Journal of Fractional Calculus and Applications
Vol. 9(1) Jan. 2018, pp. 241-252.

ISSN: 2090-5858.
http://fcag-egypt.com/Journals/JFCA/

HERMITE-HADAMARD TYPE FRACTIONAL INTEGRAL
INEQUALITIES FOR TWICE DIFFERENTIABLE GENERALIZED
BETA-PREINVEX FUNCTIONS

ARTION KASHURI, ROZANA LIKO

ABSTRACT. In the present paper, a new class of generalized beta-preinvex
function is introduced and some new integral inequalities for the left hand side
of Gauss-Jacobi type quadrature formula involving generalized beta-preinvex
functions are given. Moreover, some Hermite-Hadamard type inequalities to
generalized beta-preinvex functions that are twice differentiable via Riemann-
Liouville fractional integrals are established. At the end, some applications to
special means are given. These general inequalities give us some new estimates
for Hermite-Hadamard type fractional integral inequalities.

1. INTRODUCTION

The following notation are used throughout this paper. We use I to denote an
interval on the real line R = (—o00,400) and I° to denote the interior of I. For
any subset K C R™, K° is used to denote the interior of K. R"™ is used to denote a
n-dimensional vector space. The set of integrable functions on the interval [a, b] is
denoted by L1][a, b].

The following inequality, named Hermite-Hadamard inequality, is one of the most
famous inequalities in the literature for convex functions.

Theorem 1.1. Let f: I CR — R be a convex function on I and a,b € I with
a < b. Then the following inequality holds:

f<a+b>§ 1 /abf(x)dng@Hf(bX (1.1)

2 b—a 2

In recent years, various generalizations, extensions and variants of such in-
equalities have been obtained (see [8]-[10]). For other recent results concerning
Hermite-Hadamard type inequalities through various classes of convex functions,
(see [2],[5],[17]).
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Fractional calculus (see [17]), was introduced at the end of the nineteenth cen-
tury by Liouville and Riemann, the subject of which has become a rapidly growing
area and has found applications in diverse fields ranging from physical sciences and
engineering to biological sciences and economics.

Definition 1.2. Let f € L;[a,b]. The Riemann-Liouville integrals J¢, f and J;* f
of order o > 0 with a > 0 are defined by
a 1 ‘ o
Ja_,’_f(l') = I1(()[)/0‘ (IE — t) 1f(t>dt, xTr>a

and

b
Jf_ﬂw):%@) / (t— o) f(B)dt, b>z,
“+ o0

where I'(a) = / e "u*'du. Here JO, f(z) = J)_f(z) = f(x).
In the case of a = 1, the fractional integral reduces to the classical integral.

Due to the wide application of fractional integrals, some authors extended to
study fractional Hermite-Hadamard type inequalities for functions of different classes
(see [111,[17]).

Now, let us recall some definitions of various convex functions.
Definition 1.3. (see [4]) A nonnegative function f: I CR — [0, 400) is said to
be P-function or P-convex, if

fltz+ (1 =t)y) < fx)+ fy), Vo,yel te[0,1]

Definition 1.4. (see [6]) A function f : [0,+00) — R is said to be s-convex in
the second sense, if

FOz+ (1 =XNy) <X f(x)+ (1 =X)°f(y) (1.2)
for all z,y > 0, A € [0,1] and s € (0, 1].

It is clear that a l-convex function must be convex on [0,+00) as usual. The
s-convex functions in the second sense have been investigated in (see [6]).

Definition 1.5. (see [7]) A set K C R"™ is said to be invex with respect to the
mapping n: K x K — R", if © + tn(y,z) € K for every z,y € K and t € [0, 1].

Notice that every convex set is invex with respect to the mapping n(y, x) = y—=,
but the converse is not necessarily true. For more details (see [7],[12]).

Definition 1.6. (see [13]) The function f defined on the invex set K C R is said
to be preinvex with respect 7, if for every z,y € K and ¢ € [0, 1], we have that
fla+tn(y,x) <1 —-0)f(z)+tf(y).

The concept of preinvexity is more general than convexity since every convex
function is preinvex with respect to the mapping n(y,z) = y — x, but the converse
is not true.

The Gauss-Jacobi type quadrature formula has the following

b +oo
/ (2 — a)P(b—2) f(@)de = 3 B s f(o) + R, (1.3)

k=0
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for certain By, i, and rest R, |f| (see [14]).

Recently, Liu (see [15]) obtained several integral inequalities for the left hand side
of (1.3) under the Definition 1.3 of P-function.

Also in (see [16]), Ozdemir et al. established several integral inequalities concerning
the left-hand side of (1.3) via some kinds of convexity.

Motivated by these results, in Section 2, the notion of generalized beta-preinvex
function is introduced and some new integral inequalities for the left hand side of
(1.3) involving generalized beta-preinvex functions are given. In Section 3, some
Hermite-Hadamard type inequalities to generalized beta-preinvex functions that
are twice differentiable via fractional integrals are given. In Section 4, some ap-
plications to special means are also given. These general inequalities give us some
new estimates for Hermite-Hadamard type fractional integral inequalities.

2. NEW INTEGRAL INEQUALITIES FOR, GENERALIZED BETA-PREINVEX FUNCTIONS

Definition 2.1. (see [3]) A set K C R" is said to be m-invex with respect to the
mapping 1 : K x K x (0,1] — R"™ for some fixed m € (0, 1], if mz+tn(y,z,m) € K
holds for each z,y € K and any t € [0, 1].

Remark 2.2. In Definition 2.1, under certain conditions, the mapping 7n(y, z,m)
could reduce to n(y, z). For example when m = 1, then the m-invex set degenerates
an invex set on K.

Definition 2.3. (see [1]) Let K C R be an open m-invex set with respect to
n: K x K x (0,1 — Rand ¢ : I — K a continuous function. For f: K — R
and any fixed s,m € (0, 1], if

[ (me(x) + An(e(y), p(x),m)) <m(l—A)*f(e(x)) + A" fe(y)) (2.1)

is valid for all z,y € I, A € [0, 1], then we say that f(z) is a generalized (s, m, ®)-
preinvex function with respect to 7.

We next give new definition, to be referred as generalized beta-preinvex function.

Definition 2.4. Let K C R be an open m-invex set with respect to n: K x K X
(0,1] — R and ¢ : I — K a continuous function. For f : K — R and any fixed
€ (0,1], if

fme(x) +tn(e(y), p(z),m)) <mtP(1 =) f(p(z)) + 171 = 1)"f(e(y))  (2.2)
is valid for all z,y € I,t € [0,1] where p,q > —1, then we say that f(x) is a
generalized beta-preinvex function with respect to 7.

Remark 2.5. In Definition 2.4, it is worthwhile to note that the class of gener-
alized beta-preinvex function is a generalization of the class of P-convex func-
tion given in Definition 1.3, s-convex in the second sense function given in Def-
inition 1.4 and generalized (s, m, p)-preinvex function given in Definition 2.3, for
(pa Q) = {(070)5 (870)7 (0’3)}5 where m = 1, 77(4/’(1/)7%0(33%7”) = QO(ZJ) - m@(x) and
o(z) =z, Ve e l.

In this section, in order to prove our main results regarding some new integral
inequalities involving generalized beta-preinvex functions, we need the following
new interesting lemma:



244 ARTION KASHURI, ROZANA LIKO JFCA-2018/9(1)

Lemma 2.6. Let ¢ : I — K be a continuous function. Assume that f : K =
[me(a), mp(a)+n(p(d), p(a), m)] — R is a continuous function on K° with respect
ton: K x K x(0,1] — R, for me(a) < me(a) + n(e), p(a),m). Then for any
fixzed m € (0,1] and p,q > 0, we have

/mw(a)ﬂ(w(b),w(a),m)

“ (z —mep(a))” (me(a) +nlp(b), p(a),m) — z)? f(z)dx

= 1(p(b), p(a),m)PF7*! /0 (1= 1) f(mep(a) + tn(p(b), p(a), m))dt.

Proof. Tt is easy to observe that

mep(a)+n(e(b),¢(a),m)
/ (z — mp(a))”(me(a) +n(e(b), ¢(a), m) — 2)? f(z)dz

mp(a)
= n(w(b),w(a),m)/o (me(a) + tn(e(d), p(a), m) — me(a))”
x(mp(a)+n(e(b), p(a), m)—mp(a)—tn(e(b), ¢(a), m))? f(me(a)+tn(e(b), p(a), m))dt

= n(w(b),w(a)vm)“q“/o (1 =) f(me(a) + tn(p(b), p(a),m))dt.

The following definition will be used in the sequel.

Definition 2.7. The Euler beta function is defined for z,y > 0 as

e - I'(z)I(y)
_ x—1 _ y—1 _

B(z,y) /0 Tl — )Y de Tty
Theorem 2.8. Let ¢ : I — K be a continuous function. Assume that f : K =
[me(a), me(a)+n(e(b), p(a), m)] — R is a continuous function on K°, witha < b
and my(a) < mp(a) + n(p®d), e(a),m). If k > 1 and |f|ﬁ is generalized beta-
preinvez function on an open m-inver set K with respect ton : K x K x (0,1] — R
for any fixed m € (0,1] where r,s > —1, then for any fized p,q > 0,

mep(a)+n(p(b) o (a),m)
/ (z = mep(a))?(me(a) + (), p(a), m) — x)? f(x)dz

mp(a)

k—1

< (e (®), pla),m) B+ 15 +1)| © [Blhkp+ 1 kg +1)]

-

k—1

k

x [ mlf (e (@) + | (o(8)) |77 ]

Proof. Since |f |% is generalized beta-preinvex function on K, combining with
Lemma 2.6 and Hélder inequality for all ¢ € [0,1] and for any fixed m € (0, 1], we
get

/mw(a)ﬂ(w(b),w(a%m)

“ (z —mp(a))” (me(a) +nlp(b), ¢(a),m) — z)? f(z)dx

el

< [n(p(b), (a),m)[Proet [/0 (1~ t)kth]
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k—1

k

’ l/ [Fmipta) + tn(so(bm(a),m))!kﬁldt]
0

=

< Inp(b), @), m)* [ Blhp + 1, kg + 1)

k—1
k

. U (mt (1= (@)™ + 221 = 1) (0|7 dt]

k-1

—1
k

= o). (@, m) P B+ Ls+ )] © [Blkp+ 1 ka+ 1)

k

x[ml () 77 + [F(®)IFT] T
(I

Corollary 2.9. Under the same conditions as in Theorem 2.8 for r = 0, we get
(see [1], Theorem 2.2).

Theorem 2.10. Let ¢ : [ — K be a continuous function. Assume that f : K =
[me(a), mp(a)+n(pd), p(a),m)] — R is a continuous function on K°, witha < b
and mp(a) < mp(a)+n(p(b), p(a),m). Ifl > 1 and | f|' is generalized beta-preinver
function on an open m-invex set K with respect to n: K x K x (0,1] — R for any
fixzed m € (0,1] where r,s > —1, then for any fized p,q > 0,

mep(a)+n(e(d),e(a),m)
/ N (& — mp(a))?(mep(a) + n(p(b), o(a),m) — z)f(z)dz

-1

1

< (e (®), pla),m) "+ [B(p+ Lq + 1)

~l=

x[mB o441+ s+ D) +8(p+s+1a+r+1)|f(p0)]

Proof. Since |f|! is generalized beta-preinvex function on K, combining with Lemma
2.6 and Hélder inequality for all ¢ € [0, 1] and for any fixed m € (0, 1], we get

mep(a)+n(e(b),p(a),m)
/ (2 — mp(a))?(mep(a) + n((b), @(a), m) — )7 (z)dx

mp(a)

-1 1
L

a0 rome(a)+in(e ), e(a),m))de

L

= n((b), pla), m)" o+ / ey

-1

1

< n(p(b), p(a), m)[Pratt [/0 (1 — t)th]
x Vo (1 — 1)1 f(mp(a) + t(p(b), cp(a)7m))}ldt1

< In(e), p(a), m)P* B+ 1 + 1] ©

1
[

x [/O (1= )7 (mt" (1= )°[f(p(a)] + (1 = )" | F (e (®)]') dt]
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= [n(e(0), pla), m)P* [Bp+ 1,0+ 1)] T

X [mﬂ p+r+Lag+s+1)[fe) +B@+s+1,q+r+1)fle®)]
O

Corollary 2.11. Under the same conditions as in Theorem 2.10 for r = 0, we get
(see [1], Theorem 2.3).

3. HERMITE-HADAMARD TYPE FRACTIONAL INTEGRAL INEQUALITIES FOR
GENERALIZED BETA-PREINVEX FUNCTIONS

In this section, in order to prove our main results regarding some generalizations
of Hermite-Hadamard type inequalities to generalized beta-preinvex functions via
fractional integrals, we need the following new fractional integral identity:

Lemma 3.1. Let ¢ : I — K be a continuous function. Suppose K C R be an open
m-invex subset with respect ton: K x K x (0,1] — R for any fized m € (0,1] and
let a < b with me(a) < me(a) + n(ed), p(a),m). Assume that f : K — R be a
twice differentiable function on K° and " € Li[mep(a), me(a) + n(e(d), ¢(a), m)].
Then for a > 0, we have

1 (p(x), p(a), m) £ (mep(a) + nle(
)

n%(p(x), p(a), m) f(me(a) + (w(fr% (a), m)) +n*(p(x), o(b), m) f(me(b))

X [Terp(ory S (2 (®) + 0(p(@), 9(0), 1)) + Tirpta o))y - (M)
a+2 T a).m 1
Il A ) (o)
12 (p(), p(b), m)

_ 1 _ o+l e m " m .
(a+1)n(g0(b),cp(a),m)/0 (L=8)* " f"(me(b) + tn(e(x),o(b),m))dt, (3.1)

+oo
where T'(a) = / e “u®"tdu is the Buler gamma function.
0

Proof. A simple proof of the equality can be done by performing two integration
by parts in the integrals from the right side and changing the variable. The details
are left to the interested reader. O

Throughout this paper we denote
Aa(z;m,0,m,0,b)

@) @ m) [
~ Lt [ it + (o). o) )

)
a+2 1
, p(b), m o
O [ mp(0) + (o)) m). (32
Using the relation (3.2), the following results can be obtained for the corresponding

version for power of the absolute value of the second derivative.
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Theorem 3.2. Let ¢ : [ — A be a continuous function. Suppose A C R be an
open m-invex subset with respect ton: Ax Ax (0,1] — R for any fized m € (0, 1]
where r,s > —1 and let a < b with me(a) < me(a) + n(e(d), p(a),m). Assume
that f : A — R be a twice differentiable function on A°. If |f"|? is generalized
beta-preinvex function on [me(a), mep(a) +n(p(b),e(a),m)], ¢ > 1, p~t +q7 1 =1,
then for a > 0, we have

[5(7’+1,3+1)]1/q 1

[ Aoz, oom. a.0)| < CEm SO + DV n(e(0), pla)m)]

x{m«o(x), @), )] [ml (@) 7 + 11" (o))

}. (3.3)

Proof. Suppose that ¢ > 1. Using generalized beta-preinvexity of |f”|?, Holder
inequality and taking the modulus, we have

Q=

+ (@), (), m) [+ [l £ ()] + 11 (@) 17]

| Ao (231, 0,m,a,b)|

o(a),m)|*+?
< el A [ i) )+ (), ), o

In(e(x), p(b), m)la+2 !
(a+ 1)[n(p(b), p(a),m)| Jo

(@), (@), I ([ i\
= Tt Din(e(®), pla).m)] </t dt)

x ( [ 157 meta) + et ¢<a>,m>>|th)
(@), o(B), M+ ([ )
T+ DIn(e(8), pla), m0)] </ -1 ‘“)
1 3
x ( [ 15 meto +tn<¢<x>,¢<b>,m>>|th)
(@), 0(@), M2 ([ i\
= Tt Din(e(®), pla).m)] </ ! dt)
x l / (m%l O (pla)]? 4 (1~ t)’”lf”(@(fﬁ))ﬁ) dt]
0
(@), o(B), M2 (1 N
T+ Do), pla), m)] </ 1-1) dt)

) 7
x [/0 (mtr(l =)’ 1" ()" + (1 —t)rlf”(so(ﬂc))lq>dt1

[,3(7"+1,5+1)]1/q 1
~ (a+ D (pla+ 1)+ D)V7 [n(e(b), p(a), m)]

(L =S (mep(b) + tn(p(x), p(b), m))|dt

1
q
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Q=

x{m«o(x), (@), m)| 2 [ml £ (p(a) |7 + | " ()]

Hn(p(), 9(B),m) |2 [ml 1 (o ()7 + | (o))" }

The proof of Theorem 3.2 is completed. O

Q=

Corollary 3.3. Under the same conditions as in Theorem 3.2, if we choose m =1
and n(p(y), o(x), m) = p(y) —me(z), Yo,y € I, then we get the following general-
ized Hermite-Hadamard type inequality for fractional integrals

(p(x) = p(a)* T f' (p(x)) = (2(b) — @(@)* ! ' (p(b))
(a+1) (p(b) — ¢(a))

_(p(x) = (@) f (@) + (p(b) = p(2))* [ (b))
p(b) = p(a)

« [Jg(w)_f(go(a)) + Jg(b)+f(<ﬂ(z))} ‘

n Ia+1)
(p(b) — p(a))

[B(r+1,s+1)}1/q 1
~ (a+ D (p(a+1) +1)1P (p(b) — ¢(a))

x {«o(x) = @(@)™* |1 (@)l + " (())I7]

}.

Theorem 3.4. Let ¢ : [ — A be a continuous function. Suppose A C R be an
open m-invezx subset with respect ton: Ax Ax (0,1] — R for any fized m € (0, 1]
where r,s > —1 and let a < b with mp(a) < me(a) + n(e(d), p(a),m). Assume
that f : A — R be a twice differentiable function on A°. If |f"|? is generalized
beta-preinvex function on [mp(a), me(a) +n(e((b), p(a),m)], ¢ > 1, then for a > 0,
we have

Q=

Q=

() = (@)™ |1 (2 ()7 + | (o ))]

1 1
(a+1)(a+2)' "7 [n(e®), p(a),m)]

|AC¥($7 n’ <)07 m7 CL, b)| S

Q-

X { In(p(a), (@), m) |+ [mB(r+a+2,s+1)|f" (p(a) |+ B(s+a+2, 7+ DI () 7]

}.

Q=

(o), 08), m) |2 [mB(-+1, s+a+2) 7 (p(0)[14+8(s+1, 7+a+2)| £ ()17
(3.4)

Proof. Suppose that ¢ > 1. Using generalized beta-preinvexity of |f”|?, the well-
known power mean inequality and taking the modulus, we have

| Ao (231, 0, m, a,b)|

|77(<P(x)>90(a)am)|a+2 ! a+1| g1 m a T a).m
< A [ mpla) + ) pla), )l
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(x+2
*(0%1 |/ — 1) (me(b) + tn(p(z), @(b), m))|dt
11

\77(90(95)’<P(a)7m)|a+2 a+1 B
= (a+ DIn(e(®), pla),m) </ ! dt)

“(/ L mip(a) + tn(p(a), sa<a>,m>>|th>é

0

1—1

In(e(x), p(b), m)|*+ L et ’
T+ Din(e(0). o), m)] (/ -9 dt)

1
q

1
y ( =071 o) + ) o0, m>>|th)

@) pl@)m)™ (N
< T e s Uy ')

1
q

[ / (it (L~ 0 @)+ 51— 2| (@) )dt]
|77(<p(33),<p(b)7m)|0‘+2 ! _ o+l
T+ Din(e(0), ola), m)] (/ (-1 ‘“)

x [ / (1= (e (L= o)+ (1 t)rlf”(so(w))lq)dt]

1 1
(a+ 1) (a+2)'"7 n(eb), p(a),m)|

1—1
q

1
q

x { In(p(a), (@), m) |+ mB(r+a+2,s+1)|f" (p(a) |+B(s+a+2, 7+ DI () ]

1

(@), (), M [mB(+1, s+t D) (BB (s+1, r+a+2)|f ()]

The proof of Theorem 3.4 is completed. O

Corollary 3.5. Under the same conditions as in Theorem 3.4, if we choose m =1
and n(p(y), o(x),m) = p(y) —mep(x), Yo,y € I, then we get the following general-
ized Hermite-Hadamard type inequality for fractional integrals

(p(x) = (a)* T (p(x)) = (@(b) = () * T f'(0(b))
(a+1) (p(b) — ¢(a))

_(p(@) = p(@)f (p(2)) + (2(b) = @(2))*F((b)
o(b) — ¢(a)
+m X [J;‘(w)_fhp(a)) + Jg(b)+f(<p(z))}|
1 1
<

Q=

}.
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x{wu)—w(a))a“ [B0r+a+2, s+ DI (@) +B(s+a+2,r+ DI (p(@)]]”

+((b) — ()2 [6(r+1,s+a+2)f”(<p(b))q+ﬂ(s+1,r+a+2)|f”(<p(m))lq]q}-

4. APPLICATIONS TO SPECIAL MEANS

In the following we give certain generalizations of some notions for a positive
valued function of a positive variable.

Definition 4.1. (see [18]) A function M : RZ — R, is called a Mean function if
it has the following properties:

(1) Homogeneity: M (ax,ay) = aM (z,y), for all a > 0,

(2) Symmetry: M(x,y) = M(y,x),

(3) Reflexivity: M (z,z) = x,

(4) Monotonicity: If x <z’ and y <y, then M(z,y) < M(2',y’),

(5) Internality: min{z,y} < M(x,y) < max{x,y}.

We consider some means for arbitrary positive real numbers «, 8 (a # ).

(1) The arithmetic mean:

a+
A= Aap) = 2270
(2) The geometric mean:
G:=G(o,8) =+ap
(3) The harmonic mean:
2
H:= H(a, §) =
@9 =177

(4) The power mean:

(6) The logarithmic mean:

08—«

L= L(0,B) = o ey
(7) The generalized log-mean:

ﬂerl — oPtl

L,:=Ly(a,B) = GEDGB-a

]P; pe R\ {-1,0}.
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(8) The weighted p-power mean:

o, «@ Q@ ~ ’
1 2, °°° y & _ /P
Mp( Uy, U2, - y Un, > (Zlalul>
ie
where 0 < o; <1, u; >0(i=1,2,..., n) with >, a; = 1.
It is well known that L, is monotonic nondecreasing over p € R with L_; := L
and Ly := I. In particular, we have the following inequality H < G < L < [ < A.
Now, let a and b be positive real numbers such that a < b. Consider the function

M := M(p(x),0(y)) : [p(x), o(2) +n(e(y), p(x)] x [o(2), p(x) +1(e(y), ¢ ()] —
R, which is one of the above mentioned means and ¢ : I — A be a continuous

function. Therefore one can obtain various inequalities using the results of Section
3 for these means as follows: Replace n(o(y), o(x), m) with n(p(y), p(z)) and set-

ting 1(p(a), p(b)) = M(p(a), ¢(b)), n(e(a), (x)) = M(p(a), o(x)), n(e(b), o(z)) =
M(p(b), p(x)), Vo € I, for value m = 1 in (3.3) and (3.4), one can obtain the fol-
lowing interesting inequalities involving means:

Mot (p(a), o(x))f'(p(a) + M(p(a), o(x))) — M+ (p(b), p(2)) f' (2(b)
(@ +1)M(p(a), (b))

M= (p(a), p()) f(p(a) + M(p(a), p(x))) + M*(2(b), p(2)) f((b))
M(p(a), o (b))

+@¢) {J$<b>+f(<p(b) + M(p(b), o(x))) + J(‘;(GHM(W(G)#,(gc)»_f(@(a))} ‘
[B(r+ 1,5+ 1)]"/ 1
~ (a+1)(pla+1)+1)1/P M(p(a), p(b))

X{M““(sa(a),sa(x))hf"( (@)l + 11" (pla))?]”

M (o(b). (@) 11 () 1" } (4.1)
), p(x

M (p(a), o(x)) ' (p(a) + M(p(a), o(x))) = M*T (g
(a+1) (¢(a), (b))

M(p(a), p(z))f(pla) + M(p(a), p(x))) + M*(p(b), p(x)) f(p(b))
M(‘P(a)v(p(b))
|
M {Jg(b” Fp(0) +M(p(b), (%)) + T ()M (g (@) p@) - W(d))} ‘

1 1
(a+ 1)(a+2)' "7 M(p(a), o(b))

<
X{Ma+2<so(a>,so<x>>[ﬁ(r+a+2,s+1>|f“<so<a>>Q+ﬁ(s+a+2»r+1>|f”<@<x>>|q]q

M2 (0(0), () [Br+1, s+ 2) 17 (9(0) [+ B(s+1, r+a-+2) 1 (p(2)) 1]

(4.2)

Qe
——
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Letting M (p(x),¢(y)) = A,G,H,P,,I,L,L,, M,, Vz,y € I in (4.1) and (4.2), we
get the inequalities involving means for a particular choices of a twice differentiable
generalized beta-preinvex functions f. The details are left to the interested reader.
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