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ON THE STABILITY ANALYSIS OF THE FRACTIONAL

NONLINEAR SYSTEMS WITH HURWITZ STATE MATRIX

NDOLANE SENE

Abstract. This paper deals with the stability analysis of the fractional non-
linear systems. It treats the fractional exponential stability and the asymptotic

stability of the fractional nonlinear systems with Hurwitz state matrix, using

the Lyapunov direct method. We give algebraic conditions under which the
fractional nonlinear systems are fractional exponentially stable. Two numeri-

cal examples are provided to illustrate the proposed theoretical results.

1. Introduction

In the last years many papers appeared and gave some results and role of the
fractional calculus in physics, control engineering and signal processing [4, 5, 10, 11].
Fractional calculus received attention due to its important role in modeling the
anomalous dynamics of various processes related to complex systems in the most
areas of science an engineering. In 1965, l’Hospital asked a remarkable question,

what does it mean dnf
dxn when n = 1

2 [8]. This problem has now an explicit answer.
The limit definition of a fractional derivative was introduced to answer to this
question [1, 8]. Fractional calculus is a generalization of ordinary differential and
integration to arbitrary non integer order. In [8], Khalil gives a definition of a
derivative called conformable derivative mathematically expressed by

Tαf(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
(1)

In [3], Almeida introduced a similar limit definition of fractional derivative of a
function if we do not know the kernel as follows

fα(t) = lim
ε→0

f(t+ εk(t)1−α)− f(t)

ε
. (2)

If the k(t) = t, we recover the conformable derivative given by Khalil. If expanding

the function teεt
1−α

at neighborhood of ε = 0 it follows that teεt
1−α

= t+εt1−α+o(ε),
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we recover the Katugampola idea of fractional derivative given in [6] expressed as

Dαf(t) = lim
ε→0

f(teεt
1−α

)− f(t)

ε
. (3)

All these definitions of the idea of the fractional derivative are clearly equivalent.
Last generalizations of these definitions were given in the literature (see [2, 13]). In
this paper, we will use Khalil idea of the fractional derivative given by the condition
(1) due to its practical and simplest use. Stability of nonlinear systems received
increased attention due to its important role in areas of science and engineering.
A large number of monograph and papers are devoted to the fractional nonlinear
systems [4, 9, 14]. This paper deals with the stability analysis of the fractional
nonlinear systems. It treats the stability of a particular class of the fractional
dynamical nonlinear systems. Many results in stability analysis of the fractional
nonlinear systems are consigned in [14]. In [9], author study stability analysis of
particular class of the fractional nonlinear systems using Lyapunov direct method.

It is well known that the nonlinear dynamic systems that share a Lyapunov func-
tion is global asymptotically stability [7]. For the fractional nonlinear systems, we
have the asymptotic stability or the fractional exponential stability. For linear time
invariant systems, the global asymptotic stability is guaranteed if the state matrix
is Hurwitz. For fractional linear system, we have the fractional exponential stabil-
ity. Providing conditions under which a fractional nonlinear system is fractional
exponentially stable has been the object of intense research.

Modeling phenomena using dynamical system is not very easy. There are many
types of errors in the modeling. In this paper, we will gather these errors in the
perturbation term. The perturbation term could result from modeling errors, aging,
uncertainties and disturbances which exist in many realistic problems. Another
purpose of this paper is to find algebraic conditions under which the fractional
nonlinear systems with perturbation term are asymptotically stable and fractional
exponentially stable. In many practical systems, the system behaves well when it
is not too much disturbed, but may have more complicated behaviors when the
disturbance is too strong. These reasons, motive the works of this paper. We use
the Lyapunov direct method.

The paper is organized as follows : in section 2, after recalling some necessary
definitions, we will describe the classes of the fractional nonlinear systems, and
will provide the main results. In section 3, we will give two numerical examples to
illustrate our main results. And then we are going to end this paper by giving our
proofs, conclusions and remarks in section 4.

Notation. PD denotes the set of all continuous functions χ : R≥0 → R≥0
satisfying χ(0) = 0 and χ(s) > 0 for all s > 0. A class K function is an increasing
PD function. The class K∞ denotes the set of all unbounded K function. A
continuous function β : R≥0×R≥0 → R≥0 is said to be class KL if β(., t) ∈ K for any
t ≥ 0 and β(s, .) is non increasing and tends to zero as its arguments tends to infinity.

Given x ∈ Rn, ‖x‖ stands for its Euclidean norm: ‖x‖ :=
√
x21 + . . .+ x2n. For a

matrix A, λmax(A) and λmin(A) denote the maximal and the minimal eigenvalue of
A, respectively. If the condition Re (λi) < 0,∀i = 1, 2, ..., n, holds then the matrix
A is said Hurwitz .
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2. Preliminaries definitions and main results

In this section, we introduce some definitions of the fractional calculus and several
lemmas.

Definition 1. [8] Given a function f : [0,+∞[−→ R. Then the conformable de-
rivative of f of order α is defined by

Tαf(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
(4)

all t > 0, α ∈ (0, 1) . If f is α-differentiable in (0, a) , a > 0, and limε→0+ f
(α)(t)

exists, then define

f (α)(0) = lim
ε→0+

f (α)(t).

Definition 2. [14] We denote by C∞ ((0,+∞),Rn) the set of function x ∈ C∞ ((0,+∞),Rn)
such that Tαx(t) exists and is continuous on (0,+∞).

Lemma 1. [8] Let α ∈ (0, 1) and f is α-differentiable at point t > 0. If f is
differentiable, then

Tαf(t) = t1−α
df

dt
. (5)

From expression given by (5), it is clear if α = 1, we recover the classical deriva-
tive. Khalil definition of fractional derivative satisfies the following properties (see
[8] for details):

Lemma 2. Let α ∈ (0, 1) and f, g be α-differentiable at point t > 0. Then

(1) Tα [af + bg] = aTα [f ] + bTα [g] for all constant a, b ∈ R.
(2) Tα [λ] = 0, for all constant function f(t) = λ.
(3) Tα [fg] = fTα [g] + gTα [f ] .

(4) Tα

[
f
g

]
= fTα[g]−gTα[f ]

g2 .

(5) The triangular inequality :

Tα [|f + g|] ≤ Tα [|f |] + Tα [|g|] (6)

is not in hold general.

We give the following counterexample to illustrate the items (5). The proof of
the other items can be found in [8].

Counterexample: To see that, let the function f(t) = t2 and g(t) = t on
interval [0, 1] , we have that |f | = f ≤ g ≤ |g|. But Tα [|f |] (1) = 2 and Tα [|g|] (1) =
1. And remark that Tα [|g|] (1) ≤ Tα [|f |] (1). Then Tα is not a monotone operator.
On this condition the triangular inequality is not hold.

Definition 3. [8] The conformable integral starting from a of a function f of order
α ∈ (0, 1] is defined by

Iaαf(t) =

∫ t

a

xα−1f(x)dx (7)

Lemma 3. [8] Let α ∈ (0, 1] and f is any continuous in a domain of Iα, for t > a
we have

TαI
a
αf(t) = f(t). (8)
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Generally the fractional nonlinear systems which we consider in this paper is
mathematically represented by the following form

Tαx(t) = f(t, x(t)) (9)

where x(t) ∈ Rn is state variable and f : R+×Rn → Rn continuous locally Lipschitz
function satisfying f(t, 0) = 0 for all t > 0.

We introduce some definitions of the fractional nonlinear system (9).

Definition 4. [14] The trivial solution of system (9) is said to be stable if for every
ε > 0 there exists a δ = δ (ε) such that for any initial condition ‖x(t0‖ < δ, the
solution x(t) of the system (9) satisfies inequality ‖x(t)‖ < ε for all t > t0.

The trivial solution of system (9) is said to be asymptotically stable if it is stable
and furthermore limt→+∞ x(t) = 0.

Definition 5. [14] The conformable exponential function is defined for every s ≥ 0
by

Eα (λ, s) = exp

(
λ
sα

α

)
(10)

where α ∈ (0, 1) and λ ∈ R.

Definition 6. [14] The origin of the fractional nonlinear system (9) is said to be
fractional exponentially stable if

‖x(t)‖ ≤ K ‖x(t0)‖Eα (−λ, t− t0) (11)

with t > t0 and λ,K > 0.

We introduce some several important lemmas and assumption.

Lemma 4. [14] Let x = 0 be an equilibrium point for the fractional nonlinear
system (9) and V : R+ × Rn −→ R be continuous. Suppose that c1, c2 and c3 are
arbitrary positive constants. If the following conditions are satisfied :

(1) c1 ‖x‖2 ≤ V (t, x) ≤ c2 ‖x‖2.
(2) V (t, x) has conformable fractional derivate of order α for all t0 ≥ 0

(3) TαV (t, x(t)) ≤ −c3 ‖x‖2 .
Then the origin of the fractional nonlinear system (9) is fractional exponentially
stable.

Lemma 5. [14] Let x = 0 be an equilibrium point for the fractional nonlinear
system (9) and V : R+×Rn −→ R be continuous function and class K function χ1

satisfying following condition :

(1) χ1(‖x‖) ≤ V (t, x)
(2) V (t, x) has conformable fractional derivate of order α for all t0 ≥ 0
(3) TαV (t, x(t)) ≤ 0.

Then the origin of the fractional nonlinear system (9) is stable.

Lemma 6. Let x = 0 be an equilibrium point for the fractional nonlinear system
(9) and there exist V : R+×Rn −→ R continuous Lyapunov candidate and class K
function χ4 satisfying following conditions :

(1) V (t, x) has conformable fractional derivate of order α for all t0 ≥ 0
(2) TαV (t, x(t)) ≤ −χ4(‖x‖).

Then the origin of the fractional nonlinear system (9) is asymptotically stable.
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For the proof of this theorem we can remark that, if there exists V : R+×Rn −→
R continuous Lyapunov candidate function, then there exist classes K functions χ2,
χ3 satisfying the condition χ2 (‖x‖) ≤ V (t, x) ≤ χ3 (‖x‖) . The rest of the proof is
given by Theorem 3 in [14].

Referring to these above lemmas we make the following lemma.

Lemma 7. If the equilibrium point x = 0 for the fractional nonlinear system (9)
is fractional exponentially stable then there exists class K∞ function χ5 such that

‖x(t)‖ ≤ χ5(‖x0‖). (12)

Proof : Let x = 0 be the equilibrium point of the system (9). If the origin of
the system (9) is fractional exponentially stable then

‖x(t)‖ ≤ K ‖x(t0)‖Eα (−λ, t− t0) .

Observe that, the conformable fractional exponential Eα (−λ, t− t0) decreases on
t− t0, and we have in particular

Eα (−λ, t− t0) ≤ Eα (−λ, 0) = 1.

We obtain that ‖x(t)‖ ≤ K ‖x(t0)‖Eα (−λ, t− t0) ≤ K ‖x(t0)‖ . Let that χ5(s) =
Ks ∈ K∞. Finally we have ‖x(t)‖ ≤ χ5(‖x0‖).
Assumption 1. The function g : R+×Rn → Rn is continuous and locally Lipschitz
with Lipschitz constant L, that is

‖g(t, x)− g(t, y)‖ ≤ L ‖x− y‖
for all x, y ∈ Rn and all t ∈ R+.

Lemma 8. [12, 15] Given any scalar ε ≥ 0, u, v ∈ Rn, it holds that

uT v + vTu ≤ ε−1uTu+ εvT v.

We now ready to state the main results of this paper which are provided in
section 4. Generally the fractional nonlinear systems which we consider in this
paper is mathematically represented by the following form

Tαx(t) = f(t, x) = Ax(t) + g(t, x(t)) (13)

where x(t) ∈ Rn is state variable, A is an matrix in Rn×n and g : R+ × Rn → Rn
satisfies Assumption 1 and g(t, 0) = 0.

Let g = 0, then we obtain the following particular fractional nonlinear systems
expressed by

Tαx(t) = Ax(t) (14)

The fractional systems define by (14) are called the fractional linear systems. We
have the following results.

Theorem 1. Let x = 0 be an equilibrium point of the system (14). If the state
matrix A is Hurwitz then the trivial solution of the fractional linear system (14) is
fractional exponentially stable.

Theorem 2. Let x = 0 be an equilibrium point of the system (14). If the state
matrix A is Hurwitz then the trivial solution of the fractional linear system (14) is
asymptotically stable.

We give the main results with the fractional nonlinear system (13). For that, we
consider the perturbation term g(t, x) 6= 0 for all x 6= 0, and with g(t, 0) = 0.
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Theorem 3. Let x = 0 be an equilibrium point of the system (13). Let that the
state matrix A is Hurwitz, and the condition ‖g(t, x)‖ < γ ‖x‖ holds. If there exist
a positive definite matrix P such that the following inequality holds

γ <
λmin(Q)

2λmax(P )
.

where −Q = ATP +PA, then the trivial solution of the fractional nonlinear system
(13) is fractional exponentially stable.

Theorem 4. If Assumption 1 holds, there exist a positive definite matrix P , a
scalar ε ≥ 0, such that the following inequality holds

λmin(R) < εL2 (15)

where L is Lipschitz constant of g and −R = ATP + PA+ ε−1P 2, then the trivial
solution of the system (13) is fractional exponentially stable.

3. Two numerical examples

In this section, two examples are provided to illustrate the proposed theorems
in Section 2.
• For illustration of Theorem 1, let that the following fractional linear system

defined as

Tαx(t) = Ax(t) (16)

where x(t) = (x1(t), x2(t)), A =

(
−5 1
1 −4

)
.

By simple calculation, the eigenvalues of the state matrix A are λ1 = −5, 618
and λ2 = −3.382. Thus the condition Re (λi) < 0,∀i = 1, 2, is hold, then the state
matrix A is Hurwitz. Using the Theorem 1, we conclude that the trivial solution
of the fractional linear system (16) is fractional exponentially stable.
• For illustration of Theorem 3, let that the following fractional nonlinear system

defined as

Tαx(t) = Ax(t) + g(t, x) (17)

where x(t) = (x1(t), x2(t)), A =

(
−5 1
1 −4

)
, and g(t, x) = (sinx1(t), sinx2(t)) .

We choose a Lyapunov candidate function V (t, x) = x(t)TPx(t) where P = I2.
The α derivative of V along the trajectories of (17 ) is given by

TαV (t, x(t)) ≤ 2xTPTαx = [Ax+ g(t, x)]
T
Px+ xTP [Ax+ g(t, x)]

= −10x21 + 4x1x2 − 8x22 + 2x1 sinx1 + 2x2 sinx2

≤ −8

(
x1 −

1

8
x2

)2

− 47

8
x22

Hence TαV (t, x(t)) is negative definite which implies the trivial solution of the
fractional nonlinear system Tαx(t) = Ax(t) + g(t, x) is fractional exponentially
stable. This conclusion can be obtained by applying the Theorem 3. To see that,

we can remark the state matrix A is Hurwitz and the condition γ < λmin(Q)
2λmax(P ) is

hold, with γ = 1, λmin(Q) = 3.382 and λmax(P ) = 1, thus the trivial solution of
the fractional nonlinear system Tαx(t) = Ax(t) + g(t, x) is fractional exponentially
stable.
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4. Proofs

4.1. Proof of Theorem 1. We choose a Lyapunov candidate function V (t, x(t)) =
x(t)TPx(t) where ATP + PA = −Q. The α derivative of V along the trajectories
of (14) is given by

TαV (t, x(t)) ≤ 2xTPTαx = [Ax]
T
Px+ xTP [Ax]

= xTATPx+ xTPAx

= xT
(
ATP + PA

)
x

By the assumption that the state matrix A of the fractional linear system (14) is
Hurwitz, it follows the matrix Q = −ATP − PA is positive definite and we have

TαV (t, x(t)) ≤ −λmin(Q) ‖x‖2 ,

where λmin(Q) is the minimum eigenvalue of the matrix Q, which is positive. Using
Lemma 4, we conclude that the trivial solution of the fractional system (14) is
fractional exponentially stable.

4.2. Proof of Theorem 2. Using the proof of the Theorem 1, the trivial solution
of the fractional linear system is fractional exponentially stable. Using the Lemma
7 then there exists class K function α5 such that x(t)) ≤ α5(‖x0‖). That make the
trivial solution of the fractional linear system (14) stable. To prove the attractive,
we can use the solution of the fractional linear system given by

x(t) = x(t0)eA
(t−t0)α

α = x(t0)Eα (A, t− t0) .

We know that the fractional exponential Eα (A, t− t0) tends to 0 if t tends to
∞ if and only if the condition Re (λi) < 0,∀i = 1, 2, ..., n, holds [7], where λi
are the eigenvalues of the matrix A. This condition is satisfied because the state
matrix A is Hurwitz [7]. Then the origin of the fractional linear system (14) is
attractive. Finally, by attractive and stability, it follows that the trivial solution of
the fractional linear system (14) is asymptotically stable.

4.3. Proof of Theorem 3. We choose a Lyapunov candidate function V (t, x(t)) =
xTPx where ATP +PA = −Q. The α derivative of V along the trajectories of (13)
is given by

TαV (t, x(t)) ≤ 2xTPTαx = [Ax+ g(t, x)]
T
Px+ xTP [Ax+ g(t, x)]

= xTATPx+ gT (t, x)Px+ xTPAx+ xTPg(t, x)

= xT
(
ATP + PA

)
x+ gT (t, x)Px+ xTPg(t, x)

≤ −λmin(Q) ‖x‖2 + 2λmax(P )γ ‖x‖2

= − [λmin(Q)− 2λmax(P )γ] ‖x‖2

Clearly, if γ < λmin(Q)
2λmax(P ) , it follows that TαV (t, x(t)) < 0. Using the Lemma (5), we

conclude that the trivial solution of the fractional nonlinear system (13) is fractional
exponentially stable.
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4.4. Proof of Theorem 4. We choose a Lyapunov candidate function V (t, x(t)) =
x(t)TPx(t) where ATP + PA = −Q. The α derivative of V along the trajectories
of (13) is given by

TαV (t, x(t)) ≤ 2xTPTαx =
∂V

∂t
+
∂V

∂x
f(t, x)

= [Ax+ g(t, x)]
T
Px+ xTP [Ax+ g(t, x)]

= xTATPx+ gT (t, x)Px+ xTPAx+ xTPg(t, x)

= xT
(
ATP + PA

)
x+ gT (t, x)Px+ xTPg(t, x)

By Lemma 8, it follows that there exists positive constant ε ≥ 0, such that

gT (t, x)Px+ xTPg(t, x) ≤ ε−1(Px)T (Px) + εgT (t, x)g(t, x).

Under Assumptions 1, the function g is locally Lipschitz and continuous then
gT (t, x)g(t, x)− L2xTx ≤ 0. Replacing in above, we have that

gT (t, x)Px+ xTPg(t, x) ≤ ε−1(Px)T (Px) + εL2xT Ix.

Replacing in above inequality, we obtain that

TαV (t, x(t)) ≤ xT
(
ATP + PA

)
x+ ε−1(Px)T (Px) + εL2xT Ix

≤ xT
(
ATP + PA

)
x+ ε−1xTP 2x+ εL2xT Ix

≤ xT
(
ATP + PA+ ε−1P 2 + εL2I

)
x

TαV (t, x(t)) is negative definite if the matrix ATP + PA + ε−1P 2 + εL2I < 0.
Hence the system (13) is fractional exponential stable with Lyapunov function V
if ATP +PA+ ε−1P 2 + εL2I < 0. Furthermore let that −R = ATP +PA+ ε−1P 2

which is negative definite (assumption)

TαV (t, x(t)) ≤ xT
(
ATP + PA+ ε−1P 2 + εL2 ‖d‖2 I

)
x

≤ −λmin(R) ‖x‖2 + εL2 ‖x‖2

By assuming λmin(R) < εL2, it follows that TαV (t, x(t)) < 0, which implies the
fractional exponential stability of the trivial solution of the system (13).
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5. Conclusion

We have discussed in this paper the asymptotic stability and the fractional ex-
ponential stability of the fractional nonlinear system with Hurwitz state matrix. It
contributes to give a practical conditions under which the fractional nonlinear sys-
tems with perturbation term are asymptotically stable and fractional exponentially
stable.
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