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NOTES ON THE FRACTIONAL TAYLOR’S FORMULA

SAAD ZAGLOUL RIDA

Abstract. A new ideal formula for the generalization of the classic Taylor’s

formula have been described. The fractional derivatives are introduced by a

new Caputo like-fractional derivative. Furthermore, some interesting examples
are pointed out.

1. Introduction

In recent decades the power series expansion has been widely used in computa-
tional science obtaining an easy approximate of a function [1], numerical schemes
to integrate a Cauchy problem [3], or gaining knowledge about the singularities
of a function by comparing two different Taylor series expansions around different
points [4]. This is a fundamental tool to linearize a problem which guaranties easy
analysis. Recently, the Fractional calculus has become an important part of various
sciences such as mathematics, engineering and physics [2]. It has emerged as an ef-
fective and powerful tool for the mathematical modeling of several engineering and
scientific phenomena. Therefore, it is necessary to have some mathematical appara-
tus and tools in order to understand this concept. Also, the fractional power series
is becoming an essential tool in the study of elementary functions, particularly in
the fractional calculus approach. In the context of the fractional derivatives, Taylor
series has been developed for different definitions [5-6]. Recently, many authors [7-
11] presented a generalization of the classical Taylor’s formula, but in general they
consist on a series in powers of xn+αwhich in fact is not a purely fractional series.
Others consist on a series in powers of xnα,which also in fact is not a purely true.
In the following fractional Taylor formula

f(x) =

n∑
k=0

(Dkαf)(x0)

Γ(kα+ 1)
(x− x0)kα +

(D(n+1)αf)(ξ)

Γ((n+ 1)α+ 1)
(x− x0)(n+1)α

; k = 0, 1, ..., n ; 0 < α ≤ 1 ; a < x0 < ξ < x < b∀x ∈ (a, b)

i.e.
f(x) = f(x0) + (x−x0)α

Γ(α+1) D
αf(x0) + (x−x0)2α

Γ(2α+1) D
2αf(x0) + (x−x0)3α

Γ(3α+1) D
3αf(x0)

+ (x−x0)4α

Γ(4α+1) D
4αf(x0) + (x−x0)5α

Γ(5α+1) D
5αf(x0) + ...
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which is extensively studied, we find that order of fractional derivatives in all terms
as0, α, 2α, 3α, 4α, 5α, ..., i.e

0, (0, 1], (0, 2], (0, 3], (0, 4], (0, 5], ....

Hence, we note that all order of fractional derivatives are repeated. i.e. all order
of fractional derivatives are repeated in the second term n − 1 times, in the third
term n− 2 times, in the fourth term n− 3 times, . . . and so on.
In the present work a similar study has been made for Caputo fractional derivative
defined as

Dα
a f(x) =

1

Γ(1− α)

∫ x

a

(x− t)−αDf(t)dt = I1−α
a Df(x), (1)

where the fractional integral Iαa is defined as

Iαa f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1 f(t)dt (2)

The use of this definition of the fractional derivative is justified since it has good
physical properties [2] as, for example that the derivative of a constant is zero
or that Cauchy problems requires initial conditions formulated in terms of integer
order derivatives interpreted as initial position, initial velocity, etc.
In order to develop a generalization of fractional Taylor’s formula it is necessary to
give some interesting new results including definitions and properties of the Caputo
fractional derivative.
As it is well-known, elementary manipulations with entire order derivatives as the
summation of index, Leibniz rule or the chain rule are not valid for Caputo frac-
tional derivative as also happen with Riemann-Liouville definition. Taking this into
account, and with no possibility of confusion it will be used the following convection
for the sequential derivative in order to simplify notation

Dαk
a , k = 0, 1, 2, ..., n; k − 1 < αk ≤ k, α0 = 0

Definition 1. We define the Caputo like fractional derivative of f(x)of order
αn > 0with a ≥ 0, as

Dαn
a f(x) = In−αna Dnf(x) =

1

Γ(n− αn)

∫ x

a

(x− t)n−αn−1(Dnf(t))dt (3)

with n− 1 < αn ≤ n , n ∈ N, x ≥ a.
Also,

Dαn
a f(x) =

1

Γ(1− αn)

∫ x

a

(x− t)−αn(Df(t))dt = I1−αn
a Df(x) (4)

where the fractional integral Iαna is defined as

Iαna f(x) =
1

Γ(αn)

∫ x

a

(x− t)αn−1 f(t)dt (5)

Proposition 1. Let αn, n− 1 < αn ≤ n and f(x) ∈ Cnαn , then we have

Iαna Dαn
a f(x) = f(x)− f(a) (6)

Applying (4), we have

Iαna Dαn
a f(x) = I1

aDf(x)

Then (6) obtained directly.
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Proposition 2. Let αn, n− 1 < αn ≤ n and f(x) ∈ Cnαn , then we have

f(x) = f(a) +
(x− a)αn

Γ(αn + 1)
Dαn
a f(ξ) (7)

for any ξ ∈ (a, x), being Dαn
a f(x) continuous in [a, x].

From (5), we have

Iαna Dαn
a f(x) =

1

Γ(αn)

∫ x

a

(x− t)αn−1Dαn
a f(t)dt (8)

Applying the mean value theorem for the integral, we have

Iαna Dαn
a f(x) =

Dαn
a f(ξ)

Γ(αn)

∫ x

a

(x− t)αn−1 dt =
Dαn
a f(ξ)

Γ(αn + 1)
(x− a)αn (9)

for any ξ ∈ (a, x). From (6), then we have the result.
Definition 2.Let αn, n− 1 < αn ≤ n and f(x) ∈ Cnαn , we can defined

Iαna Dαn
a f(x) = f(x)−

n−1∑
i=0

(Dαif)(a)
(x− a)αi

Γ(αi + 1)
; α0 = 0 (10)

In this article, we present the ideal formula for the generalization of the classic
Taylor’s formula

2. Generalization of the classical Taylor’s formula

Theorem 1. Suppose thatDαk
a f(x), D

αk+1
a f(x) ∈ Cα(a, b] for k = 0, 1, 2, ..., n; k−

1 < αk ≤ k, α0 = 0, then

Iαka Dαk
a f(x)− Iαk+1

a Dαk+1
a f(x) =

(x− a)αk

Γ(αk + 1)
(Dαk

a f)(a) (11)

Proof. Using (10), we have

Iαka Dαk
a f(x) = f(x)−

∑k−1
i=0 (Dαi

a f)(a) (x−a)αi

Γ(αi+1)

= f(x)− f(a)− (Dα1
a f)(a) (x−a)α1

Γ(α1+1) − ...− (D
αk−1
a f)(a) (x−a)αk−1

Γ(αk−1+1)

(12)
and

I
αk+1
a D

αk+1
a f(x) = f(x)−

∑nk
i=0(Dαi

a f)(a) (x−a)αi

Γ(αi+1)

= f(x)− f(a)− (Dα1
a f)(a) (x−a)α1

Γ(α1+1) − ...

− (D
αk−1
a f)(a) (x−a)αk−1

Γ(αk−1+1) − (Dαk
a f)(a) (x−a)αk

Γ(αk+1)

(13)

Then, by subtracting Eq. (13) from Eq.(12), we have the result.
Remark 1.When k = 0, we have

I0
a(D0

af(x)) = f(x),

by considering

I0
a(D0

af(x))− f(x) + f(a) = f(a),

Theorem 2. Suppose that Dαk
a f(x) ∈ Cα(a, b] for k ∈ N; k− 1 < αk ≤ k, α0 = 0,

then

Iαka Dαi
a f(x) =

Dαi
a f(ξ)

Γ(αk + 1)
(x− t)αk , k, i ∈ N, (14)

for any ξ ∈ (a, x).
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Proof. Using (8), we obtain

Iαka Dαi
a f(x) =

1

Γ(αk)

∫ x

a

(x− t)αk−1Dαi
a f(t)dt.

Applying the mean value theorem, gives the result.
Theorem 3. Suppose that D

αk+1
a f(x) ∈ Cα(a, b]for k = 0, 1, 2, ..., n; k − 1 <

αk ≤ k, α0 = 0, then we have the generalized fractional Taylor’s formula

f(x) =

n∑
k=0

(Dαk
a f)(a)

Γ(αk + 1)
(x− a)αk +

(D
αn+1
a f)(ξ)

Γ(αn+1 + 1)
(x− a)αn+1 , (15)

with ξ ∈ (a, x), ∀x ∈ (a, b).
Proof. From (2), we have

n∑
k=0

(Iαka Dαk
a f(x)− Iαk+1

a Dαk+1
a f(x)) =

n∑
k=0

(x− a)αk

Γ(αk + 1)
(Dαk

a f)(a)

Then,

f(x)− Iαn+1
a Dαn+1

a f(x) =

n∑
k=0

(x− a)αk

Γ(αk + 1)
(Dαk

a f)(a) (16)

Using the integral mean value theorem, we have

I
αn+1
a D

αn+1
a f(x) = 1

Γ(αn+1+1)

∫ x
a

(x− t)αn+1(D
αn+1
a f)(t)dt

= (D
αn+1
a f)(ξ)

Γ(αn+1+1)

∫ x
a

(x− t)αn+1dt

= (D
αn+1
a f)(ξ)

Γ(αn+1+1) (x− a)αn+1

(17)

From (16) and (17), we have (15). In case αk = k, the generalized fractional
Taylor’s formula (15) reduces to the classical Taylor’s formula.
Theorem 4. Suppose that Dαk

a f(x) ∈ Cα(a, b]for k = 0, 1, 2, ..., n; k − 1 < αk ≤
k, α0 = 0, then we have the generalized fractional Taylor’s series

f(x) =

∞∑
k=0

(Dαk
a f)(x0)

Γ(αk + 1)
(x− x0)αk , (18)

with a < x0 < x < b, ∀x ∈ (a, b).
Proof. From (15), we take n→∞in the reminder

Rn =
(D

αn+1
a f)(ξ)

Γ(αn+1 + 1)
(x− x0)αn+1 . (19)

Hence, we get

lim
n→∞

Rn = lim
n→∞

(D
αn+1
a f)(ξ)

Γ(αn+1 + 1)
(x− x0)αn+1 = 0

then we have the result.
Theorem 5. Suppose that Dαk

a f(x) ∈ Cα(a, b]for k = 0, 1, 2, ..., n; k − 1 < αk ≤
k, α0 = 0, then we have the generalized fractional Maclaurin series

f(x) =

∞∑
k=0

(Dαk
a f)(0)

Γ(αk + 1)
xαk , (20)

with a < 0 < x < b, ∀x ∈ (a, b).
Proof. In (18) taking x0 = 0, gives the result.
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3. Application

Since, many phenomena that appear in various applied sciences and engineering
depend on the history of the previous time, thus the fractional calculus becomes
very important subject to model these phenomena [2]. In this section we use our
formula of the generalized Taylor’s series to give a series for some functions.
Definition 3. A Mittag-Leffler like function can be defined as

Eα(x) =

∞∑
k=0

x1k

Γ(αk + 1)
, (21)

whereik = ik, i = 1, 2, ... and k − 1 < αk ≤ k, α0 = 0.
Definition 4. A generalized Mittag-Leffler like function can be given in the form

Eα(xf(α)) =

∞∑
k=0

xαk

Γ(αk + 1)
, f(α) (22)

where k − 1 < αk ≤ k, α0 = 0.
From Theorem 3, the generalized fractional Taylor’s formula can be used to ap-
proximate functions at given points, and then we have the form

f(x) ∼= PαN (x) =

N∑
k=0

(Dαk
a f)(a)

Γ(αk + 1)
(x− a)αk , (23)

with an error term of the form

RαN (x) =
(D

αN+1
a f)(ξ)

Γ(αN+1 + 1)
(x− a)αN+1 , (24)

with ξ ∈ (a, x).
Application 1. The generalized Mittag-Leffler like function (22) can be approxi-
mated as

Eα(xf(α)) ∼= PαN (x) = 1 +
xα1

Γ(α1 + 1)
+

xα2

Γ(α2 + 1)
+ ...+

xαN

Γ(αN + 1)
, (25)

and the error term take the form

RαN (x) =
Eα(ξ)

Γ(αN+1 + 1)
(x− a)αN+1 , ξ ∈ (a, x). (26)

4. Conclusions

In this paper we successfully established a new generalization of the classic Tay-
lor’s formula. We discussed a new fractional Taylor’s series with a new Caputo
like-fractional derivative. The behavior of the new formula seems to be extremely
interesting. Finally, we can say that the new fractional Taylor’s formula is poten-
tially very effective and accurate for solving fractional differential equations.
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