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SOLUTION FOR COUPLED FRACTIONAL PDES WITH NON -

CONSTANT COEFFICIENTS

A.AGHILI

Abstract. In this article, it is shown that the combined use of exponential

operators and integral transforms provides a powerful tool to solve a certain
system of fractional PDEs. A system of space fractional partial differential
equations is solved. It may be concluded that the integral transforms and
exponential operators are effective methods for solving certain fractional linear

equations with non-constant coefficients.

1. INTRODUCTION

Until now, two methods, have been more extensively used for solving PDEs,
Laplace and Fourier transforms on the one hand and separation of variables on the
other hand. Let us mention also solution in the form of a series of functions. We
present a general method of operational nature to obtain exact solutions for several
kinds of fractional partial differential equations.

Definition 1. The Laplace transform of function f(t) is defined as [2]

L{f(t)} =

∫ ∞

0

e−stf(t)dt := F (s). (1)

If L{f(t)} = F (s), then L−1{F (s)} is given by

f(t) =
1

2πi

∫ c+i∞

c−i∞
estF (s)ds, (2)

where F (s) is analytic in the region Re(s) > c.

Definition 2. If the function Φ(t) belongs to C[a, b] and a < t < b, the left
Riemann-Liouville fractional integral of order α > 0 is defined as

IRL,α
a {Φ(t)} =

1

Γ(α)

∫ t

a

Φ(ξ)

(t− ξ)1−α
dξ. (3)
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Definition 3. The left Riemann-Liouville fractional derivative of order α > 0 is
defined as follows [6]

DRL,α
a ϕ(x) =

1

Γ(1− α)

d

dx

∫ t

a

Φ(ξ)

(t− ξ)α
dξ, (4)

it follows that DRL,α
a ϕ(x) exists for all Φ(t) belongs to C[a, b] and a < t < b .

Note: A very useful fact about the R- L operators is that, they satisfy semi group
properties of fractional integrals.
The special case of fractional derivative when α = 0.5, is called semi - derivative.
Definition 4. The left Caputo fractional derivative of order α (0 < α < 1) of ϕ(t),
is defined as[6]

Dc,α
a ϕ(x) =

1

Γ(1− α)

∫ t

a

1

(t− ξ)α
ϕ′(ξ)dξ. (5)

Let us recall some important properties of the Laplace transform, useful Lemmas,
that will be considered in the next part of this article.
Lemma 1. Let L{f(t)} = F (s) then, the following identities hold true.

(1) L−1(e−k
√
s) = k

(2
√
π)

∫∞
0
e−tξ− k2

4ξ dξ,

(2) e−ωsβ = 1
π

∫∞
0
e−rβ(ωcosβπ)sin(ωrβsinβπ)(

∫∞
0
e−sτ−rτdτ)dr,

(3) L−1(F (sα)) = 1
π

∫∞
0
f(u)

∫∞
0
e−tr−urαcosαπsin(urαsinαπ)drdu,

(4) L−1(F (
√
s) = 1

2t
√
πt

∫∞
0
ue−

u2

4t f(u)du.

Proof. See [1,2].
Lemma 2. The following exponential identities hold true.

(1) exp(±λ d
dt )Φ(t) = Φ(t±λ),

(2) exp(±λt d
dt )Φ(t) = Φ(te±λ),

(3) exp(λq(t) d
dt )Φ(t) = Φ(Q(F (t) + λ)).

Where F (t) is primitive of (q(t))−1, and Q(t) is inverse of F (t).
Proof. See [3,4,5].
The most important use of the Caputo fractional derivative is treated in initial
value problems where the initial conditions are expressed in terms of integer order
derivatives. In this respect, it is interesting to know the Laplace transform of this
type of derivative

L{Dc,α
a f(t)} = sF (s)− f(0+), 0 < α < 1,

and generally [6]

L{Dc,α
a f(t)} = sα−1F (s)−

∑k=m−1−k
k=0 sα−1−kfk(0+),m− 1 < α < m.

The Laplace transform provides a useful technique for the solution of fractional
singular integro-differential equations.

Example 1. Let us solve the following fractional Volterra equation of convolu-
tion type

λ
∫ t+k

k
sinh(a(t− ξ + k))Dαϕ(ξ − k)dξ = ( tb )

µ
2 Iµ(2

√
bt), ϕ(k) = 0.
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Solution. Upon taking the Laplace transform of the given integral equation, we
obtain

sαΦ(s) aλ
(s2−a2) =

e
b
s

s1+µ ,

solving the above equation, leads to

Φ(s) = (s2−a2)e
b
s

(aλ)s1+α+µ ,

or equivalently

Φ(s) = (s2e
b
s −a2e

b
s )

(aλ)s1+α+µ ,

at this point, taking the inverse Laplace transform term wise, after simplifying we
obtain

ϕ(t) = 1
aλ (

t−k
b )

α+ν−2
2 Iα+µ−2(2

√
a(t− k))− a

λ (
t−k
b )

(α+µ)
2 Iα+µ(2

√
b(t− k)).

Where Iη(.), stands for the modified Bessel’s function of the first kind of order η.

Example 2. Let us solve the following impulsive fractional differential equation

DR.L,αy(t) + λy(t) = δ(t− ξ), 0 < α < 1.

Solution.The above fractional differential equation can be written as follows

y(t) = 1
λ+DR.L,α δ(t− ξ),

let us recall the following welll-known identity from Laplace transform of the expo-
nential function

1
λ+sα =

∫ +∞
0

e−λu−sαudu,

by choosing s = Dt, and using integral representation for exponential fraction, we
get

y(t) =
∫ +∞
0

du(e−λu−uDα
t δ(t− ξ)),

at this point, in order to obtain the result of the action of the exponential operator
on Dirac delta function, we may use part 2 of Lemma 1.1, to obtain

y(t) =
∫ +∞
0

e−λu 1
π

∫∞
0
e−rα(ucosαπ)sin(urαsinαπ)(

∫∞
0
e−rτ−τDtδ(t− ξ))dτ)dr)du,

after simplifying the inner integral, we arrive at

y(t) = 1
π

∫ +∞
0

e−λu(
∫∞
0
e−r(t−ξ)−rα(u cosαπ) sin(urαsinαπ)dr)du.

Let us consider the special case α = 0.5, the result after simplifying is

y(t) = 1
π

∫ +∞
0

e−λu(
∫∞
0
e−r(t−ξ) sin(u

√
r)dr)du,

by changing the order of integration, we get

y(t) = 1
π

∫ +∞
0

√
re−(t−ξ)r

r+λ2 dr,

hence, we deduce that

y(t) = eλ
2(t−ξ)(1 +

√
2Erf(λ(t− ξ))).
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2. EVALUATION OF CERTAIN INTEGRALS VIA LAPLACE
TRANSFORM

The Fourier and Laplace transforms are by far the most widely used of all integral
transforms. The Laplace transform is especially well-suited for evaluation of the
integrals and in the solution of certain boundary - value problems and in other
applications.
Lemma 3. Let us assume that

L{Iµ(λt)
t

} =

∫ ∞

0

e−st Iµ(λt)

t
dt =

((
√
s2 − λ2) + s)−µ

λ−µ
, (6)

then, we have the following integral identity

∫ ∞

0

Kµ(λt)e
−(λ coshϕ)t

t
dt = −π coshϕµ

µ sinπµ
. (7)

WhereKν(.) stands for the modified Bessel’s function of the second kind of order ν
or Mac donald’s function.
Proof. By definition of the Laplace transform of a modified Bessel’s function of
the second kind of order ν, we have

L{Iµ(λt)
t

} =

∫ ∞

0

Iµ(λt)e
−st

t
dt =

((
√
s2 − λ2) + s)−µ

λ−µ
. (8)

Let us introduce a change of parameter s = λ coshϕ in the above integral and
simplifying, we obtain ∫ ∞

0

Iµ(λt)e
−(λ coshϕ)t

t
dt =

e−ϕµ

µ
. (9)

Using the well-known identity for the modified Bessel functions of the first and
second kind as below

Kµ(λt)

t
= (

π

2
)
I−µ(λt)− Iµ(λt)

tsinµπ
. (10)

Therefore, we have∫ ∞

0

Kµ(λt)e
−(λ coshϕ)t

t
dt = −π e

ϕµ + e−ϕµ

2µ sinµπ
= −π coshϕµ

µ sinπµ
. (11)

In relation (11), let us choose ϕ = 0 to obtain∫ ∞

0

Kµ(λt)e
−(λ)t

t
dt = −πlimϕ−>0

eϕµ + e−ϕµ

2µ sinµπ
, (12)

finally, after simplifying we get∫ ∞

0

Kµ(λt)e
−λt

t
dt = − π

µ sinπµ
. (13)

Corollary 1. The following identity holds true

∫∞
0

Kµ(λt)
t dt = −2π

µ sin(πµ
2 ) .

Proof.
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In relation (11), let us take the limit as ϕ− > iπ
2 , we arrive at∫ ∞

0

Kµ(λt)

t
dt = limϕ−> iπ

2
(
π coshµϕ

µ sinµπ
) =

−2π

µ sin(πµ2 )
. (14)

Corollary 2. The following identity holds true

∫∞
0

Ai((1.5t)
2
3 )

t
4
3

dt = −4
√
3 3
√
1.5.

Proof. In the relation (14), let us put λ = 1, µ = 1
3 and using the following well

- known identity for the modified Bessel’s functions of the second kind and Airy
function of first kind as below [7]

K 1
3
(ξ) =

√
3π

(1.5ξ)
1
3
Ai((1.5ξ)

2
3 ).

After substituting in (14), and simplifying we arrive at

∫∞
0

Ai((1.5t)
2
3 )

t
4
3

dt = −4
√
3 3
√
1.5.

Lemma 4. Let us assume that

L{Jµ(λt)
t

} =

∫ ∞

0

e−st Jµ(λt)

t
dt :=

((
√
s2 + λ2) + s)−µ

µλ−µ
, (15)

then, we have the following integral identities

∫ ∞

0

Yµ(λt)

t
dt =

cosµπ − 1

µ sinµπ
. (16)

∫ ∞

0

Y±0.5(λt)

t
dt := −2. (17)

WhereYν(.) stands for the Bessel’s function of the second kind of order ν or Weber’s
function.
Proof. By definition of the Laplace transform, we have

L{Jµ(λt)
t

} =

∫ ∞

0

Jµ(λt)e
−st

t
dt =

((
√
s2 + λ2) + s)−µ

µλ−µ
. (18)

Let us introduce a change of parameter s = λ sinhϕ in the above integral and
simplifying, we obtain ∫ ∞

0

Jµ(λt)e
−(λ sinhϕ)t

t
dt =

e−ϕµ

µ
. (19)

Using the well-known identity for the Besse’sl functions of the first and second kind
as below

Yµ(λt)

t
=
Jµ(λt)cosµπ − J−µ(λt)

t sinπµ
. (20)
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Therefore, we have∫ ∞

0

Yµ(λt)e
−(λ sinhϕ)t

t
dt =

e−ϕµ cosµπ − eϕµ

µ sinµπ
. (21)

In relation (21), let us choose ϕ = 0, to obtain∫ ∞

0

Yµ(λt)

t
dt =

cosµπ − 1

µ sinµπ
, (22)

by setting µ = ±0.5 in (22), we have∫ ∞

0

Y±.5(λt)

t
dt = −2. (23)

3. SOLUTION TO TIME FRACTIONAL PARTIAL DIFFERENTIAL
EQUATION

In this section, the results which has been introduced are used to solve cer-
tain time fractional systems of equations. The author implemented the integral
transform technique for solving partial fractional differential equations, where the
fractional semi-derivative is in the Caputo sense.
Problem 1. Let us consider the following time fractional PDE, with the initial
condition

∂0.5u(x, t)

∂t0.5
+ k

∂u(x, t)

∂x
= 0, (24)

where −∞ < x <∞ , t > 0 and subject to the initial condition u(x, 0) = ϕ(x).
Note: Fractional derivative is in the Caputo sense.
Solution: Let us define the joint Laplace - Fourier transform as following

F{L{u(x, t)} = ( 1√
2π

)
∫ +∞
−∞ eiωx

∫∞
0
e−stu(x, t)dt)dx := U(ω, s),

application of the joint Laplace - Fourier transform to (24) leads to the transformed
problem

U(ω, s) = s−0.5Φ(ω)
s0.5+ikω ,

upon inverting the joint Laplace - Fourier transform leads to

F−1{L−1{u(x, t)} = ( 1√
2π

)
∫ +∞
−∞ e−iωx(

∫ c+i∞
c−i∞

s−0.5Φ(ω)est

s0.5+ikω ds)dω := u(x, t),

or, equivalently

u(x, t) = ( 1√
2π

)
∫ +∞
−∞ e−iωxΦ(ω)(

∫ c+i∞
c−i∞

est√
s(
√
s+ikω)

ds)dω,

after calculation of inner integral we get the following formal solution

u(x, t) = ( 1√
2π

)
∫ +∞
−∞ e−iωx−k2ω2tErfc(ikω

√
t)Φ(ω)dω,

obviously, we have

u(x, 0) = ( 1√
2π

)
∫ +∞
−∞ e−iωxΦ(ω)dω = ϕ(x).
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4. SOLUTION TO SYSTEMS OF FRACTIONAL DIFFERENTIAL
EQUATIONS AND NON - HOMOGENOUS FRACTIONAL PARTIAL

DIFFERENTIAL EQUATIONS

Fractional calculus has been used to model physical and engineering processes
which are found to be best described by fractional differential equations. It is worth
noting that the standard mathematical models of integer order derivatives, includ-
ing nonlinear models do not work adequately in many cases. In this section, the
author implemented the exponential operational method for solving certain systems
of space fractional partial differential equations with non-constant coefficients.
We also used the integral transform technique for solving non-homogeneous frac-
tional differential equations, where the fractional derivative is in the Caputo sense.
Problem 2. Let us consider the following system of FDEs.[

Dc,αx(t)
Dc,αy(t)

]
=

[
a b
c d

] [
x(t)
y(t)

]
+ λ

[
g(t)
h(t)

]
. (25)

with the initial condition ⃗X(0) =
(
e
f

)
.

Solution: Taking one dimensional Laplace transform of equation (25) with respect
to t, and letting

⃗F (s) =

[
x(s)
y(s)

]
, (26)

we obtain

sα ⃗F (s)− sα−1 ⃗X(0) =

[
a b
c d

] [
x(s)
y(s)

]
+ λ

[
G(s)
H(s)

]
, (27)

after simplifying, we get[
sαx(s)
sαy(s)

]
−

[
a b
c d

] [
x(s)
y(s)

]
= λ

[
esα−1 +G(s)
fsα−1 +H(s)

]
, (28)

or [
sα − a −b
−c sα − d

] [
x(s)
y(s)

]
= λ

[
sα−1e+G(s)
sα−1f +H(s)

]
, (29)

from the above relation, we get[
x(s)
y(s)

]
=
λ

∆

[
sα − d b
c sα − a

] [
sα−1e+G(s)
sα−1f +H(s)

]
, (30)

we have also, ∆ = s2α − (a+ d)sα +(ad− bc) from relationship (30), we obtain the
solution to the system

L−1{x(s)} = x(t) = λL−1(
es2α−1 + (sα − d)G(s) + (bf − ed)sα−1 + bH(s)

s2α − (a+ d)sα + (ad− bc)
),

(31)

L−1{y(s)} = y(t) = λL−1(
fs2α−1 + (sα − a)H(s) + (ce− af)sα−1 + cG(s)

s2α − (a+ d)sα + (ad− bc)
).

(32)
Example 3.
Let us consider the following case[

Dc,0.5x(t)
Dc,0.5y(t)

]
=

[
4 1
0 2

] [
x(t)
y(t)

]
+ λ

[
g(t)
h(t)

]
, (33)
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by setting the numerical values in relations (31), (32), we get the solution to the
system as below

L−1{x(s)} = x(t) = λL−1(
1 + (

√
s− 2)G(s)− 2√

s
+H(s)

s− 6
√
s+ 6

), (34)

L−1{y(s)} = y(t) = λL−1(
(
√
s− 4)H(s)

s− 6
√
s+ 6

). (35)

Let us start with the evaluation of (35), in order to find y(t) , we may re write
(35) as follows

L−1{y(s)} = y(t) = λL−1((
(
√
s− 4)

s− 6
√
s+ 6

)H(s)) = L−1(
(
√
s− 4)

s− 6
√
s+ 6

) ∗ L−1(H(s)).

(36)
At this point, we should evaluate the first term in the right hand side as below

L−1{F (
√
s)} = λL−1(

(
√
s− 4)

s− 6
√
s+ 6

), (37)

from relation (37), we get the following

L−1{F (s)} = λL−1(
s− 4

s2 − 6s+ 6
) = λL−1(

s− 4

(s− 3)2 − (
√
3)2

), (38)

from which we deduce that

L−1{F (s)} = λL−1(
s− 4

(s− 3)2 − (
√
3)2

) = λ(e3t cosh(
√
3t)− 4e3tsinh(

√
3t)), (39)

in view of part 4 of Lemma (1.1), we have the following

L−1{F (
√
s)} =

1

2t
√
πt

∫ ∞

0

ue−
u2

4t λ(exp(3u)cosh(
√
3u)− 4 exp(3u)sinh(

√
3u))du,

(40)
from relation (36), we get the solution

L−1{y(s)} = y(t) = λh(t) ∗ 1

2t
√
πt

∫ ∞

0

ue−
12tu+u2

4t (e(
√
3u) − 3sinh(

√
3u))du, (41)

or,

L−1{y(s)} = λ

∫ t

0

h(t− ξ)

2ξ
√
πξ

(

∫ ∞

0

ue−
12tu+u2

4ξ (e(
√
3u) − 3sinh(

√
3u))du)dξ. (42)

Note: By following the same procedure as above, we can find L−1x(s) = x(t).
Problem 3. Let us solve the following coupled space fractional PDE with non-

constant coefficients, where the fractional derivative is in the Riemann-Liouville
sense

t−b ∂u(x, t)

∂t
− βtkv(x, t) + λ(b+ 1)

∂αu(x, t)

∂xα
= 0, (43)

t−b ∂v(x, t)

∂t
+ βtku(x, t) + λ(b+ 1)

∂αv(x, t)

∂xα
= 0, (44)

where −∞ < x <∞ , t > 0 and subject to the boundary conditions and the initial
condition

u(x, 0) = ϕ(x), v(x, 0) = ψ(x),−∞ < x <∞.
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Solution:Let us define the function w(x, t) = u(x, t)+iv(x, t) and the initial condi-
tion w(x, 0) = θ(x) we get the following space fractional partial differential equation

t−b ∂w(x, t)

∂t
+ itkβw(x, t) + λ(b+ 1)

∂αw(x, t)

∂xα
= 0, (45)

with initial condition w(x, 0) = θ(x). At this point, in order to solve the above linear
space fractional PDE, we may rewrite the equation in the following exponential
operator form

∂w(x, t)

∂t
= −(iβtb+k + λ(b+ 1)tb

∂α

∂xα
)w(x, t). (46)

In order to obtain a solution for equation (4), first by solving the first order PDE
with respect to t, and using the initial condition, we get the following

w(x, t) = exp(−iβtb+k+1

b+k+1 ) exp(−λtb+1 ∂α

∂xα )θ(x),

by virtue of Lemma 1.1, we have

w(x, t) = 1
π exp(−iβtb+k+1

b+k+1 )
∫∞
0
e−rα(λtb+1 cosαπ) sin(λtb+1rα sinαπ)(

∫∞
0

(e−rτ−τDxθ(x))dτ)dr,

finally, we obtain the solution to the system as below

w(x, t) = 1
π exp(−iβtb+k+1

b+k+1 )
∫∞
0
e−rα(λtb+1 cosαπ)sin(λtb+1rαsinαπ)(

∫∞
0
e−rτθ(x− τ))dτ)dr,

from which we obtain

u(x, t) = cos(βt
b+k+1

b+k+1 ) 1π
∫∞
0
e−rα(λtb+1 cosαπ)sin(λtb+1rαsinαπ)(

∫∞
0
e−rτϕ(x− τ))dτ)dr+

sin(βt
b+k+1

b+k+1 ) 1π
∫∞
0
e−rα(λtb+1 cosαπ) sin(λtb+1rαsinαπ)(

∫∞
0
e−rτψ(x− τ))dτ)dr,

and

v(x, t) = cos(βt
b+k+1

b+k+1 ) 1π
∫∞
0
e−rα(λtb+1 cosαπ)sin(λtb+1rαsinαπ)(

∫∞
0
e−rτψ(x− τ))dτ)dr−

sin(βt
b+k+1

b+k+1 ) 1π
∫∞
0
e−rα(λtb+1 cosαπ)sin(λtb+1rαsinαπ)(

∫∞
0
e−rτϕ(x− τ))dτ)dr.

Note: It is easy to verify that u(x, 0+) = ϕ(x) , v(x, 0+) = ψ(x).

5. Conclusions

Operational methods provide fast and universal mathematical tool for obtaining
the solution of PDEs or even FPDEs. Combination of integral transforms, opera-
tional methods and special functions give more powerful analytical instrument for
solving a wide range of engineering and physical problems. The paper is devoted to
study the Laplace transform, exponential operators and their applications in solv-
ing certain systems of boundary value problems. The procedure as described above
should be generally applicable to most partial fractional differential equations.
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