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ON APPROXIMATE SOLUTIONS OF FOKKER PLANCK

EQUATION BY THE MODIFIED

RESIDUAL POWER SERIES METHOD

MUHAMMED I. SYAM

Abstract. In this article, a reliable method for solving the Fokker Planck
equation based on the modified residual power series method is presented.

Some of our numerical examples are presented. The results show that the
proposed method is accurate.

The Fokker-Planck equation (FPE) is used to model the diffusion problem of the
form

∂Ψ

∂x
(r, x)− ∂Ψ

∂r
(r, x) +

∂2Ψ

∂r2
(r, x) = 0, r, x > 0, (1)

Ψ(r, 0) = g(r), (2)

where Ψ(r, x) is the external potential and ∂Ψ
∂r (r, x) is the negative external forces.

In [1], several methods were developed to solve such problem. In [2]-[5], authors
presented variety of applications of the fractional FPE. Several numerical methods
are used to solve the fractional FPE such as the operator method [6], the predictor–
corrector [7], the variational iteration method and the Adomian decomposition
method [8], and He’s variational iteration method [9]. For more references, see [10]-
[19]. The fractional derivative which we use in this paper is the Caputo derivative
which is given by the following definition.

Definition 1 [20] Let k be the smallest integer that exceed θ, then the Caputo
derivative is given by

Dθ
rΨ(r, x) =

1

Γ(k − θ)

r∫
0

(r − s)k−θ−1 ∂
kΨ(s, x)

∂sk
ds (3)

for k − 1 < θ < k and Dk
rΨ(r, x) = ∂kΨ(r,x)

∂rk
.

The power rule of the Caputo derivative is given by

Dθrµ =
Γ(µ+ 1)

Γ(µ− θ + 1)
rµ−θ, µ > k − 1, k − 1 < θ < k (4)
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and

Dθrµ = 0, µ ≤ k − 1, k − 1 < θ < k. (5)

Our goal is to generate convergence series that converges to exact solution. The
next theorem presents the convergence theorem.

Theorem 1 [21]-[30] If Ψ(r, x) has a multiple fractional fractional power series
(FRPS) of the form

Ψ(r, x) =
∞∑
k=0

µk(r)(x− x0)
kθ, r ∈ I, x0 ≤ x ≤ x0 +R (6)

and Dkθ
x Ψ(r, x), for k = 0, 1, ... are continuous on I × (x0, x0 + R), then µk(r) =

Dkθ
x Ψ(r,x0)
Γ(1+kθ) .

In this paper, we consider the fractional FPE of the form

Dθ
xΨ(r, x) +Dθ

rΨ(r, x)−D2θ
r Ψ(r, x) = 0, (7)

Ψ(r, 0) = g(r) (8)

where r, x > 0 and θ ∈ (0, 1]. In Section 2, we present the method of solution while
in Section 3, we present some of our examples.

1. Method of solution

In this section, we present the method of solution to the fractional FPE of the
form

Dθ
xΨ(r, x) +Dθ

rΨ(r, x)−D2θ
r Ψ(r, x) = 0, (9)

Ψ(r, 0) = g(r) (10)

where r, x > 0 and θ ∈ (0, 1]. Approximate Ψ(r, x) by

Ψ(r, x) =

∞∑
k=0

µk(r)
xkθ

Γ(1 + kθ)
. (11)

Its nth truncated series of the form

Ψn(r, x) =
n∑

k=0

µk(r)
xkθ

Γ(1 + kθ)
. (12)

Since Ψ(r, 0) = g(r),

Ψn(r, x) = g(r) +
n∑

k=1

µk(r)
xkθ

Γ(1 + kθ)
. (13)

To find µj(r), for 1 ≤ j ≤ n, we solve the fractional equation

D(j−1)θ
x RΨn(r, 0) = 0 (14)
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where

RΨn(r, x) = Dθ
xΨn(r, x) +Dθ

rΨn(r, x)−D2θ
r Ψn(r, x) (15)

=
n∑

k=1

µk(r)
x(k−1)θ

Γ(1 + (k − 1)θ)
+Dθ

rg(r)

+
n∑

k=1

xkθ

Γ(1 + kθ)
Dθ

rµk(r)−D2θ
r g(r)

−
n∑

k=1

xkθ

Γ(1 + kθ)
D2θ

r µk(r).

Therefore,

D(j−1)θ
x RΨn(r, 0) = µj(r) +Dθ

rµj−1(r)−D2θ
r µj−1(r) = 0 (16)

or

µj(r) = D2θ
r µj−1(r)−Dθ

rµj−1(r), (17)

µ0 = g(r),

for j = 1, 2, ..., n. Thus,

µ0 = g(r), (18)

µ1(r) = D2θ
r g(r)−Dθ

rg(r),

µ2(r) = D2θ
r

(
D2θ

r g(r)−Dθ
rg(r)

)
−Dθ

r

(
D2θ

r g(r)−Dθ
rg(r)

)
,

...

2. Numerical Results

In this section, we present three examples to show the efficiency of the proposed
method.

Example 1: Consider the following problem

Dθ
xΨ(r, x) +Dθ

rΨ(r, x)−D2θ
r Ψ(r, x) = 0, (19)

Ψ(r, 0) =
r2θ

Γ(2θ + 1)
, (20)

where r, x > 0 and θ ∈ (0, 1]. Approximate Ψ(r, x) by

Ψ(r, x) =
∞∑
k=0

µk(r)
xkθ

Γ(1 + kθ)
. (21)

Its nth truncated series of the form

Ψn(r, x) =
n∑

k=0

µk(r)
xkθ

Γ(1 + kθ)
. (22)

Since Ψ(r, 0) = r2θ

Γ(2θ+1) ,

Ψn(r, x) =
r2θ

Γ(2θ + 1)
+

n∑
k=1

µk(r)
xkθ

Γ(1 + kθ)
. (23)
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To find µj(r), for 1 ≤ j ≤ n, we solve the fractional equation

D(j−1)θ
x RΨn(r, 0) = 0 (24)

where

RΨn(r, x) = Dθ
xΨn(r, x) +Dθ

rΨn(r, x)−D2θ
r Ψn(r, x) (25)

=
n∑

k=1

µk(r)
x(k−1)θ

Γ(1 + (k − 1)θ)
+

rθ

Γ(θ + 1)

+
n∑

k=1

xkθ

Γ(1 + kθ)
Dθ

rµk(r)− 1

−
n∑

k=1

xkθ

Γ(1 + kθ)
D2θ

r µk(r).

Therefore,

D(j−1)θ
x RΨn(r, 0) = µj(r) +Dθ

rµj−1(r)−D2θ
r µj−1(r) = 0 (26)

or

µj(r) = D2θ
r µj−1(r)−Dθ

rµj−1(r), (27)

µ0 =
r2θ

Γ(2θ + 1)
,

for j = 1, 2, ..., n. Thus,

µ0 =
r2θ

Γ(2θ + 1)
, (28)

µ1 = 1− rθ

Γ(θ + 1)
,

µ2 = 1,

µn = 0, n > 2.

Thus,

Ψ2(r, x) =
2∑

k=0

µk(r)
xkθ

Γ(1 + kθ)
(29)

= − rθxθ

(Γ(θ + 1))
2 +

xθ

Γ(θ + 1)
+

r2θ + x2θ

Γ(2θ + 1)

which is the exact solution.
Example 2: Consider the following problem

Dθ
xΨ(r, x) +Dθ

rΨ(r, x)−D2θ
r Ψ(r, x) = 0, (30)

Ψ(r, 0) = − r3θ

Γ(3θ + 1)
, (31)

where r, x > 0 and θ ∈ (0, 1]. Approximate Ψ(r, x) by

Ψ(r, x) =
∞∑
k=0

µk(r)
xkθ

Γ(1 + kθ)
. (32)
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Its nth truncated series of the form

Ψn(r, x) =
n∑

k=0

µk(r)
xkθ

Γ(1 + kθ)
. (33)

Since Ψ(r, 0) = − r3θ

Γ(3θ+1) ,

Ψn(r, x) = − r3θ

Γ(3θ + 1)
+

n∑
k=1

µk(r)
xkθ

Γ(1 + kθ)
. (34)

To find µj(r), for 1 ≤ j ≤ n, we solve the fractional equation

D(j−1)θ
x RΨn(r, 0) = 0 (35)

where

RΨn(r, x) = Dθ
xΨn(r, x) +Dθ

rΨn(r, x)−D2θ
r Ψn(r, x) (36)

=
n∑

k=1

µk(r)
x(k−1)θ

Γ(1 + (k − 1)θ)
− r2θ

Γ(2θ + 1)

+
n∑

k=1

xkθ

Γ(1 + kθ)
Dθ

rµk(r) +
rθ

Γ(θ + 1)

−
n∑

k=1

xkθ

Γ(1 + kθ)
D2θ

r µk(r).

Therefore,

D(j−1)θ
x RΨn(r, 0) = µj(r) +Dθ

rµj−1(r)−D2θ
r µj−1(r) = 0 (37)

or

µj(r) = D2θ
r µj−1(r)−Dθ

rµj−1(r), (38)

µ0 = − r3θ

Γ(3θ + 1)
,

for j = 1, 2, ..., n. Thus,

µ0 = − r3θ

Γ(3θ + 1)
, (39)

µ1 = − rθ

Γ(θ + 1)
+

r2θ

Γ(2θ + 1)
,

µ2 = 2− rθ

Γ(θ + 1)
,

µ3 = 1,

µn = 0, n > 3.

Thus,

Ψ2(r, x) =
3∑

k=0

µk(r)
xkθ

Γ(1 + kθ)
(40)

= − rθxθ

(Γ(θ + 1))
2 +

2x2θ

Γ(2θ + 1)
+

r2θxθ − rθx2θ

Γ(2θ + 1)Γ(θ + 1)
+

x3θ − r3θ

Γ(3θ + 1)
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which is the exact solution.
Example 3: Consider the following problem

Dθ
xΨ(r, x) +Dθ

rΨ(r, x)−D2θ
r Ψ(r, x) = 0, (41)

Ψ(r, 0) = Eθ(2r
θ), (42)

where r, x > 0, Eθ is the Mittag-Leffler function, and θ ∈ (0, 1]. Approximate Ψ(r, x)
by

Ψ(r, x) =

∞∑
k=0

µk(r)
xkθ

Γ(1 + kθ)
. (43)

Its nth truncated series of the form

Ψn(r, x) =

n∑
k=0

µk(r)
xkθ

Γ(1 + kθ)
. (44)

Since Ψ(r, 0) = Eθ(2r
θ),

Ψn(r, x) = Eθ(2r
θ) +

n∑
k=1

µk(r)
xkθ

Γ(1 + kθ)
. (45)

To find µj(r), for 1 ≤ j ≤ n, we solve the fractional equation

D(j−1)θ
x RΨn(r, 0) = 0 (46)

where

RΨn(r, x) = Dθ
xΨn(r, x) +Dθ

rΨn(r, x)−D2θ
r Ψn(r, x) (47)

=
n∑

k=1

µk(r)
x(k−1)θ

Γ(1 + (k − 1)θ)
+Dθ

rEθ(2r
θ)

+
n∑

k=1

xkθ

Γ(1 + kθ)
Dθ

rµk(r)−D2θ
r Eθ(2r

θ)

−
n∑

k=1

xkθ

Γ(1 + kθ)
D2θ

r µk(r).

Therefore,

D(j−1)θ
x RΨn(r, 0) = µj(r) +Dθ

rµj−1(r)−D2θ
r µj−1(r) = 0 (48)

or

µj(r) = D2θ
r µj−1(r)−Dθ

rµj−1(r), (49)

µ0 = Eθ(2r
θ),

for j = 1, 2, ..., n. Thus,

µ0 = Eθ(2r
θ), (50)

µn = 2nEθ(2r
θ), n > 0.
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Thus,

Ψ2(r, x) =
∞∑
k=0

µk(r)
xkθ

Γ(1 + kθ)
(51)

=
∞∑
k=0

2kEθ(2r
θ)

2kxkθ

Γ(1 + kθ)

= Eθ(2r
θ)Eθ(2x

θ)

which is the exact solution.

We notice that the proposed method is accurate and gives the exact solution
in the three examples. In addition, there is no influence for the parameter θ on
the solution. This is clear since we get the exact solution for any choice of θ. In
addition, it is advisable to use this approach for other applications in physics and
engineering.
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