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GENERALIZED MATHEMATICAL MODEL OF CHRONIC

HEPATITIS C INFECTION

SESHU KUMAR DAMARLA, MADHUSREE KUNDU

Abstract. A realistic fractional order mathematical model of chronic hepati-

tis C infection treated with combinational drug therapy (pegylated interferon-α

(IFN-α) plus antiviral drug ribavirin (RBV)) is presented. The proposed model
shows the classical integer order model behaviour in the limit of fractional or-

der tends to 1.0. The results reveal that the proposed fractional order chronic

hepatitis C infection model can explain biphasic, triphasic and monophasic vi-
ral decline. Considering the fact, that simple new iterative method might not

be helpful for analysing fractional order processes over large time span; multi-

stage new iterative method is employed for approximate solution of fractional
order chronic hepatitis C infection model.

1. Introduction

Hepatitis C virus (HCV) causes Hepatitis C, a highly spreadable disease in-
fecting only humans and chimpanzees, disturbing chiefly the liver ([1, 2]). HCV
was recognized in 1989 ([3]). It is a small, enveloped, single stranded and positive
sense RNA virus ([4]). It belongs to Hepacivirus within Flaviviridae family. It
frequently mutates and is extremely resilient and unstable. Hepatitis C is mainly
spread by sharing injecting equipment for intravenous drug use, transfusion of un-
screened blood and blood product, reuse or poorly sterilized medical equipment
(especially syringes and needles) and less often by sharing personal items contam-
inated with infectious blood ([5]-[7]). Its transmission through sexual activity and
from infected mother to her child are much less common ([8, 9]. According to
WHO (World Health Organization), nearly 130 to 150 million people are infected
with hepatitis C virus (HCV) and about 500000 infected individuals die every year
from hepatitis C-related liver diseases (WHO 2015). Egypt is in first place with
highest rate of chronic Hepatitis C infection (15%) and second and third places are
occupied by Pakistan (4.8%) and China (3.2%), respectively (WHO 2015). Only
15% of infected individuals have acute symptoms like fever, fatigue, nausea, vom-
iting, joint or muscle pains, weight loss, decreased appetite, abdominal pain, dark
urine, grey-coloured faeces and jaundice (acute infection is rarely associated with
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Figure 1. HCV RNA decline profiles observed in patients during
antiviral therapy

jaundice) ([10]). 10-50% of patients with acute Hepatitis C infection spontaneously
clear the infection within 6 months of infection without treatment, which occurs
more frequently in individuals who are young and female ([11]). Remaining 85%
of HCV infected patients develop to chronic infection which is the main cause of
cirrhosis and liver cancer ([6]). 15-30% of those with chronic infection will develop
cirrhosis, therefore, will lead to liver transplant (HCV may recur after transplan-
tation) or even to death ([4]). HCV has a powerful reproductive strategy that
prevents the development of effective vaccine against it. The combinational drug
therapy; pegylated interferon-α (IFN-α) and antiviral drug ribavirin (RBV) had
been the standard treatment for chronic Hepatitis C for several years. Usually, the
response to this therapy shows biphasic viral decline (Figure 1), which is character-
ized by a sharp decline followed by a slower decline ([12]). Sometimes, the therapy
results in triphasic viral decline ([13]-[15]). The triphasic viral decline depicted in
Figure 1 contains first phase of quick viral decline, second phase of constant viral
load, which no longer exists when the ratio of uninfected hepatocytes and infected
hepatocytes is greater than or equal to 1.0 and third phase of resumed gradual
viral decay. In some patients (partial responders shown in Figure 1) treated with
this combinational drug therapy, the viral load converged to a lower plateau during
treatment ([13, 16]). Half of the HCV infected patients treated with this treatment
were cured. But the treatment sometimes exhibited life-threatening adverse reac-
tions. So new antivirals called direct antiviral agents (DAA) have been developed.
Treatment with DAAs is more effective, safer and shorter (about 12 weeks) than the
combinational drug therapy. Due to high prices, most HCV infected patients (even
in high income countries) cannot have access to DAAs. No alternative treatment
is available for non-responders.
Modelling the response of chronic Hepatitis C infection to antiviral therapy helps
to know the origination and development of Hepatitis C, response of the immune
system, effectiveness of therapy and mechanism of each drug action against HCV,
etc. Most biological processes are memory (or history) dependent (they depend not
only on the instant time but also on the history of previous time) and stochastic
in nature. The principal merit (that is non-local) of fractional derivative made it
possible to comprehend the underlying properties of biological processes exhibiting
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fractional dynamics ([17]-[19]). The first attempt to apply fractional calculus con-
cepts to predict the behaviour of chronic Hepatitis C disease during combinational
drug therapy (IFN-α and RBV) is made by [20]. Their fractional order model could
exactly reproduce the typical biphasic viral decline but failed to show clinically ob-
served more complicated behaviours like triphasic viral decline, viral rebound to
its pre-treatment level after cessation of therapy and convergence of viral load to a
lower plateau. Moreover, they did not explain the role of RBV in curing Hepatitis
C.
The objective of present work is to propose a fractional order mathematical model
of chronic HCV infection responding to combinational drug therapy. The classical
(integer order) model can explain i) triphasic behaviour for the HCV with a constant
shoulder length (in terms of time period), where the death rate of virus and their
proliferation rate are equal. However, the varying period of occurrence of this
stationary phase followed by its decline with a specific slope to the below detection
limit is not explained ii) biphasic behaviour. The classical model does not tell about
a monophasic decline; that is a linear decline of viral load throughout therapy.
The model proposed in this work has been a general one because it can explain
the triphasic behaviour with varying stationary phase of curing HCV after drug
therapy. The model can also describe biphasic as well as monophasic behaviour.
Usually Hepatitis C takes at least 1 month to be cured with effective treatment.
Therefore, to carry out numerical simulations for that duration, multistage new
iterative method is considered.
The rest of the paper is organised as follows. Section 2 gives basic definitions and
useful properties of fractional calculus. The proposed model is given in Section 3.
Section 4 presents the evaluation of equilibrium points of proposed model and inves-
tigates their local asymptotic stability. We prove the existence of unique solution
to the fractional order Hepatitis C model in Section 5. Section 6 expounds the
procedure of solving the proposed model using multi-stage new iterative method.
In Section 7, the model is simulated using various conditions to achieve above
mentioned profiles of viral load. In Section 8, the paper gets concluded.

2. Basic definitions of fractional calculus

In this section, we provide the most commonly employed operators of fractional
calculus, which were derived by generalizing the definition of n−fold integration (n
is an integer) ([21]).

Definition 2.1: A real function f (t), t > 0 is said to be in the space Cµ, µ ∈ R if
there exists a real number p (> µ), such that f (t) = tpf1 (t), where f1 (t) ∈ C [0,∞)
and is said to be in the space Cnµ if and only if f (n) ∈ Cµ, n ∈ N .
Definition 2.2: (Riemann-Liouville fractional order integral)
The Cauchy formula for repeated integration, which reduces n−fold integration of
f (t) to a single integral, is

Jnf (t) =
1

n− 1

∫ t

0

(t− τ)
n−1

f (τ) dτ, n ∈ Z+. (1)

Equation (1) can be written as

Jnf (t) =
1

Γ (n)

∫ t

0

(t− τ)
n−1

f (τ) dτ, (2)
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where Γ (n) is well known Euler’s Gamma function, Γ (n) =
∫∞

0
e−xxn−1dx.

Equation (2) enables us to replace n with α to obtain the following Riemann-
Liouville fractional order integral of f (t).

Jαf (t) =

{
1

Γ(α)

∫ t
0

(t− τ)
α−1

f (τ) dτ, for α > 0,

f (t) , for α = 0.
(3)

For the function f (t) ∈ Cµ (µ ≥ −1), α, β ≥ 0 and γ > −1, we have the following
semigroup and commutative properties of Riemann-Liouville fractional integral.

JαJβf (t) = Jα+βf (t) . (4)

JαJβf (t) = JβJαf (t) . (5)

Jαtγ =
Γ (γ + 1)

Γ (α+ γ + 1)
tα+γ . (6)

Definition 2.3: (Riemann-Liouville fractional order derivative)
By using Equation (3), we can derive a formula for the fractional derivative of f (t)
of order α as

RL
0 Dα

t f (t) =

{
1

Γ(n−α)
dn

dtn

∫ t
0

(t− τ)
n−α−1

f (τ) dτ, for n− 1 < α < n and t > 0,
dn

dtn f (t) , for α = n.

(7)
From pure mathematics perspective, this definition is rigorous and elegant but in
applications, we encounter the problem of finding fractional order initial values in
order to solve the corresponding fractional order differential equations involving
Riemann-Liouville fractional derivative. Only in a few instances, the fractional
order initial conditions have clear physical meanings so it is possible to determine
them numerically from the experiment ([22]). However, the Riemann-Liouville frac-
tional derivative cannot be utilised in practical applications where it is impossible to
expound and find numerical values of the fractional order initial values. To circum-
vent this shortcoming, Caputo proposed a modification to the Riemann-Liouville
fractional order derivative ([23]).
Definition 2.4: (Caputo fractional order derivative)
The Caputo fractional derivative of f (t) of order α is

C
0 D

α
t f (t) =

{
1

Γ(n−α)

∫ t
0

(t− τ)
n−α−1

f (n) (τ) dτ, for n− 1 < α < n and t > 0,
dn

dtn f (t) , for α = n.

(8)
Contrary to Riemann-Liouville fractional derivative, the Caputo fractional differ-
ential equations necessitate classical (integer order) initial values, therefore, the
Caputo fractional derivative is used in modelling real world processes which exhibit
fractional order dynamics. In case of zero initial conditions, the Riemann-Liouville
fractional derivative and the Caputo fractional derivative are equivalent. Like the
classical operators (integral and derivative), the fractional order operators also have
physical interpretation. The fractional order integral can be understood as area un-
der shape changing curve whereas the fractional order derivative implies the integer
order derivative of area under shape changing curve ([24]).
The mathematical properties of the Riemann-Liouville fractional derivative and the
Caputo fractional derivative can be found in [21], [25] and [26]. We give below two
properties of Caputo fractional derivative which we need in the subsequent sections.
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For f (t) ∈ Cµ, µ > −1 and n− 1 < α < n,

JαC0 D
α
t f (t) = JnDnf (t) =

(
f (t)−

n−1∑
k=0

f (k) (0)
tk

Γ (k + 1)

)
, C0 D

α
t c = 0, (9)

where c is a constant.

3. Fractional order chronic Hepatitis C infection model

Consider the following fractional order chronic HCV infection model, which is a
generalization of the classical model proposed in [13], describing the behaviour of
HCV during treatment with IFN-α and RBV.

C
0 D

α
t T (t) = s+ rTT (t)

(
1− T (t) + I (t)

T max

)
− dTT (t)− βVI (t)T (t) . (10)

C
0 D

α
t I (t) = βVI (t)T (t) + rII (t)

(
1− T (t) + I (t)

T max

)
− δI (t) . (11)

C
0 D

α
t VI (t) = (1− ρ(t)) (1− εP ) pI (t)− cVI (t) . (12)

C
0 D

α
t VNI (t) = ρ(t) (1− εP ) pI (t)− cVNI (t) . (13)

ρ(t) = ρmax

(
1− exp

(
−t/ta

))
. (14)

The population of uninfected hepatocytes (T (t)), infected hepatocytes (I (t)), non-
infectious (VNI (t)) and infectious viral particles (VI (t)) in the chronic infection
state before the treatment commences (i.e.at time t = 0) serve as the initial condi-
tions; T (0), I (0), VNI (0) and VI (0) for the proposed model.
Equation (10) dictates that the target cells or uninfected hepatocytes are produced
at constant rates, died at constant rate d and infected by HCV at constant rate β per
cell. The parameters, rT and rI , are the maximum proliferation rates of uninfected
and infected hepatocytes, respectively. As per the blind homeostasis process (in
which the uninfected and the infected hepatocytes are indistinguishable), both the
uninfected and the infected hepatocytes can flourish until the sum of T (t) and
I (t) reaches the maximum size of liver, Tmax. Since HCV replicates itself, it is
assumed that the proliferation rate of infected hepatocytes is slower than that of
uninfected hepatocytes. The infected hepatocytes are lost at constant rate δ per
cell. The HCV particles (virions) are produced at rate pper infected hepatocyte.
The mutagenic effect of RBV makes a fraction (ρ(t)) of virus particles less infectious
or non-infectious, VNI (t). The role of IFN-α in curing chronic infection is to block
the secretion of new virions whereas RBV reduces de novo (afresh) infection. Both
the infectious and the non-infectious viral particles are cleared at constant rate
c per virion. The effectiveness of IFN-α and RBV are described by εpand ρmax,
respectively. The efficacy of RBV can increase with time on therapy (shown in
(14)) as RBV slowly builds up in the blood plasma. Nonetheless, RBV’s impact on
HCV is insignificant when the efficiency of IFN-α is very high.
Dahari et al (2007)[13]utilized the following formula for critical drug efficacy to
predict the behaviour of HCV during treatment.

ec = 1− c (δTmax + rIT0 − rITmax)

pβTmaxT0
. (15)

The successful treatment (εtot > ec, εtot = 1 − (1− ρmax) (1− εp) is the overall
drug efficacy) results in the complete eradication of HCV. If εtot < ec, the viral
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load converges to a new steady state below its pre-treatment level i.e. chronic
Hepatitis C is not cured.

4. Equilibrium points and their local asymptotic stability

As the Caputo fractional derivative of a constant is zero, the system of Caputo
fractional differential equations in (10) to (14) turns to the following system of
nonlinear algebraic equations at steady state.

s+ rTT (t)
(

1− T (t)+I(t)
T max

)
− dTT (t)− βVI (t)T (t) = 0

βVI (t)T (t) + rII (t)
(

1− T (t)+I(t)
T max

)
− δI (t) = 0

(1− ρ(t)) (1− εP ) pI (t)− cVI (t) = 0
ρ(t) (1− εP ) pI (t)− cVNI (t) = 0

 . (16)

Upon solving Equation (16), we get the following equilibrium points.
Equilibrium point 1 (infection-free or uninfected steady state):
The first equilibrium point indicates that the person is healthy (uninfected by
HCV or recovered from infection). In the uninfected state, there are no virions and
infected hepatocytes. This situation is called sustained virological response. The
population of uninfected hepatocytes or healthy liver cells in this state is given by

T0 =
Tmax

2rT

[
rT − dT +

√
(rT − dT )2 +

4rT s

T max

]
. (17)

Equilibrium point 1 is ε1 = (T0, 0, 0).
Equilibrium point 2 (chronic infection):
The second equilibrium point emphases that the person has chronic HCV infection.
The steady state values of uninfected cells, infected cells and viral load (infectious
and non-infectious, VI + VNI) are given below.

T̄ =
1

2

−(D
H

)
+

√(
D

H

)2

+
4sTmax

rTH

 , Ī = T̄ ((A/rI)− 1) + Tmax −B, V̄ =
pĪ

c
,

(18)

where A = pβTmax

c , B = δTmazx

rI
, H = A2

rIrT
+ A

rI
− A

rT
,

D = A
[
Tmax

rT

(
1 + dT

A

)
−B

(
1
A + 1

rT

)]
.

The second equilibrium point isε2 =
(
T̄ , Ī, V̄

)
.

We now carry out the stability analysis of the fractional order chronic Hepatitis C
infection model during treatment.
The Jacobian matrix is computed as

J =


a11 a12 a13 0
a21 a22 a23 0
0 a32 −c 0
0 a42 0 −c

 . (19)

where
a11 = rT − 2 rT

Tmax
T (t)− rT

Tmax
I (t)− dT − βVI (t), a12 = − rT

Tmax
T (t),

a13 = −βT (t), a21 = βVI (t)− rI
Tmax

I (t), a22 = rI − rI
Tmax

T (t)− 2 rI
Tmax

I (t)− δ,
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a23 = rI− rI
Tmax

T (t)−2 rI
Tmax

I (t)−δ, a32 = (1− ρ(t)) (1− εP ) p, a42 = ρ(t) (1− εP ) p.
Evaluating the Jacobian matrix at the first equilibrium point or infection-free state,

J (ε1) =


rT − 2 rT

Tmax
T0 − dT − rT

Tmax
T0 −βT0 0

0 rI − rI
Tmax

T0 − δ βT0 0

0 (1− ρ(t)) (1− εP ) p −c 0
0 ρ(t) (1− εP ) p 0 −c

 . (20)

The eigenvalues of J (ε1) are

λ1 = −
√

(rT − dT )2 +
4rT s

T max
. (21)

λ2 = −c. (22)

λ3 =
1

2

b11 +

√(
−δ + rI −

rIT0

Tmax
− βT0

)2

+ 4p (1− ε) (1− ρ (t))βT0

 . (23)

λ4 =
1

2

b22 −

√(
−δ + rI −

rIT0

Tmax
− βT0

)2

+ 4p (1− ε) (1− ρ (t))βT0

 . (24)

where b11 = −δ + rI − rIT0

Tmax
+ βT0, b22 = −δ + rI − rIT0

Tmax
+ βT0.

Equilibrium point 1 is locally asymptotically stable if all eigenvalues of J (ε1) sat-
isfies the following condition.

|arg (λi)| >
απ

2
, i = 1, 2, 3, 4. (25)

If the above condition is satisfied, during treatment, the viral load converges to
uninfected or infection-free state that is viral particles are thoroughly removed and
the patient is free of infection.
At the second equilibrium point, the Jacobian matrix is assessed as

J (ε2) =


b33 − rT

Tmax
T̄ −βT̄ 0

βV̄I − rI
Tmax

Ī rI − rI
Tmax

T̄ − 2 rI
Tmax

Ī − δ βT̄ 0

0 (1− ρ(t)) (1− εP ) p −c 0
0 ρ(t) (1− εP ) p 0 −c

 , (26)

where b33 = rT − 2 rT
Tmax

T̄ − rT
Tmax

Ī − dT − βV̄I .
The characteristic equation is

a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0 = 1, (27)

where,

a4 = 1, a3 = −a−e− j, a2 = aj+ej+hj−gf − bd+ae+ah+eh−h, b = − rT
Tmax

T̄ ,

a1 = jgf + jbd− jae− jah− jeh− cdg + afg + bdh− aeh, f = βT̄ , c = −βT̄ , ,

a = rT − 2
rT
Tmax

T̄ − rT
Tmax

Ī − dT − βV̄ , d = βV̄I −
rI
Tmax

T̄ , j = −c, h = −c,

i = ρ(t) (1− εP ) p, e = rI −
rI
Tmax

T̄ − 2
rI
Tmax

Ī − δ, g = (1− ρ(t)) (1− εP ) p,

a0 = jcdg − jafg − jbdh+ jaeh− eh3.



8 S. K. DAMARLA, M. KUNDU JFCA-2017/8(2)

According to Routh-Hurwitz stability criterion, if the conditions as per the next
equation are fulfilled, then the viral load remains unchanged that is the disease is
persistently present.

ai > 0, i = 1, 2, 3, 4, b1 =

∣∣∣∣ a2 a1

a4 a3

∣∣∣∣ > 0, c1 =

∣∣∣∣∣∣
a1 a3 0
a0 a2 a1

0 a4 a3

∣∣∣∣∣∣ > 0. (28)

5. Existence of unique solution

Let us rewrite the fractional order chronic Hepatitis C infection model bestowed in
Section 3 in a short form as follows.

C
0 D

α
t X (t) = F (t,X (t)) , t ∈ [0, T ] , Y ∈ [0,∞) , (29)

where X (t) = [T (t) , I (t) , VI (t) , VNI (t)] and F : [0, T ] × [0,∞) → [0,∞) is a
nonlinear function of t and X (t).
Let us define Banach space as

C = [0, T ]× [0,∞) , (30)

with d : [0,∞)× [0,∞)→ [0,∞), d (X1 (t) , X2 (t)) = ‖X2 (t)−X1 (t)‖.
We assume that the function F satisfies the following condition of Lipschitz conti-
nuity.

d (F (t,X1 (t)) , F (t,X2 (t))) ≤ Ld (X1 (t) , X2 (t)) , (31)

whereL is a Lipschitz constant, L ∈ (0, 1).
We now rewrite Equation (29) as

X (t) = X (0) +
1

Γ (α− 1)

∫ t

0

(t− τ)
α−1

F (τ,X (τ)) dτ. (32)

Any function satisfying Equation (29) also satisfies the above Volterra integral
equation.
By considering the following successive approximations, we prove that Equation
(29) has a unique solution.

ϕ0 = X (0) . (33)

ϕk+1 (t) = X (0) +
1

Γ (α− 1)

∫ t

0

(t− τ)
α−1

F (τ, ϕk (τ)) dτ, k = 0, 1, 2, 3, . . . . (34)

Let us define the Picard operator on Banach Space C as

Γϕ = X (0) +
1

Γ (α− 1)

∫ t

0

(t− τ)
α−1

F (τ, ϕ (τ)) dτ. (35)

We now show that the Picard operator is a contraction on Banach space.
Let t be such that ‖ (Γϕ2 − Γϕ1) t‖ = ‖Γϕ2 (t)− Γϕ1 (t)‖ .∥∥e−Nt (Γϕ2 (t)− Γϕ1 (t))

∥∥
=

∥∥∥∥ 1

Γ (α)

∫ t

0

(t− τ)
α−1

e−Nτ (F (τ, ϕ2 (τ))− F (τ, ϕ1 (τ))) dτ

∥∥∥∥
=

∣∣∣∣ 1

Γ (α)

∫ t

0

(t− τ)
α−1

e−Nτ ‖F (τ, ϕ2 (τ))− F (τ, ϕ1 (τ))‖ dτ
∣∣∣∣

≤
∣∣∣∣ 1

Γ (α)

∫ t

0

(t− τ)
α−1

e−NτL ‖ϕ2 (τ)− ϕ1 (τ)‖ dτ
∣∣∣∣ (36)
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≤ L ‖ϕ2 (τ)− ϕ1 (τ)‖
Γ (α)

∣∣∣∣∫ t

0

(t− τ)
α−1

e−Nτdτ

∣∣∣∣
≤ L ‖ϕ2 (τ)− ϕ1 (τ)‖

∣∣∣∣e−NtNα

∣∣∣∣ .
Choose N such that Nα > L.
From Equation (36), we can obtain the following.

‖Γϕ2 (t)− Γϕ1 (t)‖ ≤ L

Nα
‖ϕ2 (t)− ϕ1 (t)‖ . (37)

According to Banach fixed point theorem, the Picard operator has a unique fixed
point that is a unique function ϕ (t) satisfying Γϕ (t) = ϕ (t). This affirms that
there exists a unique solution to the fractional order chronic Hepatitis C infection
model.

6. Solving fractional order chronic Hepatitis C infection model
using multistage new iterative method

Using Equation (9), an equivalent form for the fractional order chronic HCV infec-
tion model can be obtained as follows.

T (t) = b55 −
rT

T max
(Jα (T (t)T (t)) + Jα (T (t) I (t)))− dTJα (T (t))− b66, (38)

where b55 = T (0) + Jα (s) + rTJ
α (T (t)), b66 = βJα (VI (t)T (t)).

I (t) = b77 −
rI

T max
(Jα (I (t)T (t)) + Jα (I (t) I (t)))− δJα (I (t)) , (39)

where b77 = I (0) + βJα (VI (t)T (t)) + rIJ
α (I (t)).

VI (t) = VI (0) + (1− ρ(t)) (1− εP ) pJα (I (t))− cJα (VI (t)) . (40)

VNI (t) = VNI (0) + ρ(t) (1− εP ) pJα (I (t))− cJα (VNI (t)) . (41)

Following the new iterative method ([27]), we approximate the solution of the above
system of Volterra integral equations as

T (t) =

∞∑
i=0

Ti(t), I(t) =

∞∑
i=0

Ii(t), VI(t) =

∞∑
i=0

VIi(t), VNI(t) =

∞∑
i=0

VNIi(t). (42)

Linearizing the nonlinear terms,

AT =

( ∞∑
i=0

Ti (t)

)2

= (T0 (t))
2

+

∞∑
i=1


 i∑
j=0

Tj (t)

2

−

i−1∑
j=0

Tj (t)

2
 . (43)

AI =

( ∞∑
i=0

Ii (t)

)2

= (I0 (t))
2

+

∞∑
i=1


 i∑
j=0

Ij (t)

2

−

i−1∑
j=0

Ij (t)

2
 . (44)

ATI =

( ∞∑
i=0

Ti (t)

)( ∞∑
i=0

Ii (t)

)
= T0 (t) I0 (t) +

∞∑
i=1

(A−B) , (45)

where A =
(∑i

j=0 Tj (t)
)(∑i

j=0 Ij (t)
)

, B =
(∑i−1

j=0 Tj (t)
)(∑i−1

j=0 Ij (t)
)

.

ATV =

( ∞∑
i=0

Ti (t)

)( ∞∑
i=0

VIi (t)

)
= T0 (t)VI0 (t) +

∞∑
i=1

(A1−B1) , (46)
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where A1 =
(∑i

j=0 Tj (t)
)(∑i

j=0 VIj (t)
)

, B1 =
(∑i−1

j=0 Tj (t)
)(∑i−1

j=0 VIj (t)
)

.

From Equations (38) to (46),

∞∑
i=0

Ti (t) = a0 + rTJ
α

( ∞∑
i=0

Ti (t)

)
− rT
T max

Jα (AT +ATI)− dTJα
( ∞∑
i=0

Ti(t)

)
,

(47)
where a0 = T (0) + Jα (s)− βJα (ATV ) .

∞∑
i=0

Ii(t) = a1−
rI

T max
Jα (AI +ATI)+rIJ

α

( ∞∑
i=0

Ii(t)

)
−δJα

( ∞∑
i=0

Ii(t)

)
, (48)

where a1 = I (0) + βJα (ATV ).

∞∑
i=0

VIi(t) = VI (0) + (1− ρ(t)) (1− εP ) pJα

( ∞∑
i=0

Ii(t)

)
− cJα

( ∞∑
i=0

VIi(t)

)
. (49)

∞∑
i=0

VNIi(t) = VNI (0) + ρ(t) (1− εP ) pJα

( ∞∑
i=0

Ii(t)

)
− cJα

( ∞∑
i=0

VNIi(t)

)
. (50)

From the following recursive relations, the components of the series solutions in
(42) can be determined.

T0 (t) = T (0) + Jα(s). (51)

T1(t) = Jα
(
a2 − βT0 (t)VI0 (t)− rT

T max
(T0 (t))

2 − rT
T max

T0 (t) I0 (t)
)
, (52)

where a2 = rTT0(t)− dTT0(t).

Ti+1 (t) = − rT
T max

Jα (a3 + a4 − a5)− βJα (a6) + Jα (rTTi(t)− dTTi(t)) , (53)

where a3 =
(∑i

j=0 Tj (t)
)2

−
(∑i−1

j=0 Tj (t)
)2

, a4 =
(∑i

j=0 Tj (t)
)(∑i

j=0 Ij (t)
)

,

a6 =
(∑i

j=0 Tj (t)
)(∑i

j=0 VIj (t)
)
−
(∑i−1

j=0 Tj (t)
)(∑i−1

j=0 VIj (t)
)

,

a5 =
(∑i−1

j=0 Tj (t)
)(∑i−1

j=0 Ij (t)
)

.

I0(t) = I (0) . (54)

I1 (t) = Jα
(
βVI0 (t)T0 (t) + rII0 (t)− rI

T max

(
T0 (t) I0 (t) + (I0 (t))

2
)
− δI0 (t)

)
.

(55)

Ii+1 (t) = βJα (a7) + Jα (rIIi(t)− δIi(t))−
rI

T max
Jα (a8)− rT

T max
Jα (a9) , (56)

where a7 =
(∑i

j=0 Tj (t)
)(∑i

j=0 VIj (t)
)
−
(∑i−1

j=0 Tj (t)
)(∑i−1

j=0 VIj (t)
)

,

a8 =
(∑i

j=0 Ij (t)
)2

−
(∑i−1

j=0 Ij (t)
)2

,

a9 =
(∑i

j=0 Tj (t)
)(∑i

j=0 Ij (t)
)
−
(∑i−1

j=0 Tj (t)
)(∑i−1

j=0 Ij (t)
)

.

VI0(t) = VI (0) . (57)

VIi+1
(t) = Jα ((1− ρ(t)) (1− εP ) pIi (t)− cVIi (t)) , i ≥ 0. (58)

VNI0(t) = VNI (0) . (59)

VNIi+1
(t) = Jα (ρ(t) (1− εP ) pIi (t)− cVNIi (t)) , i ≥ 0. (60)
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To achieve practical solution, we truncate the infinite series in (39) to N(N is a
finite integer) terms as shown in the next equation.

T (t) ≈
N∑
i=0

Ti(t), I(t) ≈
N∑
i=0

Ii(t), VI(t) ≈
N∑
i=0

VIi(t), VNI(t) ≈
N∑
i=0

VNIi(t). (61)

The approximate solutions obtained by the new iterative method can predict the
real nature of Hepatitis C virus only for a short treatment duration but to know
whether the patient is cured or not, we need to have approximate solution which can
valid for whole treatment duration (i.e at least more than one month). Therefore,
we adopt here the multistage new iterative method proposed in [28].
We divide the interval [0, T ] into m subinterval using the constant step size h as
[0, t1], [t1, t2], [t3, t4], · · · · · · · · · , [tm−1, tm], where ti = ih.
Now, the fractional order chronic HCV infection model in (10) to (13) becomes

T (t) = T (t∗) +

∫ t

t∗

(t− τ)
α−1

(s+ rTT (τ) a10 − dTT (τ)− βVI (τ)T (τ)) dτ, (62)

where a10 =
(

1− T (τ)+I(τ)
T max

)
.

I (t) = I (t∗) +

∫ t

t∗

(t− τ)
α−1

(βVI (τ)T (τ) + rII (τ) a10 − δI (τ)) dτ. (63)

VI (t) = VI (t∗) +

∫ t

t∗

(t− τ)
α−1

((1− ρ(τ)) (1− εP ) pI (τ)− cVI (τ)) dτ. (64)

VNI (t) = VNI (t∗) +

∫ t

t∗

(t− τ)
α−1

(ρ(τ) (1− εP ) pI (τ)− cVNI (τ)) dτ (t) . (65)

where t ∈ [ti−1, ti), t∗ = ti−1, i = 1, 2, 3, . . . . . . . . . ,m.
Following the procedure expounded in (42) to (60), we compute the solution of the
system of Volterra integral equations in (62) to (65) in the first subinterval [0, t1].

T (t) = T (0) +

N∑
j=1

Tj (t) , I (t) = I (0) +

N∑
j=1

Ij (t) , t ∈ [0, t1) . (66)

VI (t) = VI (0) +

N∑
j=1

VIj (t) , VNI (t) = VNI (0) +

N∑
j=1

VNIj (t) , t ∈ [0, t1) . (67)

At the second stage (second subinterval), we evaluate the solution acquired in the
first subinterval at t = t1 and use T (t1), I (t1), VI (t1), VNI (t1) as the initial values.

T (t) = T (t1) +

N∑
j=1

Tj (t) , I (t) = I (t1) +

N∑
j=1

Ij (t) , t ∈ [t1, t2) . (68)

VI (t) = VI (t1) +

N∑
j=1

VIj (t) , VNI (t) = VNI (t1) +

N∑
j=1

VNIj (t) , t ∈ [t1, t2) . (69)

At the ith stage, the solution is estimated as

T (t) = T (ti−1) +

N∑
j=1

Tj (t) , I (t) = I (ti−1) +

N∑
j=1

Ij (t) , t ∈ [ti−1, ti) . (70)
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VI (t) = VI (ti−1) +

N∑
j=1

VIj (t) , VNI (t) = VNI (ti−1) +

N∑
j=1

VNIj (t) , t ∈ [ti−1, ti) .

(71)
In this manner, we predict the response of healthy or uninfected hepatocytes, in-
fected hepatocytes and Hepatitis C virus in whole treatment duration.

7. Results

We take the parameters;
Tmax = 9.13× 106cells, dT = 0.013 day−1, p = 4.3 virions cell−1 day−1,
c = 3.5 day−1, β = 3.5× 10−7ml day−1 virions−1, δ = 0.22 day−1, rT = 0.5 day−1,
ρmax = 0, rI = 0.5rT day−1, s = 4cells ml−1 day−1, εtot ≈ 1, εc = 0.9442,
and the initial values;
T (0) = 89.3854, I(0) = 1.0969× 106, VI(0) = 1.3476× 106, VNI(0) = 0.
In case of successful antiviral therapy (εtot > εc), the fractional order model must
exhibit sustained virological response with triphasic viral decline. The NIM so-
lution obtained for α = 1 and t ∈ [0, 1] is in good agreement with the solution
attained by the fourth order Runge-Kutta (RK) method as shown in Figure 2.
However, for t ∈ [0, 6], the new iterative method (N = 8) became incapable to
offer realistic approximate solutions (Figure 3) whereas the multistage new itera-
tive method (N = 3, t ∈ [0, 90]) succeeded in predicting the actual response of
uninfected hepatocytes, infected hepatocytes and viral load (Figure 4). For the
selected values of model parameters, the eigenvalues of the Jacobian matrix eval-
uated at ε1 = (892628.213, 0, 0) are real and negative (λ1 = −3.5008, λ2 = −3.5,
λ3 = −1.461, λ4 = −0.456), hence, the infection-free state is locally asymptotically
stable as displayed in Figure 4. Both the population of uninfected and infected hep-
atocytes reach the uninfected state. The final (third) phase slope of viral decline
indicates the death rate of infected hepatocytes. According to the homeostasis pro-
cess, the proliferation rate of infected hepatocytes is sensitive to the total number of
liver cells (uninfected plus infected hepatocytes). The uninfected hepatocytes take
reasonably long time to level the infected ones, therefore, during this period, the
loss of infected hepatocytes is compensated by recently born infected cells. So that
the level of infected hepatocytes remains constant until T = I. Since the infected
hepatocytes are the major producers of viral particles, the population of HCV does
not change as long as the level of infected hepatocytes stays constant, leading to
the formation of shoulder phase. When T ≥ I, the viral load begins to decay i.e.
the end of the shoulder phase.
The fractional order chronic HCV infection model is simulated using MNIM for
various values of α and Figure 5 displays the corresponding responses of T and I.
We notice from Figure 5 that as the value of fractional order decreases from 0.9 to
0.52, the population of uninfected and infected hepatocytes quickly converge to the
uninfected steady state (T = T0, I = 0). The shoulder phase of HCV decline (Fig-
ure 6) keeps on shrinking until α = 0.6 and at α = 0.55, the triphasic HCV decline
turns to biphasic and becomes monophasic when α = 0.52. The viral load eventu-
ally reaches the lowest value of 1.71437× 10−9. We now examine the dynamics of
HCV when the proliferation rate of infected hepatocytes is much slower than that
of uninfected hepatocytes(rT /rI = 5). Figure 7 shows the profiles of T , I and V for
diverse values of α. At each value of α, the population of uninfected hepatocytes
increases from its initial value to the steady state value of 8892628.2135 and the
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Figure 2. Comparison between NIM solution and RK solution
for α = 1, h = 0.1 and t ∈ [0, 1]

lowest value of α induces the population of uninfected hepatocytes to quickly reach
its steady state. As the value of αreduces from 1, the infected hepatocytes rapidly
converges to the uninfected steady state of 0. Since the infected hepatocytes are
slowly regenerating, their loss is not compensated, hence, the infected hepatocytes
are continuously decaying thus there is no shoulder phase in the viral decline and
this type of decline of viral load is called biphasic decline. The viral load rapidly
drops beyond the undetectable limit at the lowest value of α. It is evident from
Figures 5 to 7 that the infection-free state is locally asymptotically stable even
in the fractional order case. When the overall drug efficacy is not high enough
(εtot = 0.94), one of the eigenvalues of the Jacobian matrix calculated at infection-
free state is positive. Therefore, the infection-free state is unstable and the viral
load does not converge to the first equilibrium point instead reaches a lower plateau
(8) i.e. chronic HCV infection is not cured. It is also noticed that the shoulder phase
occurs even in partial responders. As found before, the duration of the shoulder
phase reduces as the fractional order approaches zero. Because of the inadequate
drug efficacy, there is no appreciable growth in the population of healthy liver cells
and no significant decay in the population of infected cells. We assume that the
effectiveness of RBV is constant throughout the therapy and we simulate the frac-
tional order HCV model for εtot = 0.95, ρmax = 0.9 and α = {1, 0.85, 0.75, 0.55}.
Figure 9 shows that the mutagenic effect of RBV enhances the third phase slope
of HCV decay and further improvement in the third phase slope is caused by α as
demonstrated in Figure 10.

8. conclusions

The mathematical model presented in this paper is about the response of patient
with chronic Hepatitis C infection in the face of therapeutic drug (IFN-α and RBV).
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Figure 3. NIM solution for t ∈ [0, 6]

Figure 4. Comparison between MNIM and RK Method for α = 1
and t ∈ [0, 90]
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Figure 5. Profiles of uninfected and infected cells

Figure 6. Response of viral load for various values of α

The classical integer order (α = 1) model cannot explain biphasic, triphasic, flat
partial HCV response varying for individuals and monophasic HCV decay as it is
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Figure 7. Response of fractional order chronic HCV infection
model for rT = 5rI and α = 1(solid line), α = 0.9(dashed line),
α = 0.75(dotted line)

Figure 8. Response of fractional order chronic HCV infection
model for εtot < ec and α = 1(solid line), α = 0.95(dashed
line), α = 0.75(dotted line), α = 0.55(dashed-dotted line), α =
0.52(dashed-starred line)
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Figure 9. Profile of viral load for εtot = 0.95, ρmax = 0, α = 1
(solid line) and εtot = 0.95, ρmax = 0.9, α = 1 (dashed line)

Figure 10. Response of viral load for εtot = 0.95, ρmax = 0.9 and
α = 1(solid line), α = 0.85(dashed line), α = 0.75(dotted line),
α = 0.55(dashed-dotted line)
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predicting generalized behaviours (biphasic and triphasic) under certain circum-
stances manifested by drug efficacy; rate of infection and death rate of the infected
cells. In view of this, the proposed model of non-integer order appears to be perfect
and a model of broad generality, which provides the classical model predictions as
one of the possible solution at α = 1.
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