(Q-;-/\)+2) \B\ \aK+1|(7"+d)
D) 1 (Rl )T B o e

By letting r — land d = 0 in (21), we obtain the desired result as contained in (19)
while we have the inequality in (20) by setting |ax41]| =1 in (21).

Remark C: In a special case when m = 0 and A = 0 in (19) and (20), then we
obtain the results due to ([2]). For recent work on partial sums, interested reader
can refer to ([1]), ([2]) and ([5]).

(21)
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