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EXISTENCE OF MILD SOLUTIONS FOR NON-PERIODIC
COUPLED FRACTIONAL DIFFERENTIAL EQUATIONS

MOHAMMED M. MATAR, IMAN E. ABO AMRA

ABSTRACT. We obtain sufficient conditions for existence and uniqueness of
mild solutions of coupled fractional differential equations using Schauder and
Banach fixed point theorems. Two examples are introduced to explain the
applicability of the obtained results.

1. INTRODUCTION

Fractional differential equations have gained considerable importance due to their
varied applications in many problems of physics, chemistry, biology, applied sciences
and engineering. Fractional-order differential equations are also regarded as a better
tool for the description of hereditary properties of various materials and processes
than the corresponding integer order differential equations, see [[1]-[6]].

The topic of boundary value problems of fractional differential equations supple-
mented with a variety of boundary conditions has attracted a significant attention
in recent years. In particular, the literature on fractional order initial or boundary
value problems involving nonlocal and integral boundary conditions is now much
enriched, for instance, see [[7]-[12]], for some theoretical works on coupled systems
of fractional-order differential equations, we refer the reader to a series of [[14]-[17]].

In fact, it can be seen that even if the (initial) boundary value problem of frac-
tional order has a continuous right-hand side, the equivalence between differential
and integral form of the problem can be lost [[18]-[19]]. Hence, it is desirable to
search about the mild solution of such problems.

In this paper, we investigate the coupled system given by

{ ‘D (t) =f (t,I (t) ’C Dz (t) Y (t) 7C Dy (t)) ’ (1 1)
CDBy(t)=g (t, x(t),Y D%z (t),y(t),C Dy (t)) , ’

forteJ=0,1,1<a<2, 1<f<2 0<d<l,and0<y<1, f,g:JxR*—
R are continuous functions, together with non-periodic conditions

(1) = apx (0), 2’ (1) = a12’ (0),
{ y (1) = boy (0), (1) = bry/ (0), (1-2)
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where ag,a1,bp,b1 € R, ag,a1,bo,by # 1, D',i = a, 3,8, denote the Caputo
fractional derivatives of order i,i = «, 3, d, y respectively.

2. PRELIMINARIES

Let us recall some basic definitions of fractional calculus (for more details see
[1]-[5]) and we obtain a solution of the corresponding linear system of (1.1).

Definition 2.1. The Riemann-Liouville fractional integral of order o for a contin-
uous function f:[0,00) — R is defined as

() = %a)/o (t— )L f(s)ds,a > 0,

provided the integral exists.

Definition 2.2. Let f : [0,00) = R be nth-times continuously differentiable func-
tion. The Caputo derivative of fractional order « is defined as

1

C o _ K 7877.70471 (n) s) ds
D) = ey | (= T )

wheren —1 < a <n, n=[a]+1 such that [o] denotes the integer part of the real
number «.

The interaction between Riemann-Liouville fractional integral and Caputo de-
rivative is given by the next result.

Lemma 2.3. If x has Caputo fractional derivative of order «, then

etk
I D% (t) = z (t) — %,

k=0

n—1<a<n,

for some constants cx, k =0,1,2,....,n — 1.

Now we present an auxiliary lemma which plays key role to define a solution for
the given problem (1.1).

Lemma 2.4. Consider the following linear system

{ “Dfz(t) = [ (1),
“Dgy (1) =g (1),
forte J 1 <a<2 1<p8<2 and f,g:J — R are continuous functions,

supplemented with non-periodic type boundary conditions (1.2). The mild solutions
of (2.1) satisfy the following integral equations

(2.1)

_ 1 ' — )22 f(s)ds
) = hEenTET ), 0O
1 ! a—1
+7(a0—1)1"(a)/0 (1=9)"""f(s)ds (2.2)

t ' a=2 1 ! a—1
+(a1—1)F(a—1)/0 (1-3) f“””@/o (t =) f (s)ds,
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and
= 1 1 — )24 (s)ds
v = GnemTE=T ), - e
71 1 —8)" " g(s)ds
oo J, 19 e =

t 1—557233Lt—35’153
T ), 9 et i [ =9 g s

Proof. Taking the fractional integral to both sides of equation (2.1), we obtain

1 K a—1
z(t)=co+eit+ er / (t—s)""" f(s)ds. (2.4)
0
In the same way, we obtain
t
v =do+dit+ o [ =9 a9 (2.5)

where ¢;,d; € R,i = 0,1 are arbitrary constants. Applying the conditions (1.2), we
get

C T (a1 (alil)r(a—l) /01<1—8>“_2f(s)ds
e T /0 (1 5)" 7" (s)ds,

"o (al—l)lr(a—l) /01 (1—9)"7 f(s)ds,

b = HTDEH-DTEST /0 (1—8)"2g(s) ds

1 1 41
+(b0—1>r(5>/0 (1-5)"""g(s)ds,

and
1

1
— B-2
dl_(blfl)F(ﬁfl)/o (1-9)"""g(s)ds.
Substituting the values ¢y, c1,do, d1 in (2.4) and (2.5) we get (2.2) and (2.3). From
other side, one can apply the Caputo fractional derivative to (2.2) and (2.3), to
deduce (2.1). Moreover, the conditions (1.2) are satisfied in the integral solutions
(2.2) and (2.3). This completes the proof. O

3. MAIN RESULTS

Let C (J,R) be the Banach space of all continuous functions defined on J. The
space X = {x cx e C(J,R),CDcC(J R)} , equipped with the norm |z||y =
|#]| + ||“D’z| is a Banach space. The space Y is defined similarly with the norm
lylly = llyll + HCDVyH which is also a Banach space. Clearly, the product space
X xY is Banach space with norm ||(z, y)|| x .y = l|z||x +]lylly for (z,y) € X xY (for
more details on Banach spaces and fixed point theorems see [13]). Using Lemma 2.4,
we define the operators Hy : X XY — X, Ho : X XY = Y,and H : X XY — X xY
by

H(z,y) (t) == (Ha (z,y) (1), Ha (2,9) (),
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where
Hi (z,y) (t)

- ! /1 (1—5)0‘_2f(5 z(s),C D2z (s),y(s) CD”y(s)) ds
(ap— 1) (a1 — )T (e —1) Jo ; ; ; ,
;1—5071 s,2(s),° Dox (s s) € Dy (s)) ds
i L T e (9.0 D (9).(5) £ Dy (9) d

¢ ' o2 C né C Dy () ds
+(al—l)r(a—l)/o (=) (5,2 (5),% D (5),9(5)," Dy (5)) d
+%a) ; (t — s)ai1 f (s, z(s),° Do (5),y(s),C Dy (s)) ds, (3.1)
and
Ha (z,y) ()

= ! /1(1—8)'629(8 z (), D2z (s),y (s) CD’Yy(s))ds
(bo—1) (b =)' (B-1) Jo ’ ’ ’ ’
;lisﬁflsxscas $) C DYy (s)) ds
T, 19 a6 £ Do (9.9 € Dy () d

t ! 2 5
TR , 0500, D (9,60, Dy (9) ds
Ltfs’gfl s,z (s),¢ Dz (s s).C Dy (s)) ds
st [ g (5.0 D (9 (9. D () s 52

We need the following assumptions:

H1: f,g:J x R* = R are continuous functions and there exist positive real
constants L1 > 0, Ly > 0 such that for all t € J and z;,y; € R,i =1,2,3,4,

we have
|f(t7.’171,$2,$3,$(}4) _f(t7y17y27y37y4)|
< Li(Jer — | + |w2 — y2| + |23 — ys| + |24 — y4]),
and

lg (t, 1, 22,73, 24) — g (t,Y1,Y2,Y3, Ya)|
< Lo(Jer — | + |z2 — y2| + |23 — ys| + |24 — yal) -

H2: f,g:JxR* = R are continuous functions and there exist real constants
mi,n; > 0,4 = 1,2,3,4, and my > 0,n9 > 0 such that if|| z; € R,i =
1,2,3,4, we have

|f (t, 21, 22,23, 24)| < Mg + My |21] + ma 2] + m3 23] + my |24],
lg (t, 21,2, w3, 24)| < N + 11 21| + N2 22| + N3 |23| + Ny |24 -

For computation convenience, we introduce the notations:

w1 = Livy, wy = L1ve, w3 = Lavz, wy = Lavy, (3.3)

0'1:N11/1, O’QZNll/Q, 0'3:N21/3, 0'4:N21/4, (34)
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where
1 n 1 n 1 n 1
v = s
! lap — 1[Jar — 1| T (e) * Jao — 1T (a+1)  Jag — 1T (a) T (a+1)
1
vy = + ,
? ar — 1T (a) ' T (a)
1 n 1 n 1 + 1
14 = )
’ lbo = 1[[b1 = 1T (B)  |bo—1T(B+1) [ —1T(B) T(B+1)
1 1
vy = + ,
! by —1[T(8) ' T (B)
N, = sup |f(¢0,0,0,0)] < oo, No = sup |g(¢,0,0,0,0)| < oo.
t€[0,1] t€[0.1]

Theorem 3.1. Assume that (H1) hold and that

Wy

1
7<7
re—-vy 2

then the boundary value problem (1.1) has a unique mild solution.

Proof. Let r be a positive real number such that

o1+ 725 o3+t

- (ot rsy) b (@ i)

r > max

)

where wi,ws,ws,ws and o1, 09,03,04 are given by (3.3), and (3.4). Consider the
closed ball B, = {(z,y) € X x Y : ||[(z,y) || xxy <7}, we show that H (B,) C B,.
Let (z,y) € B, then

|f (t2(t),C Dz (t),y (1), Dy (1)

< |f(ta@®),“ Dox(t),y(t),° Dy (t)) — f(t0,0,0,0)|
+|f(t,070,0,0)|

< Li(lz @)+ 9Dz ()] + |y (&) + |“D7y (t)]) + Ny

< Li(lzllx +llylly) + N1 < Lir + Ny,

and similarly, we obtain

g (t,z (1), D’z (t),y (),“ DYy (t))| < Lz (Il x + llylly) + No < Lo + No.
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Hence
[Hi (z,y) ()]
< ! /1 (175)a_2|f(5 z (s) CD‘;x(s) y(s) CD”y(s))}ds
= ao—1|lar — 1T (e« —1) Jp ’ ’ ' ’
;1 —8)* M f (s,2(s),C DOx (s s),Y Dy (s s
i ), (1T (20 S D (5) () Dy ()]
t ! o2 C e C Dy ()| ds
+Ial—llF(a—l)/o (L= (5,2 (5),% D (s),y (5).” Dy (5)|d
Lt—so‘_l s,z (s),C Doz (s s),Y Dy (s s
i = T (i (9 € Do (9).0() € D7 ()
S L17“
1 1 t te
+Nl<|a0—1||a1—1|r<a>+|ao—1|r<a+1>+|a1—1|r<a>+r<a+1>>

S wir + o1.
The first order derivative of the operator H; can be obtained as following;:
[#, (,9) (1)

jar — 1] ; (@ 1) /0 (1=5)" 2 |f (5,2(5).9 D2 (s) 5/ (5).” D7y (5)) | ds

1 ! a—2 ~
*Na—l)/o (t= )" (5,2(5),7 D (s),y/(s), Dy (s))| ds

< waor + o,

which implies that

tt )0,
ot @] < [ E s M o)
tlf(s

m (wor + o9),

thus
17y (2 ))lly = [1Ha (@)l + ||“DHy (2, 9)||

< (arratg) (0 rets)

<

N3

In the same way, we obtain

[Ha (z,y) ()] < wsr + o3,

Hy (,9) (0] < wir + o,
and

ool < [ m\ﬂ;(x,y)@\ds

e

e RS
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In consequence, we get

[Ha (z,9)ly = H2 (@ p)ll+[|“DH (2,y)||
w4y 04
= <w3+F(2—v))T+<gg+F(2—v))
< I
)

It follows that [|H (z,y)||xyy < 7, that is H (B,) C B,. Next, we show that the
operator H is a contraction. For that, let (z1,y1), (z2,y2) € X x Y, then for any
t e J, we get

[Hi (z1,91) (¢) — Ha (22, 92) ()]
1 ' =2 C e C vy
Iao—l\lal—l\r(a—l)/o (=)™ (5,1 ()% D (s) 1 (). Do (5))
~f (57$2 (s) vC D6$2 (5),92 (s) CDA/yz )|d8
;1750‘71 s,21(s),C D2z (s s).Y DYy (s
+|a0—1|1‘(a)/0 (1 ) }f(v 1()a D 1()ayl()a Dyl())
—f (5,32 (s)," D3 (s),y2 (5),“ DVya (s))] ds
1
+|G,1 — 1|1t-\(a_ 1)/0 (1_3)0472 |f(8,$1 (8) 7C D(le (8)7y1 (8) 7C Dryyl (5))
—f (s,22(s) L D%zy (s),y2 (5)," DVya (s ){dS
Lt—so‘fl s,21(8),C D2z (s s),C DYy (s
g | 9T (e (0.0 D (5) . (9).€ D7 (9)

—f (5,22 (s),9 DOz (s),y2 (s),“ DVys (s))| ds
L1 (Hl‘l — l‘QH + HCD52E1 -c D(SIQH + Hy1 - y2|| + ||CD‘yy1 ¢ Dwng)

IN

1 1 t te
+ + +
<a01|a11|F(a) lag — 1T (a+1)  Jag — 1T () F(aJrl))
< wi (e =2l x + v —v2lly) -
On the other hand, we have

P2 @1,90) (8) = Hy (@2,92) ()] < s (s = @l + v = w2y,
and
|“DOHy (w1,91) (t) =C DHy (x2,12) (1)

< /O;t(_s"Hl (1,91) (s) — 7-[/1(:52,3/2)(3)‘658

tl §
< mué ([lz1 — 22 x + lyr — v2lly) -
By the above inequalities, we get
1M1 (z1,91) — Ha (22, 92) I x
[H1 (21, 91) — Ha (22, 92)|| + [|[“ DMy (21, 31) = DMy (22,2) |

IN

w2
{w1 + F(2—6)} (lzr — zall x + llyr — w2lly) -
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Similarly, we find that

[Ha (e, 0) (6) = Ha (w2,92) (O] < s (Jan = allc + ln = w2y
Hy (z1,11) () — Hy (x2,52) (1) < wa (o1 — 2|y + lv1 — v2lly)
and
‘CDA/HQ (xlv yl) (t) -¢ D’YHQ (.’E27 y2) (t)|
=
< mw4(||x1—x2||x+||y1—yQHY)’
hence

[Ha (21, y1) — Ha (22, 92)[ly
= |[Ha (z1,y1) — Ha (22, y2)| + HCDWH2 (z1,91) —C DY, ($2ay2)||

2
Wy

< —_— — — .

< {“’”F@—y)}(“ ool + g = welly)

Consequently, we obtain

I1H (z1,91) — H (22, 92) | x v

< oot mats 4 ot Flenm) - Gl

This shows that the operator H is a contraction in view of the assumption w; +
w3 + % + =24 < 1. Hence, it follows by contraction mapping principle that

L(2—7)
the operator H has a unique fixed point, which corresponds to the unique mild
solution of the problem (1). This completes the proof. O

Theorem 3.2. (Leray-Schauder) Let H : E — E be a completely continuous
operator and E(H) ={r € E:xz=XH(x),0 < A < 1}. Then, either the set € (H)

is unbounded, or H has at least one fized point.

To facilitate the proof, we introduce the following notations:

¢ = wvimg+vsng+ Fléﬂ_’toa) T (1}247?7)’ (3.5)
Y = wvymax{mi,ma} +vsmax{ny,na}+ #2—5) max {my, ma}
+ﬁ max {ny,na}, (3.6)
X = vimax{ms,my}+ vsmax{ns,ng}+ %2_5) max {ms,my}
+—% max {ns,na}. (3.7)
I'(2-7)

Theorem 3.3. Assume that the condition (H2) hold. In addition it is assumed
that max {v, x} < 1 where ¥, x are defined by (3.6) and (3.7) respectively. Then,
there exist at least one mild solution for the problem (1.1) on J.

Proof. In the first step, we show that the operator H : X XY — X XY is completely
continuous. By continuity of the functions f and g, it is obvious that the operator
H is continuous. Let @ C X x Y be bounded, then in virtue of (H2), there exist
positive constants My and My such that |f (¢, 2 (t),9 Dz (t),y (), Dy (t))| <
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My, and |g (¢, (t),© Dz (t),y (t),“ DYy (t))| < Mo, for (z,y) € Q. Then for any
(z,y) € Q, we have

[Hi (z,y) ()]
! l—sa_2 s,2(s),° Dox (s s),C DYy (s S
< a9 (e (9 £ D ()9 (). Dy () a
1 ! a—1 0
+|@0—1|FW)/0 (1= |f (s,2(5),“ D’ (s),y(5)," DTy (s))| ds
t 1—sa_2 s,z (s), Dox (s s).C DYy (s s
Jr|oz1—1|1“(oé_1)/O (1=9)""7|f (s,2(s), D°x (s),y (s),“ Dy (s))| d
1 t—safl s,z (s).¢ Doz (s $),C DYy (s S
| = T (1 (9) € Do (9, 0(5) € D7 (9)
1 1 t t*
: M1(|a01||a11|r<a>+|a01r<a+1>+|a11r<a>+r<a+1>)
S M1U17
and

o) 0] < 0 (s + o ) < Mo

which implies that

Cne -5,
| D H(l“,y)(t” = m’}h(%y)(s) ds
< Ml’Ugtlié Mivg
- T((2-6) ~I'(2-9)
Thus
C s Miv,
[H1 (2, 9)| x = [ Ha (2, 9)|| + || “DHa (2, 9)|| < Myoy + mo——-
T(2-9)
Similarly, one can obtain that
[Ha (2,9) (O] < Mavs, [Hy (2,9) (8)] < Mavs,
and
{CDWH (z,y) (t)| < LM Vg
R NCE R
Hence
#s (2, )y = [ (o, )l + [ D7 Ha (29| < Mavs + —a2d.
R ’ o r'2-7)
Therefore
17 @l xwy < I1H(@y)lx + [1H2 (2 9)]ly

Ml{m+r(;2_®}+M2{mr<;4_w}.

IN
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Thus, it follows that the operator H is uniformly bounded. Next, we show that the
operator H is equicontinuous, let ¢1,t € J with ¢; < t5. Then, we have

[Ha (2, y) (t2) = Ha (2, 9) (0)]
(ta —t1) L e
) / (1-s)

IN

|a1—1\F(a—1
X |f (5,2 (). D’z (s),y (s),% D7y (s))|ds
+ﬁ/0 (tg—s)“*l—(tl—s)a*‘

X ‘f (s, z(s),° Dz (5),y(s),Y Dy (s)) ‘ ds

—l—#/tz(tz—s |f(sgc € DO (s),y(s),.C Dy(s))| ds

T(a) Jy,
My (ta —t1) | My (2(ta —t1)" +[t5 —t7)
lay — 1| T () F(a+1) '

On the other hand, we have
|“D°H1 (z,y) (t2) =© DéHl (z,y) (t1)]

< /01“2‘8}(1_(?)‘8 [, (@) (5)] ds
o [ s )]
My (2 (ta — t1) ™! 4 |65 571 — t;‘”l\)
= T(2-0)

Hence, we have [H1 (z,y) (t2) — Hi (z,y) (t1)| = 0, and [CDHy (z,y) (t2) =€ DHy (z,y) (t1)| =
0 independent of x and y as to — t;. In the same way, we can obtain

My(t—t) Mo (202~ 1)+ ]t - #7])

by — 1| T (B) r(B+1) ’

[Ha (2,y) (t2) — Ha (z,y) (11)] <

and
Myvy (2 (ta —t1) 7T + ‘t;”“ - tﬁ*lD
INCE)

Thus, we have [Hs (z,y) (t2) — Ha (z,y) (t1)] = 0, and |“D " Hy (z,y) (t2) = D Ha (z,y) (t1)] —
0 independent of z and y as to — t;1. Therefore the operator H (z,y) is equicon-

tinuous. We infer that the operator H (z,y) is completely continuous by Arzela-

Ascoli theorem. Finally, let £ = {(z,y) € X XY : (z,y) = \H (z,y),0 < A < 1}

be bounded. For any ¢ € J, we have x (t) = \H1 (z,y) (t) and y (t) = AHa (x,y) (1) .

Then,

|z (¢)]

(D7 My (2,y) (t2) = DV Ha (,y) ()] <

< v {mo+my |z ()] +ma |“Dx (t)] + ms |y (1) +ma [“ D7y (1)] }
< vy {mo + max {my, ma} [|x|| x +max{ms, ma}|yly},

and
' ()] < v {mo + max {my, ma} ||z x + max {mz, ma} lylly } .
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Hence

1=y

C o 2
D ) < ————

In view of the above estimates, we get

{mo + max {my, ma} ||z| y + max {ms,ma} ||y, }-

lellx < o1 {mo + max{my,ma} ||z x + max {ms, ma}[lylly }

v
+I‘(272—5) {mo + max{my, ma} ||| x + max {msz, ma}[|ylly } -

Similarly, we have
ly @] < s {no+nule (@) +n2 [“D (8)] +ns ly ()] + na [“D7y (1)]}
< w3{no + max {ny, na} [lzfly + max{ns,ni}llyly},

and

y' ()] < vs {no + max {ny,na} [ x + max {ns,n4} lylly }-
Hence

C ~ tli’Y'U4

| Dy (t)| < m {no + max {ny,na} [|z| x + max{ns,na} [lylly} -
In view of the above estimates, we get

lylly < ws{no + max{ni, no} [lz] x + max{ns,n} [yl }
v

4
+=75—— {no + max {ny,na} ||z x + max{ns,na} |y}
I'2-7) X v
Then, we can find that
1@, 9l xxy = l2llx + ylly < ¢+max{y,x} [(z,9)] x v

which implies that

®
(@, 9l xxy < T max (U X}

This shows that the set £ is bounded thus by Theorem 3.2, the operator H has at
least one fixed point. In consequence, the problem (1.1)-(1.2) has at least one mild
solution on J. The proof is completed. (I

4. EXAMPLES

Example 4.1. Consider the following coupled system

5 x . 1 . 3
DY (t) = s + 1ymsmer (il +sin (YDYa (1)) +sin(y (1) +© Dy (1)),

CD3y(t) = 4&;4) + 100\/1m x (t) + arctan (CD%x (t)) + H‘f"g()tl)l +sin® Diy (t)) ,
for t € J =0,1], supplemented with non-periodic conditions:
{ z (1) =2z (0), 2/ (1) = 12/(0),
y(1)=3y(0), ¥ (1) = 3y (0).
Simple calculations lead to the following values: Ly = g5, Lo = 5=, Ny =%, Ny =

i7 "= 4.28, Vo = 259, V3 & 467 vy = 336, w1 =~ 0071, Wy =~ 0043, w3 ~ 0184,

Wy =~ 0134, o1 = 0856, 09 =~ 0518, o3 ~ 1157 o4 = 0.84. Then w1 + ﬁ ~
3

0.12 < %, and w3 + % ~ 0.33 < % Obviously, all conditions of Theorem 3.1 are

satisfied, then the coupled system of Example 4.1 has a unique mild solution on J.
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Example 4.2. Consider the coupled system of fractional differential equations:

8 Dix ch
CDiz(t) = \/74-100 smx(t)-l-ﬁgﬁ))—l-12051n(y(t))+ﬁ(ﬂ%)7
C cos x(t " Cpto

D3y(t) = \/121;2 + 400(1i33(t) 500 D“ff( )+ 28 4 y(t)

3(50+t 3 ) 2v25+¢27

equipped with non-periodic conditions:
{ z (1) =2x(0), 2/ (1) = 22/ (0),
y (1) =3y (0), ¥ (1) =3y (0),
Clearly

\f (m(t) “ D%x@) 10 ,CD%ya))\
_l’_

— CD2

fa + 170 Iyl + =

;

< —
- 3 100 el + 350 300 H 200 H

and

9 (m(t) ,CD%xw w(®).° D%yu))]

< Lo Ljaps 2 onia] + Lyl + & Db

= 400 600 150" T TV
Thusmo—%ﬂh 000 M2 = 350 M3 = T35, M4 = gope Mo = 3y, M1 =
To50 M2 = Gogo M3 = Tags M4 = 15, UL A 842, vy & 444, vy &~ 391, vy &

1.68, ¥ =~ 0.16, x = 0.69, max {1, x} < 1. The hypotheses of Theorem 3.3 are
satisfied, therefore, there exist at least one mild solution of the system in Example
4.2 on J.
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