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GENERALIZED CONVOLUTION PROPERTIES FOR
SUBCLASSES OF HARMONIC UNIVALENT FUNCTIONS

R. M. EL-ASHWAH, W. Y. KOTA

ABSTRACT. Studies of convolution play an important role in Geometric Func-
tion Theory. In this paper, We studied the generalized convolution of the
subclasses Vi (8), Ug(8) and Ry (8) harmonic univalent functions analogous
to analytic univalent functions.

1. INTRODUCTION

A continuous complex-valued function f = u + v defined in a simply connected
domain D is said to be harmonic in D if both v and v are real harmonic in D. In
any simply connected domain DD, we can write f = h+7g, where h and g are analytic
in D. We call h the analytic part and g the co-analytic part of f. A necessary and
sufficient condition for f to be locally univalent and sense-preserving in D is that
()] > 1g'(2)], = € D (seef2]).

Denote by Sg the class of functions f = h + g that are harmonic univalent and
sense-preserving in the unit disk U = {z : |z| < 1} for which f(0) = f.(0) —1=0.
Then for f = h+7g € Sy we may express the analytic functions h and g as

h(z)=z+ Y arz", 9(z) = bz, Iby| < 1. (1)
k=2 k=1

Note that Sg reduces to the class of normalized analytic functions if the co-analytic
part of its member is zero.
For 1 <  <4/3 and z € U, suppose that Mg () denote the family of harmonic

functions f = h + g of the form satisfying the condition

0 W(z)—zg'

— (argf(z)) = Re M < B, zeU,

09 h(z) +9(2)
and Ly (B) denote the family of harmonic functions of the form satisfying the
condition

% {arg (;f(d)} = Re {1 + ZQhH(zi;(i;g_/(%ZgN(z) } <5, z€eU.
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A necessary condition for a function f(z) = h + g, where h(z) and g(z) are of
the form belong to the classes My (8) and Ly (8) (see [7])

> (k= B)lan| + > (k+ )bk < B -1, (2)
k=2 k=1
where 1 < g < % and
> k(k = B)lax + Y k(k+ B)lbk| < B -1, (3)
k=2 k=1

where 1 < g < %.
Further, we let Vg and Ugy be the subclasses of Sy consisting of functions of the
form

FE) =2+ larl? = [bil2, (4)
k=2 k=1
and
oo [ee]
F2) =2+ larlz" + > el (5)
k=2 k=1
respectively.

Let Vy(8) = My (B)NVy, and Uy (B) = Ly (B)NUg. A necessary and sufficient
condition for a function f(z) is of the form (4)) belong to the classes Vi () (see [7])
D (k= B)lar|+ D (k+B)bxl < B -1, (6)
k=2 k=1
where 1 < g < %.
Also, a necessary and sufficient condition for a function f(z) is of the form
belong to the classes Uy (8) (see [7])

N
~—

D k= Blar| + 3 _k(k+B)lbx| < B -1, (
k=2 k=1
where 1 < 8 < %.
We note that for g = 0 the classes My (8) = M(B), Lu(B8) = L(8), Vu(8)
V(B) and Uy (B) = U(B) [§]. A function f(z) of the form (5]) in Sy is said to be in
the class Ry (f), (1 < 8 < 2), if and only if

Re{h'(2) +4'(2)} < B, zeU. (8)

A necessary and sufficient condition for a function f(z) is of the form belong
to the classes Ry (8) [3)

D kla] + ) klbkl < B —1, (1<B<2). (9)
k=2 k=1
We note that the class Ry (8) reduces to the class R(S) if co-analytic part of f is
zero i.e. g =0 (see [9]).

Let fi(2) ( =1, 2) in Sy be given by

fi(2) =24 lan 1+ g [2". (10)
k=2 k=1
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Then the convolution f; % f5 is defined by
(frxfo)(2) =24+ Y larak2lz" + Y [br1br2lZ" (11)
k=2 k=1

Furthermore, for any p > 0 and ¢ > 0, we define the generalized convolution
(f1Af2)(p, q;2) by

(1Af) (P g;2) = 24+ D lanalPlakal"2" + D [br1 [Plbr 2| 72" (12)

k=2 k=1

In the special case, if we take p = ¢ = 1, then we have

(1A f2)(1,1;2) = (f1 * f2)(2), (z€U).

Studies of convolution play an important role in Geometric function theory. It
has attracted large number of researchers. By making use of convolution, several
new and interesting subclasses have been defined and studies in the direction of
subordination, partial sums, neighborhood, argument problems, integral mean in-
equalities and some other related interesting properties. For detailed study in ([II,
[, [, [6]) and others.

In the present paper, we studied the generalized convolution of harmonic univa-
lent functions analogous to analytic univalent functions.

2. MAIN RESULTS
Theorem 1. If the functions f;(z) (j = 1,2) defined by withb; =0 (j =1,2)

are in the classes Vi (B;) for each j and the condition

1 1 1 1 1 1
lak1|7 |ak2® + bkl 7 |br2|® < (Jag1| + [bk1])7 (Jak2] + [br2)e, (kK =2,3,...),

(13)
is satisfied then
11
A -, =z eV ,
(fiAf2) <p p ) u(B)
wherep>1, 1+ 1 =1and B =1+ L T
t v (5E) 7 (54)°
Proof. Since f;(z) € Vu(B;), by using @, we have
%) k _ﬁ' '
S5 ) (arsl + o) < 1, (G=1,2). (14)
Bi—1
k=2
then from eq. we obtain
1
oo k’ _ P
5 (572 ) Goual + ral <1, (15)
o \h-l

and

Q=

{k 2(];2_%) (ak’2|+|bk’2|)} =t (16)
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Now
2 (k- k— 1 1 1 1
Z( ﬁl) ( ﬁz) (ol lanal? + [beal ¥ lbual )
Pt b1—1 Ba—1
1
(k- g - a 1 1
s;(ﬁl_ﬁi) (522) owal + e hanal + el
1 1
P oo k— q
< <|ak1|+|bm|> Z( 52)( A o<1
2 k=2 P2 -1
Since
11 oo N 1 oo 1 1
(AR, —52) = 2 awallanz|iz" = |bea |7 brol 7,
k=2 k=1

it suffices to show that (flAfQ)(%, %;z) e Vu(B) if

5 ()

k=2
For this we have to show that L.H.S. of is bounded above by

1 1
(k- p (k- a 1 1 1 1
S (52) (522) Ganallanalt + sl el <1,
= \A—1 B2 —1
which is equivalent to 8 > 1 + L. . N
1+ (52) 7 (53)

Corollary 1. If the functions f;(z) (j = 1,2) defined by withby; =0 (j =1,2)
are in the classes Vi (B) for each j and the condition is satisfied then

1 1
@+ |bg,1| P

%) <1 (17)

(haf) (5.3:2) € Va(o),

1,1 _
wherep>1,;—|—6—1.

Proof. Since f;(z) € Vi (B), by using @, Corollary follows readily from Theorem
in special case when 8, = 5. =

Theorem 2. If the functions f;(z) (j = 1,2) defined by withby ; =0 (j =1,2)

are in the classes U (B;) for each j and the condition (13) is satisfied then

(haR) (505:%) € Uu),

wherep>1,%+%:1and5:1+ 1

Proof. Since f;(z) € Un(B;), by using @, we have

= k(k—ﬁj))
—— ) (k] + |br,;

) <1, (j=1,2). (18)
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then from eq. 1 8|) we obtain

{ k(k — ﬁl)) (lag1| + [br1
—

)

k=2

ke(k — k(k — ; ¥ |ag.o|d ? |be2|2
( T ) ( ( 62)) (|ak,1|;|ak,2|; +|bk’1|;|bk72|;)
=2

=

)} <L (19)

and

Q=

: )} <1 (20)

B —1 f2—1
Z (k Y ) (k(k __ﬂ12)>“ (lak| + |bk,1|)%(|ak»2| + |bk~2|)%

<
=\ -1 65
- bl :
Z( Y anal 4o 33 (FEEE) Y <
=2 o\ Bl
Since
11 = 1 1 = 1 1
(L) (=, =32) =2+ Y laka|?lanala2" + ) |bra|[bro| 72,
pa k=2 k=1
it suffices to show that (flAfg)(%, %;z) e Uy (p) if
= (k(k— 1 1 1 1
S (B2 (o o lanalt + el Flbal?) < 1. 1)
=\ Bl

For this we have to show that L.H.S. of (21f) is bounded above by
1
— [ k(k— v (k(k— 1,01
Z( ( 61)) ( ( 62)) (Jan,117 a2l + [bea|#[brol7) <1
i\ Al F2—1

which is equivalent to 8§ > 1 +

Corollary 2. If the functions f;(z) (j = 1,2) defined by (10}) with b1; =0 (j =
1,2) are in the classes Uy (B) for each j and the condition is satisfied then

(fiAf) ( - z) & Un(p).

1 1 _
wherep>1,5+a—1.

Proof. Since f;(z) € Un(B), by using 7 Corollaryfollows readily from Theorem
in special case when 8, = 5. =
Theorem 3. If the functions f;(z) (j = 1,2) defined by (1() withb, ; =0 (j =1,2)
are in the classes Ry (B;) for each j and the condition is satisfied then
1
(haf) (505%) € Ru(d)

wherep>1,%Jr%:land5:1+(51*1)%(52*1)%.
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Proof. Since f;(z) € Ru(f;), by using ([9), we have
S () ol + b <t G=12) 22
k=2 \7J
then from eq. we obtain
oo k P
{Z (51) (lag,| + bk,1|)} <1 (23)
k=2 \1
and
) k q
{ (5—1> (lag,2| + |bk,2|)} <1 (24)
k=2 N2
Now

<k \r( k \7, o
,;2(51 1) (521> (lak1|7|ak,2

</ k \*[ k \¢ , ,
<3 ara| + bea])? (lag.o| + |bea|)*
< <ﬂ1—1) (52_1) (lak,1| + [br,1 )7 (lak 2| + [br.2])

1 1 1
¢+ |br,1| 7 bk 2| 9)

k=2
AT (Y ot + e b IS () Gaal 4 o U <1
Tl \Aa-l ’ 7 o\ -1 7 ’ B
Since
11 > 1 1 s 1 1
(flAfQ)(Ev 6;2) =2+ laral"laral 72" + Y [bra|? |br 2] 72,
k= k=1

2
it suffices to show that (flAfQ)(%, %;Z) € Ry (B) if

> (557 (owaFlovs

k=2

For this we have to show that L.H.S. of is bounded above by

s Ibk,1|%|bk,2\%) <1 (25)

1 1
- E\*( k \¢ 1 PR
which is equivalent to 8 > 1+ (81 — 1)%(52 — 1)% n

Corollary 3. If the functions fj(z) (j = 1,2) defined by (10}) with by ; =0 (j =
1,2) are in the classes Ry (B) for each j and the condition is satisfied then

1;z> & Ry(8),

(fiAfz) (]1)» p

1 1 _
wherep>1,5+af1.

Proof. In view of eq. @, Corollary |3| follows readily from Theorem |3| in special
case when 3; = (3. m
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Theorem 4. If the functions f;(z) (j = 1,2,...,m) defined by with by ; =0
(4 =1,2,...,m) are in the classes Vi (B;) for each j and F,,,(z) defined in

oo m

Fin( —Z+Z Z‘ak,jlp Zk_z Zlbk,jp

=2 \j=1 k=2 \j=1

z, (p=1), (26)

then F,(2) € Vg (Bm) where By > 1+ 71+ T(Ey B = maxi<j<m B and m(B —
m\B=1
1P <202 B,

Proof. Since f;(z) € Vu(B;) by using (@, we have

> (5, _5{) (lan 5| + br.gl) < 1, (G=1,2,....m) (27)
k=2 N

Now

P
) (as| + [br )

) a4+ Pois ) < 3 (

k=2

> (5=

b8 » (28)
<030 (522 awsl + sy <1
k=2 Bi—1
It follows from
el , b P) | < 1.
S a2 (523) Gonal v ) <
= J_
Putting 8 = maxi<j<m 8; we find that
> (525 (St w ol ) < 2 (570) ( Stmab + i <1
k=2 j=1 k=2 j=1
(29)
which is equivalent to 3,, > 1+ m.
B

it is easy to verify that g(k) is decreasing function

Now let g(k) = 1+m,

of k for p > 1. Therefore
1
= k=9g2)=14 ————.
B %123“5(9( ) =9(2) +1+%(%)p

This completes the proof. m

Theorem 5. If the functions f;(z) (j = 1,2,...,m) defined by @) with by ; =0
(4 =1,2,...,m) are in the classes Ug(B;) for eachg and

nz Z+Z Z‘ak |p z +Z Z'bkd

then Fp,(z) € Uy (Bm) where By > 1+ W B8 = maxi<j<m B and
(5
m(B— 1) < 2(2 - B

z*, (p=1), (30)
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Proof. Since f;(z) € Un(B;) by using (7)), we have

( (k — 5])) (lax;] + |br4]) < 1, (j=1,2,....,m) (31)
k=2

B;
Now
5 (=20 a4 sl < 3 (520 s+ sl
k=2 J k=2 .7 (32)
k(k — B;) b
= Z(ﬂl) (laks] + lbx51) ¢ < 1.
k=2 J
It follows from
(1 & (k(k—B)\P
2 mz<(ﬁ»—51])) (larI” + [or517) | < 1.
k=2 j=1 J

Putting 8 = maxi<j<m 8; we find that

oo » m
S (T3 (S o ) <0 (G0 (Sl +eap | <1

j=1
(33)
which is equivalent to 3,, > 1+ W
Now let g(k) = 1+ Mpkli(lkﬁ), it is easy to verify that g(k) is decreasing
function of k for p > 1. Therefore
1
Bm = r]?g%(g(k) =g9(2)=1+ W

This completes the proof. m

Theorem 6. If the functions f;i(z) (j = 1,2,...,m) defined by @) with by ; =0
(4 = 1,2,...,m) are in the classes Ry (B;) for each j and F,,(z) defined in @)

Then F,,(2) € Ry (Bm) where By, = 1—|—m(2€:11)p, B =maxi<;j<m f; and m(f—1)P <
2p—1,

Proof. Since f;(z) € Ry (B;) by using (9), we have

o0

k
(5_1) (lak,;| + |br,j
k=2 N7

Now

) k P 00
> (5og) Ul s by <3 (55

k=2 k=2

< {g (55) (o

p
+ |b/c,7|)} <1l
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It follows from

oo

S22 (557) ot

k=2 j=1

+[bx417) | < 1.

Putting f = maxi<;j<m B; we find that

oo

k i ] m
> (71 (Z“’f’j'”'bkvj'p> <2 (75) ( lak7j|p+bk,j|”>) <1
k=2 m j=1 k=2 j

g (496)

which is equivalent to 3, > 1+ mgﬁ,j iy

Now let g(k) =1+ mgﬁ:ll)p, it is easy to verify that g(k) is decreasing function
of k for p > 1. Therefore

(g~ 1)

B = maxg(k) = 9(2) = 14+ =

k>2

This completes the proof. m

3. APPLICATION ON CONVOLUTION
Theorem 7. If the functions f;(z) (j = 1,2) defined by withby ; =0 (j =1,2)

are in the classes Uy (B;) for each j and the condition (1) is satisfied then

11
(fiAfa) pals u(B)
where p > 1, %—I—%zl andﬁ:l—&-—Q_ﬁ L T
(55)7 (54)°
Proof. Since f;(z) € Un(B;), by using @, we have

2 (k(k - B;
5= (P52 ol +
k=2 J

then from eq. we obtain

) <1, (G=12). (37)

{ Rk — 61)>(|ak,1|+|bk71)}p§1, (38)
and
{Z Kk 62)( +Ibk,zl)} <1 (39)
k=2
Now
2 (k= B\ (k= Ba) )
kz_2< 51_11) ( 8y — ) (Ja1|7 |ar2| + [br1|7 |br.2]7)
S; k(ﬁkl ﬁl) ( ) |ak1‘+|bk1|)%(|ak,2|+|bk,2|)%
= (k(k — B1) P (& (k(k— B) .
S{;(W) (|ak7l|+|bk,1)} {;ﬁ(ﬁ)( ))} <1.
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Since
11 > 1 1y > 1 1_p
(flAfz)(;j & =24 Y lagallara| 725+ [bra| 7 e 2l 72",
k=2 k=1

it suffices to show that (flAfg)(%, %;z) € Ruy(B) if

() e

k=2

Ploral?) < 1. (10)

For this we have to show that L.H.S. of is bounded above by

[e%e} k k* % k k* % N i . A
Z( ( 51)) < ( 52)) (lara|7laral® + bl [br2l7) < 1,
k=2 P — B2 —1

which is equivalent to 3 > 14+ ———1—1. =

G2)7 (53)°
Theorem 8. If the functions f;(z) (j = 1,2,...,m) defined by (10) with by ; = 0
(4 =1,2,...,m) are in the classes Uy (5;) for each] and F,,(z) defined in @/ then
F..(z) € Ry(Bm) where B, > 1+ %, B8 = maxi<j<m B; and m(B — 1) <
20=1(2 — )P,

Proof. Since f;(z) € Un(B;) by using (7)), we have

Z( L sl 4 bsd <10 G=120m) @)

=2

Now
— (k(k—8;) = (k(k - B;)
5 (=20 augt+ st < 32 (520 g+ s
k=2 / k=2
k(k — 8;) P (42)
P
S {Z (ﬁ]_1> (lars| + |blm|)} <1.
k=2
It follows from
1 (k(k— B\ ) )
Dol (T5 =) Uaral + by | <1
k=2 j=1 J
Putting § = maxi<j<m 8; we find that
Z (5 _ 1) Z lak, ;1P + |bx ;|7 Z m ( ) Z lak ;|7 + |br,;|P | <1
k=2 N j=1 k=2 j=1
(43
m(B—1)"

which is equivalent to 5, > 1+ This completes the proof. m
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4. CONCLUSION

In this work, we obtain the conditions on the parameter 5 such that the gen-
eralized convolution of two functions belongs to the subclasses Vi (5), U (8) and
Ry (B) of harmonic univalent functions. Also, we gave some application for convo-
lution of two functions belongs to the subclasses U (8) to be in Ry ().
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