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STABILITY ANALYSIS AND CHAOS CONTROL OF THE

DISCRETIZED FRACTIONAL-ORDER MACKEY-GLASS

EQUATION

A. M. A. EL-SAYED, S. M. SALMAN AND N. A. ELABD

Abstract. This paper is devoted to analyze the dynamics of the fractional-

order Mackey-Glass equation without delay before and after applying a dis-
cretization process to it. Local bifurcations of fixed points in the discretized

equation are discussed. Lyapunov exponent is plotted as an indicator to chaos.

Finally, chaos in the discretized fractional-order Mackey-Glass equation is be-
ing controlled using a modified delayed feedback control (DFC) method. Since

fractional-order differential equations (FODE) possess memory, the delay in

the original Mackey-Glass model is substituted with the fractional-order dif-
ferentiation which led to a richer dynamic behavior.

1. Introduction

The concept of derivative is traditionally associated to an integer; given a function,
we can derive it one, two, three times and so on. It could have an interest to inves-
tigate the possibility to derive a real number of times a function. The main idea
is to examine the properties of the ordinary derivative and see where and how it is
possible to generalize the concepts.

Fractional Calculus is the branch of calculus that generalizes the derivative of a
function to non-integer order, allowing calculations such as deriving a function to
1
2 order. Despite generalized would be a better option, the name fractional is used
for denoting this kind of derivative.
Recalling the basic definitions (Caputo) and properties of fractional-order differen-
tiation and integration.

Definition 1. The fractional integral of order β ∈ R+ of the function f(t), t > 0
is defined by

Iβa f(t) =

∫ t

0

(t− s)β−1

Γ(β)
f(s)ds,
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and the fractional derivative of order α ∈ (n− 1, n) of f(t), t > 0 is defined by

Dα
a f(t) = In−αDnf(t), D =

d

dt
.

In addition, the following results are the main in fractional calculus. Let β, γ ∈ R+,
α ∈ (0, 1),
• Iβa : L1 → L1, and if f(x) ∈ L1, thenIγa I

β
a f(x) = Iγ+β

a f(x).
• limβ→n I

β
a f(x) = Ina f(x) uniformly on [a, b], n = 1, 2, 3, ..., where

I1
af(x) =

∫ x
a
f(s)ds.

• limβ→0 I
β
a f(x) = f(x) weakly.

• If f(x) is absolutely continuous on [a, b], then limα→1D
α
a f(x) = df(x)

dx .
For the main properties of the fractional derivatives and integrals, one can see [15],
[16], [17], and [19].
To solve fractional-order differential equations there are two famous methods: fre-
quency domain methods [23] and time domain methods [7]. In recent years it has
been shown that the second method is more effective because the first method is
not always reliable in detecting chaos [24] and [25].
Often it is not desirable to solve a differential equation analytically, and one turns
to numerical or computational methods.

In [20], a numerical method for nonlinear fractional-order differential equations
with constant or time-varying delay was devised. It should be noticed that the
fractional differential equations tend to lower the dimensionality of the differential
equations in question, however, introducing delay in differential equations makes
it infinite dimensional. So, even a single ordinary differential equation with delay
could display chaos.

2. Fractional-order Mackey-Glass equation

The Mackey-Glass equation is the nonlinear time delay differential equation, which
was proposed as a model of hematopoiesis, given by

dx

dt
=

ρxτ
1 + xcτ

− γx, γ, c, ρ > 0, (2.1)

where γ, c, ρ, τ are real parameters, and xτ represents the value of the variable x at
time (t − τ). Depending on the values of the parameters, this equation displays a
range of periodic and chaotic dynamics.
In this work, we will show that considering a fractional-order differentiation in
equation (2.1) will exhibits more complex and richer dynamics.

Consider the fractional-order Mackey-Glass equation given in the form.

Dαx(t) =
ρx

1 + xc
− γx, t ∈ (0, T ], (2.2)

with the initial condition

x(0) = x0 (2.3)

where α ∈ (0, 1], γ = 1 and ρ, c > 0.
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2.1. Stability of equilibrium points. Equilibrium points of the fractional-order
Mackey-Glass equation (2.2) can be easily obtained by solving the algebraic equa-
tion

Dαx(t) = 0, ⇒ x =
ρx

1 + xc
.

Indeed, there are only two equilibrium points of equation (2.2) namely, x∗1 = 0, and
x∗2 = c

√
ρ− 1. To study the stability of these equilibrium points we calculate the

first derivative of the right hand side of equation (2.2) at each equilibrium point [2]
and[3].

f
′
(x) =

ρ+ ρxc(1− c)
(1 + xc)2

− 1.

That is, f
′
(0) = ρ− 1 ,and f

′
( c
√
ρ− 1) = c(1−ρ)

ρ .

Now the solution of the initial value problem

Dαε(t) = f
′
(x∗1)ε(t) = (ρ− 1)ε(t) , t > 0 and ε(0) = x0,

is given by [16].

ε(t) =

∞∑
n=0

(ρ− 1)ntαn

Γ(αn+ 1)
(x0 − 0). (2.4)

So the equilibrium point x∗1 = 0 if(ρ > 1) is unstable. Similarly, for the equilib-
rium point x∗2 = 0 we have the initial value problem

Dαε(t) = f
′
(x∗2)ε(t) =

c(1− ρ)

ρ
ε(t), t > 0,

ε(0) = x0 − x∗2.
(2.5)

and its solution is given by

ε(t) =

∞∑
n=0

( c(1−ρ)ρ )ntαn

Γ(αn+ 1)
(x0 − c

√
ρ− 1). (2.6)

So, the equilibrium point x∗2 = c
√
ρ− 1 is asymptotically stable.

2.2. Existence and uniqueness. Let I = [0, T ], T < ∞ and C(I) be the
class of all continuous functions defined on I. For the existence of a unique solution
x ∈ C[0, T ] of the problem (2.2)-(2.3), we have the following theorem.

Theorem 1. If ( ρ Tα

2Γ(1+α) < 1), then the initial value problem(2.2)-(2.3) has a

unique solution x ∈ C[0, T ].

Proof.
The proof follows directly from Theorem 1 of [14].

2.3. Numerical results. An Adams-type predictor-corrector method has been
introduced in [5], [7] and [6] and investigated further in [1], [12], and [19]. In
this work we apply an Adams-type predictor-corrector method for the numerical
solution of a fractional integral equation. The numerical solution of (2.2)-(2.3) is
obtained by applying the PECE (Predict,Evaluate, Correct, Evaluate) method and
is displayed in Figure (1) for different values of α and we take ρ = 0.5, c = 6 and
x0 = 0.85.
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Figure 1. Numerical solution of (2.2)-(2.3) with different α using
PECE method.

2.4. Bifurcation and chaos. In this part of the paper, bifurcation and chaos in
the Fractional-order Mackey-Glass system (2.2)-(2.3) are numerically investigated.
First we fix c = 6 and α = 0.90 and we let ρ varies form −2 to 30. The initial state
of the Fractional-order Mackey-Glass system is taken as x(0) = 0.9. The resulting
bifurcation diagram is shown in Figure (2). Second, we fix c = 6, and ρ = 20 and
we let the fractional-order α varies form 0 to 1. The resulting bifurcation diagram
is shown in Figure (3).

Figure 2. Bifurcation dia-
gram of (2.2) as a function of
ρ with α = 0.90.

Figure 3. Bifurcation dia-
gram of (2.2) as a function of
α with ρ = 20.
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3. Discretization process

In this section we will apply a discretization process mentioned in [8], [9] ,and [10]
for discretizing fractional-order Mackey-Glass equation(2.2)-(2.3). It is worth to
mention here that many discretization methods have been applied to fractional-
order systems such as Euler’s method and predictor-corrector method. Euler’s
method discretization is an approximation for the derivative while the predictor-
corrector method is an approximation for the integral. However, our proposed
dicretization method here is an approximation for the right hand side as we will see.
Consider the fractional-order Mackey-Glass equation (2.2) with piecewise constant
arguments given by

Dαx(t) =
ρx([ tr ]r)

1 + xc([ tr ]r)
− x([

t

r
]r), (3.1)

with initial condition (2.3).

The steps of the discretization process are as follows
let t ∈ [0, r), then t

r ∈ [0, 1). That is,

Dαx(t) =
ρx0

1 + xc0
− x0, (3.2)

and the solution of (3.2) is given by

x(t) = x0 + Iα(
ρx0

1 + xc0
− x0),

= x0 + (
ρx0

1 + xc0
− x0)

∫ t

0

(t− s)α−1

Γ(α)
ds,

= x0 +
tα

Γ(1 + α)
(
ρx0

1 + xc0
− x0).

let t ∈ [r, 2r), then t
r ∈ [1, 2). That is,

Dαx(t) =
ρx1

1 + xc1
− x1, t ∈ [r, 2r), (3.3)

and the solution of (3.3) is given by

x(t) = x1(r) + Iαr (
ρx1

1 + xc1
− x1),

= x1(r) + (
ρx1

1 + xc1
− x1)

∫ t

r

(t− s)α−1

Γ(α)
ds.

= x1(r) + (t−r)α
Γ(1+α) ( ρx1(r)

1+xc1(r) − x1(r)).

Repeating the process we can easily get

x(t) = xn(nr) + (t−nr)α
Γ(1+α) ( ρxn(nr)

1+xcn(nr) − xn(nr)), t ∈ [nr, (n+ 1)r).

Let t → (n+ 1)r , we obtain the discretization

xn+1((n+ 1)r) = xn(nr) + (r)α

Γ(1+α) ( ρxn(nr)
1+xcn(nr) − xn(nr)).

That is,

xn+1 = xn +
rα

Γ(1 + α)
(
ρxn

1 + xcn
− xn). (3.4)

It should be noticed that formula (3.4) is the fractional Euler’s discretization for-
mula for our model (2.2)-(2.3) (see [11]).
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3.1. Fixed points and stability. Now we study the fixed points of the system
(3.4) which has two fixed points, namely

xfix1 = 0, and xfix2 = c
√
ρ− 1,

which are obtained by solving the equation

x = x+ rα

Γ(1+α) ( ρx
1+xc − x).

To study the stability of these fixed points we relay on the following theorem

Theorem 2. [18] Let f be a smooth map on R, and assume that x∗ is a fixed point
of f.

(1) If | f ′
(x∗) |< 1, then x∗ is stable.

(2) If | f ′
(x∗) |> 1, then x∗ is unstable.

That is, xfix1 is stable if

1− 2Γ(1+α)
rα < ρ < 1,

while xfix2 is stable if

1 < ρ < rαc
rαc−2Γ(1+α) .

Since the Lyapunov exponent (LE) is a good indicator for existence of chaos and
play a key role in the study of nonlinear dynamical systems and they are a measure
of the sensitivity of the solutions of a given dynamical system to small changes in
the initial conditions. One feature of chaos is the sensitive dependence on initial
conditions; for a chaotic dynamical system at least one LE must be positive. Since
for non-chaotic systems all LEs are non-positive, the presence of a positive LE has
often been used to help determine if a system is chaotic or not.
Indeed, Lyapunov exponent for (3.4) is given by [26]

Lya.exp = limn→∞Σlog2(1 + rα

Γ(1+α) (ρ+ρx
c(1−c)

(1+xc)2 − 1)).

When α = 1, the Lyapunov exponent for the discrete system

xn+1 = xn + r( ρxn
1+xcn

− xn),

is obtained. Figure (4) shows the lyapunov exponent for the system(3.4) for differ-
ent values of the fractional-order parameter α and r = 0.50.

4. Bifurcation and Chaos

In this section we study the local bifurcation of the fixed points of system (3.4).

From equation (3.4), f(x) = x+ rα

Γ(1+α) ( ρx
1+xc − x). So, the eigenvalues associated

to f are λ1 = 1 + rα

Γ(1+α) (ρ− 1),

and λ2 = 1 + rαc
Γ(1+α)ρ (1− ρ).

When ρ = 1, λ1 = λ2 = 1, xfix1 = xfix2 = 0. That is, (xfix, ρc) = (0, 1) is a
non-hyperbolic fixed point. In fact, it is a transcritical bifurcation point of f . On

the other hand, at ρ = rαc
rαc−2Γ(1+α) , λ2 = −1 and xfix2 = c

√
2Γ(1+α)

rαc−2γ(1+α) .



22 A. M. A. EL-SAYED, S. M. SALMAN AND N. A. ELABD JFCA-2017/8(1)

That is, (xfix, ρc) = ( c

√
2Γ(1+α)

rαc−2Γ(1+α) ,
rαc

rαc−2Γ(1+α) ) is a non-hyperbolic fixed point.

In fact, it is a period doubling (supercritical flip) bifurcation point of f .

In all numerical simulations we take c = 6 and r = 0.50. Figure (4) shows the
bifurcation diagrams of system (3.4) as a function of the control parameter ρ with
different values of α and r = 0.50. If we take, for example, α = 0.95, c = 6,
and r = 0.50, we can see clearly in Figure (4)(a) the the bifurcation from a stable
fixed point to a stable orbit of period two at ρ = 2.71, and then the bifurcation
from period two to period four at ρ ' 7.8. The further period doubling occur at
decreasing increments in ρ, and the orbit becomes chaotic for ρ ' 9.4 . Note the
intriguing window just beyond ρ = 13. It is pretty clear from Figure (4) that when
α → 0, the stability region for fixed points xfix1,2

is being shrinked. To be more
clear, let α = 1, so xfix1 is stable if −2 < ρ < 1. While if α = 0.90, xfix1 is stable
if −1.7234 < ρ < 1 and so on. The same conclusion can be said to xfix2. That
is, when α = 1, xfix2 is stable if 1 < ρ < 3. While if α = 0.90, xfix2 is stable if
1 < ρ < 2.4890 and so on.

Meanwhile, Figure (5) shows the bifurcation diagrams of system (3.4) as a function
of α with different values of ρ.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Bifurcation diagrams and Lyapunov exponent for sys-
tem (3.4) with different values of the fractional-order parameter α
and r = 0.5.
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(a) (b)

(c) (d)

Figure 5. Bifurcation diagrams for system (3.4) as a function of
α with different values of the parameter ρ and r = 0.5.

If we compare Figure (2) with Figure (4)(c), we can see clearly that the discretized
fractional-order Mackey-Glass (3.4) has the same tendency as the original fractional-
order system (2.2)-(2.3). Moreover, if we compare Figure (3) with Figure (5) (a),
we will also see the same tendency of the dynamic behavior of the two systems (2.2)
and (3.4) but not with the same values of α.

5. Chaos control

Chaotic behavior occurs in many fields such as physics, chemistry, biology, econo-
metrics and engineering, etc. However, these irregular and complex phenomena are
often undesirable, subtle and elusive. In many practical situation, in order to im-
prove system performance or avoid fatigue failures of mechanical systems, we must
control a chaotic system to a regular orbits, such as a periodic orbit or a steady
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state. Therefore studying how to control chaotic systems has received increased
attention. In chaos theory, control of chaos is based on the fact that any chaotic
attractor contains an infinite number of unstable periodic orbits. Chaotic dynamics
then consists of a motion where the system state moves in the neighborhood of one
of these orbits for a while, then falls close to a different unstable periodic orbit
where it remains for a limited time, and so forth. This results in a complicated
and unpredictable wandering over longer periods of time. Control of chaos is the
stabilization, by means of small system perturbations, of one of these unstable pe-
riodic orbits. The result is to render an otherwise chaotic motion more stable and
predictable, which is often an advantage. The perturbation must be tiny, to avoid
significant modification of the system’s natural dynamics. Several techniques have
been devised for chaos control, but most are developments of two basic approaches:
the OGY (Ott, Grebogi and Yorke) method, and Pyragas continuous control. Both
methods require a previous determination of the unstable periodic orbits of the
chaotic system before the controlling algorithm can be designed.
In this section we are going to control the period-1 orbit (i.e. fixed point) of the
map (3.4) via a modified delayed feedback control algorithm that allows one to
stabilize unstable target states of chaotic systems for any initial conditions placed
on a strange attractor. The algorithm is based on ergodicity of chaotic systems and
has been mentioned in [22]. Ergodicity is the universal property of chaotic systems.
This feature means that the chaotic trajectory visits the close neighborhood of any
orbit with finite probability.

The main idea of the delayed feedback control method (DFC) is that we let the
system to evolve unperturbed until it approaches a close neighborhood of the target
steady state. At this moment we activate the DFC perturbation that stabilizes the
target state. The algorithm does not require a knowledge of location of the target.

Our main is to stabilize the non-zero fixed point xfix2 = c
√
ρ− 1 of the map (3.4)

by using the DFC algorithm

xn+1 = xn +
rα

Γ(1 + α)
(
ρxn

1 + xcn
− xn) + k(xn − xn−1),

where K is the feedback gain. Introducing the auxiliary variable yn = xn−1, we get
the 2-D map

xn+1 = xn +
rα

Γ(1 + α)
(
ρxn

1 + xcn
− xn) + k(xn − yn),

yn+1 = xn.
(5.1)

The map (5.1) has two fixed points, namely: (x∗, y∗)1 = (0, 0), and (x∗, y∗)2 =
( c
√
ρ− 1, c

√
ρ− 1). To study the stability of the non-zero fixed point, we calculate

the Jacobian matrix at it.

J( c
√
ρ− 1, c

√
ρ− 1) =

[
1 + rα

Γ(1+α)
c(1−ρ)
ρ + k −k

1 0

]
,

with eigenvalues given by

λ1,2 =
(1 +m+ k)±

√
(1 +m+ k)2 − 4k

2
, (5.2)
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where m = rαc(1−ρ)
Γ(1+α)ρ .

The optimal value of the feedback gain, which leads to the fastest convergence of
nearby initial conditions towards the desired fixed point, is given by

K± =
rαc(ρ− 1)

Γ(1 + α)ρ
− 1±

√
4
rαc(ρ− 1)

Γ(1 + α)ρ
.

The root K− corresponds to the case for which the magnitudes of |λ1,2| are mini-
mal, and thus kop = k−. Taking r = 0.5, α = 0.90, c = 6, and ρ = 11 (which is the
minimum value of ρ generates chaos with the mentioned parameter values in Fig-
ure (4)(c)), then Kop = −1.4474. Thus we have controlled the non-zero fixed point
(x∗, y∗)2 = (1.4678, 1.4678) in Figure (4)(c). Figure (6) shows the controlled orbit
of the fixed point (x∗, y∗)2 = (1.4678, 1.4678) with initial condition (x0, y0) = (1, 1).

Figure 6. Controlled period-one orbit of system (3.4) with r =
0.5, α = 0.90, c = 6, and ρ = 11 with modified DFC method.

6. Conclusion

In this work we studied the dynamics of the fractional-order Mackey-Glass equation
before and after applying a simple discretization scheme to it. Local bifurcation of
fixed points of the discretized equation was studied and illustrated via bifurcation
diagrams. Chaos has been detected via lyapunov exponent for different values of
the fractional-order parameter α. Finally, chaos in the discretized system was con-
trolled using the modified delayed feedback control method.
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